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Random-Reaction-Seed Method 
for Automated Identification of 
Neurite Elongation and Branching
Alvason Zhenhua Li   1, Lawrence Corey1,2,3,4 & Jia Zhu1,3

Conventional deterministic algorithms (i.e., skeletonization and edge-detection) lack robustness and 
sensitivity to reliably detect the neurite elongation and branching of low signal-to-noise-ratio microscopy 
images. Neurite outgrowth experiments produce an enormous number of images that require automated 
measurement; however, the tracking of neurites is easily lost in the automated process due to the intrinsic 
variability of neurites (either axon or dendrite) under stimuli. We have developed a stochastic random-
reaction-seed (RRS) method to identify neurite elongation and branching accurately and automatically. 
The random-seeding algorithm of RRS is based on the hidden-Markov-model (HMM) to offer a robust 
enough way for tracing arbitrary neurite structures, while the reaction-seeding algorithm of RRS secures 
the efficiency of random seeding. It is noteworthy that RRS is capable of tracing a whole neurite branch 
by only one initial seed, so that RRS is proficient at quantifying extensive amounts of neurite outgrowth 
images with noisy background in microfluidic devices of biomedical engineering fields. The method 
also showed notable performance for reconstructing of net-like structures, and thus is expected to 
be proficient for biomedical feature extractions in a wide range of applications, such as retinal vessel 
segmentation and cell membrane profiling in spurious-edge-tissues.

Neurons undergo the most complicated morphogenesis of all cells in a developing organism. The neuronal devel-
oping process (termed as neurite) results in the formation of a complex neuronal architecture where it can be dif-
ficult to distinguish between axons and dendrites1. Neurite outgrowth is involved in a wide range of extracellular 
and intracellular stimuli and illnesses. Understanding neurite outgrowth can improve therapeutics for nervous 
system disease. For instance, the length of neurite extension has been used to quantify the effect of nerve growth 
proteins for understanding and treating sensory peripheral neuropathies2–4.

However, a precise quantification of neurites, especially of dynamic neurite outgrowth in micro-fluidic 
devices of the biomedical engineering field, is a challenging task that only cutting-edge image analysis tech-
niques can perform successfully and reliably. Conventional deterministic algorithms including skeletonization5 
and edge-detection6 have difficulty and limitations in determining neuronal structures in noisy images. There 
are several major issues encountered during skeleton/edge processing of images with low signal-to-noise-ratio 
(SNR). At the beginning, a time-consuming preparation is unavoidable, because a proper skeleton/edge extracted 
from an image requires an interplay of sharpness adjustments (e.g., threshold level). This process becomes unpro-
ductive for a long-stitched image combined with different exposure sub-images. A more problematic and less 
acceptable result from the deterministic skeleton/edge algorithm is, that the extracted skeletons/edges are often 
broken pieces due to low SNR images, as indicated by the red dashed arrows in Fig. 1. Other limitations include 
the generation of artifact signals and false identification of neuronal structures because skeleton/edge algorithms 
are very sensitive to phase halo effects, as indicated by the red solid arrows in Fig. 1.

To overcome the limitations, certain stochastic algorithms have been introduced in recent years7–10. For instance, 
hidden-Markov-model (HMM), a subclass of dynamic Bayesian networks11–14, is particularly useful in address-
ing more demanding requirements on the accuracy and robustness of the detection7. Despite ongoing algorithm 
improvements, automated efficient methods for neurite identification in low SNR images is typically challenging due 
to the intrinsic variability of neurite (either axon or dendrite) under stimuli. In this work, we present a robust and 
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efficient Random-Reaction-Seed method (RRS), which underlies the effectiveness of random seeding that occurs 
in employing the maximum likelihood method in statistical estimation for probabilistic functions of Markov chain.

Methods
In this section, we present the experimental nature of the raw images. Then, an automatic random-seed tracing 
algorithm, and a new highly efficient reaction-seed tracing strategy is presented and discussed in detail.

Neurons in microfluidic chambers.  The neurite growth of human neuroblastoma cells and primary sen-
sory neurons was conducted in a two-chamber microfluidic device (Xona Microfluidic)4. These studies evaluated 
the directional neurite growth of differentiated SY5Y cells in a microfluidic device induced by IL-17c4.

Immunofluorescent staining.  Neurites were visualized by staining with a PGP9.5 antibody4. The raw 
images were acquired with an inverted microscope using epi-fluorescence method (Nikon Ti-E system). SNR 
issues are mainly introduced during specimen preparation. For example, dye-conjugates introduce high intensity 
fluorescent spots and debris from culture introduces dot-like noise. Additionally, the irregular geometric struc-
ture of a microfluidic device will cause blurred or out-of-focus images due to objects from other focus plates.

HMM-based tracing algorithm starting from a random seed.  RRS is an HMM-based predicting 
algorithm in which the identification problem is formulated as inferring the discrete hidden variables (position) 
given observed (pixel-intensity-value). The most likely hidden variable (position) is estimated by maximizing 
a posterior probability. In order to clearly illustrate the process of neurite-object searching by the RRS random 
seeding, the pseudocode description is accompanied with a graphical diagram drawing on a real yet simple image 
(Fig. 2) explaining these essential search steps: (1) computing all possible paths of an HMM-chain, (2) predicting 
the position of a node of HMM-chain, and (3) identifying an HMM-node as a neurite-object.

Figure 1.  Challenges in analysis of neurite structure in image with low SNR. The central image is the raw neurite 
image with a phase halo artifact. Both (A,B) are the results from conventional deterministic algorithms. (A1) Resulted 
edge map from the edge detection method (Canny filter) shows double edges along the borders of the neurite path, 
and the typical circular structure from halo, as indicated by the solid red arrow marker. This gradient-based method 
has the problem of missing edge, as indicated by the dashed red arrow marker. (A2) A total of 58 sets of connected 
edge are classified from the edge map (the number within a circle marker is the index of each connected edge). (B1) 
Resulted skeleton map from the skeletonization method17 shows disconnected axial line of the neurite path, and the 
typical radial artifact from halo, as indicated by the solid red arrow marker. This thinning algorithm has the problem of 
missing/broken skeleton, as indicated by the dashed red arrow marker. (B2) A total of 19 sets of connected skeleton is 
classified from the skeleton map (the number within a circle marker is the index of each connected skeleton). (C) The 
results from the popular semi-manual Simple-Neurite-Tracer (deterministic algorithm + human intelligence). (C1) 
Bad resultant paths from the wrong order of manual-selected successive points (as indicated by the color numbers 1, 
2, 3). Two demos are presented, each demo contains 3 successive points with the similar color of the detected paths, 
in which the wrong path is indicated by the red arrow marker. (C2) Good resultant from the right order of manual-
selected successive points. These accurate finding paths in each demo are obtained simply by switching the location of 
“2” and “3” points. (D) The results from the Random-Reaction-seed algorithm (RRS). (D1) A total of 14 initial seeds, 
as indicated by the blue pentagon-star, are placed on the tip or junction of the neurite paths, then the RRS algorithm 
traces down each neurite path starting from the seed. The beginning resultant traces are indicated by the sequence of 
color circles. (D2) A completed and accurate neurite structure with 14 branches is achieved simply by 14 initial seeds, 
the resultant traces of the RRS algorithm are indicated by color circles on the raw neurite image (green channel).
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First, suppose the HMM chain contains N linked events, and each event resulted in a node. Here, the vector 
v A B( , )n[ 1]
→

α β−  denotes a forward path starting from a likely present-position Aα of node Nn−1 to a next-position 
Bβ with path-length r in the image space. For instance, the arrow-path illustrated in Fig. 2 is the corresponding 
vector v→. The term A B( , )n[ 1] α β−  is a sum of the log of pixel-intensity-value of all the pixels (linear-interpolation 
pixels) along the path. The vector V A B( , )n

max
n[ 1] [ ]

→
α β−  denotes a maximum-cost path starting from a present-position 

Amax
α  of Nn−1 to a likely next-position Bβ of Nn. For instance, the squared-marker illustrated in Fig. 2 is the possi-

ble path-destination Bβ[n] of 
→
V .

Figure 2.  The detail of search process raised by the RRS random seeding. For a clear demonstration of the 
search process of the RRS method, it is limited to 2 or 3 possible search-paths. The initial seed is denoted as a 
single blue pentagon-star, the possible path from current-position to predicting-position during each stage is 
denoted as an arrow-path, and the possible path-destination of a predicting node is denoted as a square-marker. 
Here, the number inside the marker labels the corresponding node-number while letter (a, b, c) is footnoting 
the related paths. The maximum-likely path-destination is denoted as a red hexagon-marker. The big red circle-
marker indicates a real neurite-object which is evaluated by the local pixel intensity of the predicting node. 
The interconnection of those big red circle-marker (traced point) realize a continuous neurite tracing. (A) In 
the case of 2 search-paths, one of the simplest cases, the resulted traced points (red circle-marker) has already 
roughly capturing the actual neurite-object (grey color pixels from actual neurite image). (B) In the case of 3 
search-paths, the resulted neurite-object identification is more accurate than the case of 2 search-paths. (C) 
The initial search-angle of RRS’s random seed is in the range of 360 degrees, as illustrated by 8 arrow-paths 
surrounding the pentagon-star, however, for efficiency without losing accuracy, the subsequent search-angles 
are limited in the range of 90 degrees only. The HMM-based tracing efforts, as indicated in the search arrows, is 
quite effective to covering all the branches of this junction, but only one branch way is recognized as the neurite 
path which is indicated by the big red circles. (D) Multiple random seeds are needed to trace a branching 
junction because the efficiency of search performance of a random seed is depending on its starting location. In 
the case of nothing in the search zone of a seed, the trace of its HMM chain is forming a circular pattern.

Step 1.  Computing all possible paths to estimate the likely path-destination during each events.
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Then, the coming step is looking for the maximum probability path passes through all events, in which the 
most likely path-destination during each event corresponds to the HMM-node’s physical location Nn[x, y] in the 
image (x, y are the coordinates of the pixel where the node is located). This most likely path computation is start-
ing from the final event backtrack to the initial event.

Here, the vector V A B( , )n
max

n
max

[ 1] [ ]
→

−  denotes the maximum-cost path, in which the maximum-likely 
path-destination is the HMM-node which is denoted as a blue hexagon-marker in Fig. 2. In actual computation 
during this step, the dynamic algorithm, is applied for speeding up the computation.

Finally, the local area pixel-intensity along the path of two adjacent nodes is applied for checking their connec-
tivity, because the HMM-nodes representing neurite objects are in connection.

Here, the term Iline denotes a one-dimensional pixel-intensity distribution along a vector line from node N[n−1] 
to N[n], while Izone corresponds to a two-dimensional pixel-intensity distribution of local zone surrounding this 
path (zone’s width equals to 2 × line). The identified neurite-object indicated by a red big-circle-marker in Fig. 2 
is evaluated by the local pixel-intensity distribution of the HMM-node. A neurite object Ri=1 exists only when the 
Median(Izone) of its surrounding pixels is less than its average pixel-intensity Mean(Iline). For a successfully recog-
nition of a continuous neurite body, only a chain with at least three neurite-object in sequential order are stored. 
As indicated in Fig. 2, one seed is limited to identify one piece of neurite branch structure, and sometime the 
random seed will capture nothing in its searching zone, so that, multiple random seeds are required to cooperate 
in covering a branching junction.

Random-reaction-seed strategy.  In principle, the minimum required number of initial seeds is equiva-
lent to the total branch number of the neurite. For instance, in a continuous tree-like neurite structure, the proper 
initial seeds should be located on the tip of each branch as indicated in Fig. 1(D).

However, ideal initial seeds are difficult to generated accurately in advance, because the neurite growth 
involves arbitrary structures with many faces: scaffold-like, tree-like branching, etc. Adding additional complex-
ity, the neurite object’s morphology in low SNR images is not smoothly continuous, often weakly linked or dis-
turbed by a wide range of artifacts (e.g., optical exposure time, halo-effect-spots, debris). Therefore, the searching 
algorithm of RRS is designed to apply a randomly distributed seed as an initial seed.

Step 2.  Predicting the HMM-node’s position which is the most likely path-destination during each event.

Step 3.  Identifying a HMM-node as a neurite-object by its local pixel-intensity distribution.
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Generation of random seed.  In principle, a uniform distribution of random initial seeds is capable of handling 
arbitrary neurite structures, as shown in Fig. 3(A2). However, a subtle tracing of locally condensed neurite 
branches will require a large amount of random seeding to cover a small local detail, while many of the seeds 
are useless in other non-neurite areas. Therefore, it is desired to obtain an optimal random seed distribution that 
should be located on the feature points of a neurite structure, so that it is able to achieve faster convergence (i.e., 
fewer steps for an accurate result).

One simple approach for a quality collection of random seeds is obtained by randomly sampling the skeleton/
edge map, which is generated by a conventional skeletonization/edge-detection method. For instance, the random 
seeds (blue stars) in Fig. 3(C2) are randomly picked up from the skeleton map in Fig. 3(C1). Here, the total num-
ber of random seeds for achieving the accurate tracing as illustrated in (C3) is a few percent of the total number 
of skeleton-pixel-points from the binary pixel map.

Another straightforward approach for a quality collection of random seeds is obtained by randomly sampling 
the the blob map that is generated by the conventional blob-detection method (e.g., difference-of-Gaussian)15. 
For instance, the random seeds in Fig. 3(D2) are randomly picked up from the blob map in Fig. 3(D1). Here, the 
total number of random seeds for achieving the accurate tracing as illustrated in (D3) is only a fraction of the total 
number of blob-points from the blob map.

Establishment of reaction seed.  As indicated in the diagram in Fig. 4, the HMM-based model is a predictive 
model that has an intrinsic one-way-direction property, meaning that one random seed will be only partially 
tracing a neurite branch. In general, multiple random seeds are needed to trace a complete branch because the 
efficiency of search performance of a random seed depends on its starting location. Therefore, it requires a dedi-
cated method to establish a reaction seed for coordinating the completed tracing of a branch.

There are three criteria for the establishment of an efficient reaction seed. (1) The birth condition: a reaction 
seed is a secondary seed derived from an active chain body of a random seed. Here, an active chain is defined as a 

Figure 3.  Different approaches of generating random seed distribution. (A1) is the raw neurite image with 
noisy fluorescent spots and artifacts. (A2) is the dynamic tracing map from a uniform distribution of random 
initial seeds which are denoted by blue stars. The active node (i.e., capturing a real neurite object) of a search 
chain is denoted by a big red-circle while the non-active node is denoted by a small grey-circle. (A3) is the 
traced neurite branches from (A2) and colorfully plotted on the raw image (grey-color); (B1) is the edge 
map of (A1) by the edge-detection method (Canny filter). (B2) is the dynamic tracing on the green-channel 
image by an edge-like distribution of seeds which are obtained by randomly sampling the edge pixel points 
in (B1). (B3) is the traced neurite branches from (B2) and colorfully plotted on the raw image (grey-color); 
(C1) is the skeleton map of (A1) by the skeleton-detection method18. (C2) is the dynamic tracing on the green-
channel image by a skeleton-like distribution of seeds which are obtained by randomly sampling the skeleton 
pixel points in (C1). (C3) is the traced neurite branches from (C2) and colorfully plotted on the raw image 
(grey-color); (D1) is the blob map of (A1) by the blob-detection method (e.g. difference-of-Gaussian). (D2) 
is the dynamic tracing on the green-channel image by a blob-like distribution of seeds which are obtained by 
randomly sampling the blob pixel points in (D1). (D3) is the traced neurited branches from (D2) and colorfully 
plotted on the raw image (grey color).
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search chain that must have at least one node in action to capture a real neurite object. For instance, Fig. 4 depicts 
the search chain from a random seed with at least one big red circle (e.g., capture a real neurite object) as an active 
chain. (2) The birth place: a reaction seed is placed on the same location as the first action node (e.g., the first 
big red circle from the primary chain). (3) The conditional direction: the central search path’s direction should 
be in the opposite direction of the first two action nodes of the primary chain, while the search-angle range of a 
reaction seed is better limited to a 180 degree angle, as indicated in Fig. 4(B). Given the above three criteria, the 
resultant search-chain from this newborn reaction seed will be a supplementary chain to the primary active chain 
for covering a whole branch of neurite structure.

HMM-based branching strategy.  The outcome from RRS is an interconnected map in binary pixel-value 
that is ready for further analysis, such as Sholl analysis, radial distance, and total branch length. There are several 
ways of branching an arbitrary network based on different purposes. Due to the complex construction of stimu-
lated neurites (i.e., lengthy and exaggerated), there is no perfect way to branch apart of a neurite structure. Here, 
we presented an efficient way of branching an arbitrary network based on the property of RRS that each seed will 
result in one way tracing. The implementation in a binary pixel net-like image is quite simple. First of all, an initial 
seed will branch out its own piece, then subsequent seeds will be parting the remaining structure. In a limited 
recursion, the whole net-like structure will be parting out, as displayed in the Fig. 3(A3,B3,C3,D3).

Figure 4.  Random-Reaction seeding strategy. The diagrams on the top are illustrating three different cases 
of seeding, where the red-dotted-arrow denotes the one way prediction (i.e., from present to future) of the 
HMM-based model. In an ideal case of seeding that a random seed is accidently sitting on the tip of one neurite 
branch, only one initial seed is required for tracing the whole length of this branch. In the normal random case 
of seeding, multiple random seeds will be required for covering an entire length of the branch, because one 
seed will only cover one piece of the branch due to the intrinsic one-way-prediction property of the predictive 
model. In the Random-Reaction case of seeding, only one active random seed is required to cover the whole 
length of the branch because its reaction seed offers a guarantee of supplementary tracing. Here, both (A,B) are 
the demonstration of random seeds on a neurite image. (A) In the normal random case of seeding, a total of 3 
random seeds are placed on a neurite image (gray color), accidently, one seed did not trace any neurite while 
other two seeds are capturing the real neurite objects (i.e., big-red-circle). It is obviously that only part of each 
branch are covered by the search-chain, so that more seeds are needed to cover this entire junction formed by 
two branches. (B) In the random-reaction case of seeding, the empty circles are the resultant traces from the 
random seeds of (A), while the circles accompanying with search paths in detail are the tracing chain from the 
reaction seed. It is clearly showing that each reaction seed is derived from the active chain body of a random 
seed. Noticeably, the initial search-paths of the reaction seed are limited in 180-degree which is quite a contrast 
to the 360-degree search-paths of the initial random seed.
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Results
In this section, we report comparisons with state-of-the-art algorithms. There is no objective ground truth avail-
able for micro-fluidic neurite growth. To assess the accuracy of our method we compare the results with the 
manual measurement.

Comparison of RRS with deterministic algorithms.  Generally, the accuracy from deterministic algo-
rithms relied heavily on the manual intervention (e.g., human visual intelligence for estimating parameters).

In the case of applying conventional skeleton/edge-detection deterministic algorithms, the ability to obtain 
threshold parameters is a prerequisite for performing accurate analysis of an input image. The raw image in Fig. 5 
depicts a typical stitched image with noisy and uneven distribution of fluorescence taken from a microfluidic 
device. It is often a pitfall for applying conventional skeleton/edge-detection, because it is hard to adjust a suitable 
threshold for the entire long-stitched image: low local contrast will lead to disconnected neurites, while the high 
local contrast will lead to artifacts from noisy background.

In the case of other deterministic algorithms such as functionals of Hessian matrix, the manual supervision 
is the key step for accuracy. For instance, Simple Neurite Tracer16, a Java-based plug-in module for the popular 
ImageJ/FijiTM, provides an interactive way to recognize a path by using Hessian matrix analysis for curvature 
evaluation, in which a successful implementation of each neurite branch needs a manual selection process (e.g., 
manually select the starting point and ending point). This can quickly become a labor-intensive and burdensome 
task or a impossible if using a large image-set abundant in neurites.

In contrast to the manual intervention of deterministic algorithms, the stochastic RRS algorithm, coded on 
the open-source Python platform (see Data availability section), is robust against noise and is designed to auto-
matically perform accurate quantification of an extensive number of neuronal images without requiring custom-
ization and adjustment of multiple parameters. Furthermore, RRS applies the fast feature generation of input 
image by deterministic algorithms (i.e., skeleton/edge or blob detection) as the likelihood approach of seeding to 
enhance the optimization of random seed distribution.

Comparison of RRS with other HMM-based algorithm.  The Neuron Image Analyzer7 is a 
HMM-based tool that relies on soma centroid’s local maxima as the initial point for its neurite tracing. This is 

Figure 5.  Automated detection of neurite elongation and branching in a stitched image. The image on the top 
is a typical stitched image with noisy and uneven distribution of fluorescence taken from microfluidic device 
for neurite development study. The plot in the middle is the dynamic tracing on the raw image (green-channel) 
by the Random-Reaction-Seed method. The plot on the bottom is the resultant neurite extraction from the 
above RRS tracing process, and colorfully plotted on the raw image (grey color). Here, each interconnected 
neurite structure is plotted by one color, so that the connectivity of the entire neurite extraction are observable 
colorfully.
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particularly useful for neuron images with an outstanding soma cell body, but not for neurite image without 
specific soma bodies. However, fundamentally, many microfluidic neurite devices are isolated environment so 
that most soma bodies are compartmented in one chamber while the neurite outgrowth is cultured in another 
chamber. In addition, the debris in culture media will often be mistakenly recognized as soma bodies. Thus, there 
is a need for more robust tools for complex neurite images from micro-fluidic devices. Therefore, the RRS method 
gives considerable effort to focusing on microfluidic neurite outgrowth in which branching structure does not 
associated with specific soma bodies. Particularly, the most widespread feature describing neurite outgrowth is 
its total length.

RRS has explicit features that distinguish it from other HMM-based algorithms. (1) Random-seeding algo-
rithm is a robust way to trace the arbitrary net-like structure without specific seeding-point from the structure 
roots (i.e., soma cell body). (2) Reaction-seeding algorithm is an efficient way to trace a complete branch with 
only one initial seed. (3) The proposed branching strategy is a unique way to part the complex neurite outgrowth.

Furthermore, besides the universal uniform random seeding, RRS provides various approaches of 
likelihood-feature random seeding, as shown in Fig. 3. One significant advantage of these seeding approaches is 
part of the seeds is highly relevant to the neurite profile without high computational cost. On the other hand, the 
shortcoming of these approaches is that some part of the seeds is just relevant to the noise or neuronal cell body, 
because these approaches are based on conventional feature detection methods that will either overestimated 
the neurite profile due to the artifacts or underestimated the neurite profile due to the threshold. However, one 
superior advantage of the RRS method is the capability to avoid the halo-effect-spot, and the neuronal cell body 
(somatic body), because the RRS searching algorithm is native to chain-like linear objects (e.g., geometric width is 
less than the path-length r), and is naturally immunized against polygonal objects (e.g., geometric width is bigger 
than the path-length r). Therefore, these seeding approaches required an approximation of the neurite profile 
estimation so that the implementation of these conventional feature detection methods (e.g., skeleton or blob) are 
straightforward and fast without adjusting threshold parameters for each image.

Evaluation of accuracy and efficiency.  The field lacks the availability of a ground truth dataset of micro-
fluidic neurite outgrowth that is different with retina vessel or other neuron-based images in which ground truth 
dataset are publicly available. Simple Neurite Tracer is a tool used by many neural biologists where its improved 
accuracy is achieved by a combination of human visual intelligence and the optimized Hessian-based parameters. 
We have accumulated many neurite measurements from Simple Neurite Tracer, which are used for proof-editing 
the reconstructions obtained by the automated RRS method. This is an efficient and consistent way to verify 

Figure 6.  Performance of the RRS method on a diverse imaging dataset under a series of studies evaluating 
neurite growth4. (A) In the case of abundant neurite, the processing time between the RRS method and the 
semi-manual method is close to a 10-fold difference: ~2 hours by RRS, and ~20 hours by Simple Neurite Tracer. 
(B) In the case of scarce neurite, the processing time between the RRS method and the semi-manual method 
is close to a similar time frame: ~30 minutes by both the RRS and Simple-Neurite-Tracer. Here, on the panels 
of both (A,B), the plot on the top is part of a long-stitched raw image, the plot in the middle is the dynamic 
tracing on the raw image (green channel) by the RRS method, and the plot on the bottom is the resultant neurite 
extraction from the RRS process, and colorfully plotted on the raw image (grey color). (C) The box-plot on the 
top is the evaluation of accuracy among three different methods, the red-square-point inside each box is the 
mean value. The accuracies of both the RRS method and Simple-Neurite-Tracer method are significantly higher 
than the accuracy of the skeleton method (p < 0.05), while the accuracy between the RRS method and Simple-
Neurite-Tracer method is close to a similar level without significantly different from each other (p ≫ 0.05). The 
box-plot on the bottom is the evaluation of efficiency, the efficiencies of three different methods are significantly 
different from each other (p < 0.05). The p-value is derived from two-sample permutation test.
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the accuracy of RRS by comparing the measurements from the Simple Neurite Tracer with neuronal biologist 
supervision.

Here, we present the evaluation of three different methods, as shown in Fig. 6. All the processed images are 
from our HSV lab, and the computational speed is a processing time per stitched image (e.g., 4096 × 11264 pix-
els) on a 2.6 GHz Intel Core i7 computer. For evaluating the efficiency, the processing time is a total of exhausted 
time that includes both the algorithm runtime and consuming time of manual intervention. Importantly, the 
evaluation of processing time in the semi-manual Simple Neurite Tracer is only a rough estimation, because 
individual skill and personal patience influences the total amount of exhausting time. For instance, a manual 
tracing of a high content of neurite branches in a long-stitched image would require days of tedious work per 
expert, as shown in Fig. 6(A). On the other hand, a manual tracing on a very low content of neurite branches 
in a long-stitched image would be as productive as the automated RRS method. In the case of scarce neurite 
growth, the human visual intelligence will take less than a second to recognize a neurite branch, however, the 
threshold adjustment and parameters selection of the semi-manual tool would take minutes for achieving a bet-
ter result of a long-stitched image with noisy background, as shown in Fig. 6(B). Specifically, in the semi-manual 
Simple-Neurite-Tracer with Hessian-based analysis, there are two parameters that can be manually optimized 
for various noisy neurite structures: Sigma-parameter is the approximate radius of the structures that one can 
semi-manually trace, and Multiplier parameter is the scaling factor of selecting scale of traced structures. It will 
then take some time to compute the Gaussian convolution of the image. If it seems to be finding an unexpected 
path as human visual intelligence or being taking a long time to find an expected path by avoiding noise or arti-
fact, one should cancel the search and try a new start point of the semi-manual tracing. Overall, it will easily take 
half an hour or more to navigate a long-stitched image with uneven noisy background. Thus, the processing time 
relies heavily on several facts, including the size of input image, the content/density of neurite branches, and the 
noisy background.

In order to present an informative evaluation of a great diversity of neurite imaging datasets under a series of 
studies evaluating neurite growth4, we selected six sample images from various neurite growth conditions (stimu-
lated growth, inhibitory growth, and control/normal growth). The representative neurite profile under stimulated 
growth and inhibitory growth is displayed in Fig. 6, while the representative neurite profile under control/normal 
growth is similar to the profile in Fig. 5. To determine if two methods are significantly different from each other, 
the p-value is derived by permutation-test, as this testing is applicable to very small samples.

On average, the skeletonization method (deterministic algorithm) achieves the highest speed but with lowest 
accuracy, while the RRS (stochastic algorithm) has equivalent accuracy to Simple Neurite Tracer (deterministic & 
intelligence). Thus, the efficiency of random-reaction-seed method is at least an order of magnitude higher than 
the semi-manual tool evaluated here. Also, the current CPU-based speed of RRS could be greatly improved by 
using GPU-based parallelism.

Discussion
In general, our RRS method is not limited in providing robust object recognition outputs in neurite images taken 
from microfluidic device, as shown in Fig. 5. It is worth noting that we have started to apply the RRS method on 
tissue images, in which conventional quantification of nerve fiber growth in skin biopsies relies heavily on manual 
measurement.

The random-reaction-seed RRS method is an effort to broaden and strengthen the functionality of 
HMM-based image analysis tools. First of all, beyond the limitations of preset initial points, the random-seeding 
algorithm has demonstrated the robustness for tracing arbitrary neurite structures. Secondly, the featured 
reaction-seeding algorithm has demonstrated the efficiency for tracing a completed branch with only one ran-
dom initial seed. Thirdly, the proposed HMM-based branching strategy provides a systematic way of branching 
apart of a complex neurite outgrowth. Here, the RRS method has demonstrated the excellent performance in 
planar image analysis; the RRS method could be easily extended to 3D image analysis. Furthermore, in the case of 
live-cell imaging with dramatic variation in each sequential imaging frame, this method could potentially offer a 
high computational accuracy and efficiency to the analysis of live-cell imaging with noisy background. However, 
in the case of live imaging with small or continuous variation in each sequential imaging frame, it is desired to 
modify this method to provide better computational efficiency because current implementation of this method 
is well-suited for static or discontinuous imaging only. For instance, one potentially simple way to modify this 
method for live-cell imaging would be applying a sequential masking technique to generate the initial seeds effi-
ciently during each sequential imaging processing.

In conclusion, the RRS method has demonstrated the effectiveness and robustness for precise quantification 
of the length of neurites in large stitched images taken from dynamic and noisy micro-fluidic devices, which is 
becoming an increasingly useful tool for neural biologists owing to its ability to precisely control, monitor and 
manipulate neuron-developing micro-environments. Furthermore, the RRS method has the potential applicabil-
ity and generality on the automated recognition of the growth and branching of peripheral nerves from skin tissue 
images with various complexities.

Future studies include exploiting the RRS method on the extraction of biomedical elongated structures in a 
range of applications, such as retinal vessel segmentation and cell membrane profiling in spurious-edge-tissues. 
A hybrid system combining HMM-based RRS and deep neural learning network will be a promising future 
investigations.

Data Availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request. Code for imaging data analysis is available in the repository on GitHub (https://github.com/
alvason/identifying_neurite_by_RRS).
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