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Abstract

Diffusion-weighted magnetic resonance imaging (DW-MRI) is now widely used as a standard imaging sequence for
evaluation of the liver. The technique is easy to implement across different MRI platforms, and results in enhanced
disease detection and characterization. With careful implementation, the quantitative apparent diffusion coefficient
derived shows good measurement reproducibility, which can be applied for tissue characterization, the assessment of
tumour response and disease prognostication. There is now a body of evidence that highlights the relative strengths
and limitations of the technique for the assessment of liver diseases. The potential for more sophisticated analysis of
DW-MRI data is currently being widely investigated.
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Background

Magnetic resonance imaging (MRI) is playing an increas-
ing role in the assessment of patients with liver disease
due to its high soft tissue resolution, lack of ionizing
radiation and ability to provide functional data.
Diffusion-weighted (DW)-MRI is a functional imaging
technique that is now widely used as a standard imaging
sequence, together with unenhanced T1/T2 weighted
imaging and contrast-enhanced imaging for liver
evaluation.

As a non-contrast-enhanced technique, DW-MRI is
particularly useful in patients with severe renal dysfunc-
tion at risk of developing nephrogenic systemic fibrosis
(NSF) after administration of gadolinium-based contrast
medium[1�4]. The clinical uses of liver DW-MRI include
improved detection of focal liver lesions, contribution to
tissue characterization for both diffuse disease and focal
lesions, monitoring of tumour response after chemother-
apy or radiotherapy, detection of recurrent disease, dif-
ferentiating recurrence from post-therapeutic change, and
potentially predicting treatment outcome. Knowledge of
the evidence highlighting the strengths and limitations of
the technique in these areas is important to maximize the

advantages of using DW-MRI and to avoid the potential
pitfalls.

General principles of liver DW-MRI

DW-MRI is a technique that explores the random, ther-
mally driven, motion of water protons in the body, deriv-
ing image contrast on the basis of differences in water
diffusivity within tissues. Water protons in the body exist
in the intra- and extracellular spaces; free diffusion is
modified by bulk capillary flow and the interactions of
the protons with cell membranes and macromolecules. In
this way, DW-MRI provides an insight into cellular archi-
tecture at the micrometre scale. In highly cellular tissues
(e.g. tumour tissue), the tortuosity of the extracellular
space and cell membrane density limit the apparent dif-
fusion of water, which is said to be impeded[5,6]. In con-
trast, cystic and necrotic tissues have fewer barriers to
water diffusion and the apparent diffusion is relatively
free.

The sensitivity of DW-MRI to water diffusion is altered
by changing the b value of the sequence, a parameter that
is proportional to the gradient amplitude, duration of the
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applied gradient and time interval between the 2 gradi-
ents. Protons with larger diffusion distances, e.g. in the
intravascular space, show steep signal attenuation at low
b values (b5100�150 s mm�2). By contrast, cellular tis-
sues (e.g. tumours) with more impeded water diffusion
tend to maintain their signal at higher b values
(4500 s mm�2). Therefore, increasing b values result in
greater signal attenuation in less cellular areas, e.g.
normal liver parenchyma, compared with cellular areas,
e.g. tumours, in this way improving and maximizing the
contrast between cellular disease and the background
liver parenchyma. Visual assessment in this way also
enables qualitative disease evaluation based on differen-
tial signal attenuation between tissues with increasing
diffusion weighting.

The data obtained from 2 or more (typically 3)
b values[7] is used to generate the apparent diffusion
coefficient (ADC) maps. To achieve this, the signal inten-
sity (or logarithm of the signal intensity) from each image
voxel measured at increasing b values is plotted against
the b value to generate a graph, and the slope of this line
is the ADC for that single voxel. The mathematical equa-
tion used to calculate the ADC is ADC¼ ln(SI0/SI)/b,
where SI0 is the signal intensity for b¼ 0 and SI is the
signal intensity for a higher b value. On the MR scanner,
this process is automated for all voxels and a parametric
ADC map is produced.

Technical considerations

With growing equalization of technology across MR
vendor platforms, there is now a significant convergence
in the implementation of DW-MRI across different scan-
ners. The most widely used technique is fat-suppressed
single-shot spin-echo echo-planar imaging, which can be
performed in breathhold, free-breathing or with respira-
tory triggering. In the clinical setting, the free-breathing
technique is now most frequently used, as multiple signal
averaging improves the image signal-to-noise ratio (SNR)
especially at higher b values. However, a detailed discus-
sion of the technical implementation of liver DW-MRI is

beyond the scope of this article. The reader is referred to
previously published papers on the subject[8�14].

A typical diffusion-weighted MR imaging protocol at
1.5 T and 3.0 T is listed in Table 1. In general, the quality
of liver DW-MRI seems to be more consistent at 1.5 T
compared with 3.0 T, although many institutions are now
adopting the 3.0 T imaging platform for liver imaging
because of the high-quality T1-weighted dynamic con-
trast-enhanced imaging that can be achieved at the
higher field strength.

DW image interpretation

Visual assessment of DW-MR images is useful in disease
detection and lesion characterization based on differen-
tial signal attenuation within tissues. Cellular tissues dem-
onstrate impeded diffusion, which shows high signal
intensity at higher b values and a corresponding low
ADC value. Cystic or necrotic tissues show greater
signal attenuation on higher b values and return higher
ADC values. However, the signal return on diffusion
images is related to both the proton diffusivity within a
tissue and the T2 relaxation time of that tissue. Therefore
lesions may appear to show impeded diffusion on the
high b value images (i.e. returning high signal intensity)
as a result of their intrinsic long T2 relaxation time rather
than impeded water diffusivity. This phenomenon is
known as T2 shine-through and may be encountered in
hepatic cysts and liver haemangiomas. It is recognized by
correlating the high b value images with the ADC map;
regions with T2 shine-through also return high ADC
values.

Quantification of tissue diffusivity is performed using
ADC maps, which can be evaluated visually or by draw-
ing regions of interest on the ADC map to generate mean
ADC values for the tissue/region of interest. These quan-
titative measures are being used to characterize both
focal and diffuse liver pathology and in the prediction
and assessment of tumour response to treatment.
However, to enable meaningful interpretation and for
confidence in ascribing an observed ADC change to
real treatment effects rather than to biological,

Table 1 Typical MRI parameters for performing free-breathing DWI liver imaging at 1.5 T and 3.0 T

Imaging at 3.0 T Imaging at 1.5 T

Field of view (cm) 380�400 380�400
Matrix size 112� 256 112� 256
Repetition time (ms) 3300 4500
Echo time (ms) 72 72
Echo-planar imaging factor 84 104
Parallel imaging factor 2 2
No. of signals averaged 3 6
Receiver bandwidth (Hz pixel�1) 2056 1760
Section thickness (mm) 5 5
Direction of motion probing gradients Phase, frequency and slice (3 scan trace) Phase, frequency and slice (3 scan trace)
Fat suppression SPAIR SPAIR
b factors (s mm�2) 0, 100, 500, 750 Multiple b values: 0, 100, 500, 750

SPAIR, spectral-attenuated inversion recovery.
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instrumental or observer variations, it is important to
establish the ADC measurement reproducibility of the
scanner system[15�18]. Unfortunately, as each scanner
and the conditions of measurements are different, repro-
ducibility measurements should be verified on individual
scanners and could be built into the departmental quality
assurance programme, which includes the use of dedi-
cated diffusion phantoms[19].

The measurement reproducibility of a scanner can be
established using a small cohort of patients (typically
about 10�12) who are scanned twice on the same scan-
ner using the same imaging parameters on different days
or times. By performing Bland�Altman statistical analy-
sis on the mean ADC result obtained on each measure-
ment in each patient, we can calculate the coefficient of
repeatability (R). This provides the 95% confidence limits
of the ADC measurement variation on a per patient
basis. For example, a coefficient of repeatability of 13%
suggests that by using the particular DW-MRI technique,
a change in the ADC value of more than 13% is unlikely
to be due to chance. Measurement reproducibility calcu-
lated from normal tissues may not be applicable to the
disease as disease processes (e.g. tumours) are often het-
erogeneous and thus result in poorer measurement repro-
ducibility compared with normal tissues[20].

Nevertheless, free-breathing DW-MRI has been found
to provide the most reproducible ADC results
compared with breathhold or respiratory-triggered DW-
MRI[15]. Furthermore, by meticulous technique, it is pos-
sible to achieve measurement reproducibility of less than
10% using free-breathing DW-MRI. In the reported liter-
ature, a coefficient of repeatability of 20�40% is
typical[15,18,21,22].

Clinical applications of liver DW-MRI:
diffuse diseases

Fibrosis/cirrhosis

Liver fibrosis resulting from alcoholic or infective hepa-
titis is an important cause of morbidity and mortality. As
clinical examination and biochemical markers are unreli-
able for staging hepatic fibrosis, the gold standard for
establishing liver fibrosis is by histologic evaluation
after liver biopsy. However, this is invasive and prone
to sampling errors[23,24], intra-observer variation[25] and
potential complications[26]. Hence, there is desire for a
reliable, non-invasive means of assessing disease severity
in patients with chronic liver disease. Although conven-
tional computed tomography (CT) and MRI can identify
patients with advanced liver cirrhosis, the evaluation of
early hepatic fibrosis and inflammation is impossible with
conventional MRI, and newer sequences such as DW-
MRI and MR elastography are currently under
evaluation.

Several studies have shown that the cirrhotic liver is
associated with lower ADC values than normal liver

parenchyma (Fig. 1)[27�31] and higher grades of cirrhosis
are associated with lower ADC values[29,32] (Table 2).
The reduction in water diffusivity seen with hepatic
fibrosis is likely to be multifactorial but has in part
been attributed to the increase in collagen within the
liver, which has a lower unbound water content than
normal hepatic parenchyma[33,34]. In 2 studies, decrease
in hepatic perfusion was cited as a reason because
decreased liver perfusion fraction was observed in the
cirrhotic liver, measured using multiple b value DW-
MRI and analysed using the principles of intravoxel inco-
herent motion (IVIM)[35,36].

A recent retrospective study by Fujimoto et al.[37]

assessed hepatic entropy ADC values in addition to
mean ADC values in patients with chronic hepatitis
C. The entropy ADC provides information related to
variation in the volume histogram of ADC and has pre-
viously been applied in the neurologic system[38,39].
A wider distribution in histogram values leads to a
larger entropy ADC value. As in previous studies, the
authors showed that the mean hepatic ADC decreased
with increasing grades of fibrosis/inflammation. In addi-
tion, entropy ADC was shown to increase with fibrosis,
which correlated strongly with fibrosis score and inflam-
matory activity grade.

Table 2 summarizes published papers utilizing DW-
MRI for the assessment of liver fibrosis. From these
studies, the mean ADC values measured on DW-MRI
seem to have a limited range to distinguish early stages
of fibrosis (e.g. METAVAR grades I and II, where med-
ical intervention may be possible) from more advanced
disease, thus limiting the use of the technique in this
disease context. In one study comparing MR elastogra-
phy with DW-MRI, MR elastography was more sensitive
than DW-MRI in diagnosing early stages of liver fibrosis.
With technologic advancement, it may be possible to

Figure 1 A 46-year-old with liver cirrhosis. The
b¼ 750 s mm�2 image shows an irregular liver outline,
which also returns higher signal intensity compared with
normal liver due to impeded water diffusion.
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evaluate other diffusion quantitative metrics derived by
different diffusion models to improve diagnostic
performance.

Steatosis

Hepatic steatosis or fatty infiltration can progress to hep-
atitis and eventually to cirrhosis. The accepted standard
for diagnosis is liver biopsy, although non-invasive MRI
using fat�water separation sequences is becoming
accepted as a non-invasive method of diagnosis and
means of assessing the hepatic fat fraction. Significant
hepatic steatosis has been shown to lower hepatic ADC
values. One probable explanation for this observation is
that protons associated with intra- and extracellular fat
have reduced diffusivity, thus resulting in a lower ADC
compared with normal parenchyma[40]. A recent study
by Poyraz et al.[41] showed a significant ADC reduction
in patients with a hepatic fat fraction of greater than 5%
and demonstrated an inverse relationship between ADC
and hepatic fat fraction. However, an earlier study found
no correlation between ADC values and hepatic fat frac-
tion, although MR spectroscopy and dual-echo chemical
shift imaging in the same population showed good corre-
lation with hepatic fat fraction[42].

Haemochromatosis

In patients with haemochromatosis, the high parenchy-
mal iron content induces susceptibility artefacts that
result in low signal intensity on diffusion sequences and
spuriously low ADC values. These susceptibility artefacts
can also lead to obscuration of smaller focal liver lesions,

and disease evaluation in the presence of iron overload in
the liver should be interpreted with caution.

Applications of liver DW-MRI

Application of a small diffusion weighting
(b550�150 s mm�2) nulls the intrahepatic vascular
signal resulting in black-blood images that improve the
detection of focal liver lesions while maintaining a high
SNR (Fig. 2)[13,43�47]. The use of higher b values
(4500 s mm�2) facilitates liver lesion characterization,
helping to distinguish between cystic and solid
lesions[48,49]. However, differentiation between different
solid lesions is difficult based on visual assessment
because these lesions, whether benign or malignant, dem-
onstrate impeded diffusion on the high b value images.
Hence, further lesion characterization by DW-MRI could
be aided by evaluating the ADC map in conjunction with
the morphologic sequences.

Focal liver lesion detection

A substantial number of studies have compared DW-MRI
with T2-weighted imaging or contrast-enhanced MRI for
the detection of focal liver lesions (Tables 3 and 4).
These studies have shown improved liver lesion detection
on diffusion sequences[13,43,46,47,50,51] compared with
conventional T2-weighted MRI or even contrast-
enhanced MRI.

Compared with T2-weighted MRI, the use of low b
values to generate black-blood images has been shown
to result in comparable image quality but improved
lesion detection[13,45,47], particularly for lesions less

Table 2 Selected publications on the use of DWI for the assessment of liver cirrhosis.

Study No of
patients

Key findings

Do et al.[77] 56 Normalized liver ADC relative to spleen improved measurement reproducibility and was more
accurate in characterizing liver cirrhosis compared with liver ADC alone

Patel et al.[35] 30 Cirrhotic liver returned lower ADC values compared with normal liver
Sandrasegaran et al.[78] 78 ADC value of cirrhotic liver lower than normal liver. However, ADC was not able to distinguish

early stages of fibrosis (METAVIR score 2 or less)
B€ulow et al.[79] 95 ADC values are less reliable in the presence of hepatic fat or iron infiltration
Tosun et al.[80] 37 ADC values of cirrhotic and inflammatory liver were less than normal liver
Kovač et al.[81] 45 Transient elastography was more accurate than ADC for the evaluation of the severity of liver

fibrosis
Bakan et al.[82] 59 ADC of cirrhotic liver was lower than normal liver
Bonekamp S et al.[83] ADC inversely correlated with severity of liver fibrosis
Soylu et al.[84] 55 No correlation found between ADC and fibrosis stage
Mwangi et al.[85] 17 ADC values was higher in confluent fibrosis compared with background cirrhotic liver
Taouli et al.[29] 23 ADC values reduced in liver inflammation and fibrosis
Wang et al.[86] 14 MR elastography showed a higher diagnostic accuracy for staging liver fibrosis compared with

ADC values
Watanabe et al.[87] 114 Hepatocyte-phase gadoxetate disodium-enhanced MR imaging was more reliable for staging liver

cirrhosis compared with ADC values
Koinuma et al.[30] 31 Inverse correlation between ADC values and fibrosis scores
Luciani et al.[36] 12 ADC and perfusion-sensitive diffusion parameters are lower in liver fibrosis compared with

normal liver
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Table 3 Studies comparing DWI with T2-weighted imaging for the detection of focal liver lesions

Year Authors No. of
patients

Findings

2011 Yang et al.[88] 45 Improved detection of malignant hepatic lesions using DWI
2009 Coenegrachts et al.[89] 25 Non-contrast single-shot echo-planar imaging-DWI best for lesion detection
2008 Parikh et al.[13] 53 DWI better than T2-weighted imaging for lesion detection
2008 Bruegel et al.[90] 52 DWI had highest sensitivity for lesion detection
2008 Zech et al.[43] 20 Higher detection rate using DWI
2008 Goshima et al.[91] 76 b¼ 100 best for lesion detection
2007 Coenegrachts et al.[92] 24 DWI increased lesion conspicuity
1998 Ichikawa et al.[93] 46 Increased detection of malignancy using DWI
1998 Okada et al.[46] 48 Improved lesion detection using DWI

Table 4 Studies comparing DWI with contrast-enhanced MRI for the detection of focal liver lesions

Year Authors No. of
patients

Comparison Findings

2012 Song et al.[94] 158 Gd-EOB-DTPA No difference in diagnostic accuracy for DWI performed with or without
contrast enhancement

2012 Kim et al.[95] 86 Gd-EOB-DTPA Combined DWI and Gd-EOB-DTPA imaging showed higher accuracy and
sensitivity

2012 Holzepfel et al.[55] 36 Gd-EOB-DTPA Combined DWI and Gd-EOB-DTPA improved detection of lesions51 cm
in diameter

2011 Chung et al.[96] 47 Gd-EOB-DTPA Combination of DWI and Gd-EOB-DTPA showed higher accuracy for
detection of metastases

2012 Koh et al.[8] 72 Gd-EOB-DTPA Improves diagnostic accuracy using combination of DWI and Gd-EOB-
DTPA enhanced imaging

2011 L€owenthal et al.[97] 73 Gd-EOB-DTPA DWI good for detecting small metastases
2010 Shimada et al.[98] 45 Gd-EOB-DTPA Gd-EOB-DTPA MRI showed higher accuracy
2009 Coenegrachts et al.[89] 25 SPIO, TSE T2W Non-contrast single-shot echo-planar imaging-DWI best for lesion

detection
2006 Nasu et al.[99] 24 SPIO DWIþT1/T2 resulted in highest detection rate compared with SPIO-

enhanced imaging
2008 Koh et al.[54] 33 Mn-DPDP T1W Adding DWI to Mn-DPDP resulted in highest detection rate

DTPA, diethylenetriaminepentaacetic acid; EOB, ethoxybenzyl; Mn-DPDP, mangafodipir trisodium; SPIO, superparamagnetic iron oxide; TSE,
turbo spin-echo.

Figure 2 A 56-year-old man with a history of colorectal cancer. (a) T2-weighted and (b) b¼ 100 s mm�2 image of the
liver. Liver metastases (arrows) appear more conspicuous on the diffusion-weighted image as the high signal from the
intrahepatic vasculature is suppressed by applying diffusion weighting.
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than or equal to 1 cm in diameter[51], for lesions lying
adjacent to blood vessels and for those located in the
right hepatic lobe[13]. Improvement in lesion detection
with DW-MRI can be explained by improved lesion to
background image contrast using low b value (or black-
blood) images, which helps to differentiate small metas-
tases from intrahepatic vasculature[47]. However, lesions
in the sub-diaphragmatic right lobe of the liver, as well as
the sub-cardiac region in the left hepatic lobe may be
obscured due to motion-induced artefacts (Fig. 3).

Other studies have compared focal liver lesion detec-
tion on DW-MRI with contrast-enhanced (superparamag-
netic iron oxide, low molecular gadolinium chelates,
gadoxetic acid and mangafodipir trisodium) examina-
tions. These studies (Table 3) demonstrated that DW-
MRI has a high sensitivity and specificity for the detec-
tion of liver metastases[44,52�54]. Even with the use of the
liver-specific contrast medium (Gd-EOB-DTPA), it was
the combination of hepatocellular phase T1-weighted

imaging and DW-MR images that resulted in the highest
diagnostic accuracy, increasing sensitivity without sacrifi-
cing specificity[54,55]. This is because combining these
techniques maximizes the advantages of each while mini-
mizing their disadvantages. DW-MRI improves the detec-
tion of small metastases that may mimic small blood
vessels on the hepatocellular phase of Gd-EOB-DTPA-
enhanced imaging (Fig. 4), whereas contrast-enhanced
images are more useful in the sub-diaphragmatic and
sub-cardiac liver regions, which are prone to DW-MRI
artefacts[8]. When DW-MRI was performed after the
administration of superparamagnetic iron oxide contrast
medium, lesion detection was also improved by suppres-
sion of background liver signal[56].

Focal liver lesion characterization

Although DW-MRI can be used to distinguish solid from
cystic lesions, this usually does not pose a significant

Figure 4 Liver metastasis mimicking intrahepatic vasculature on Gd-EOB-DTPA-enhanced imaging. A 48 year-old man
with colorectal cancer. (a) b¼ 750 s mm�2 image shows high-signal metastasis in the caudate lobe of the liver adjacent
to the inferior vena cava (arrow). (b) The lesion is poorly seen and cannot be distinguished from the intrahepatic
vasculature, which also appears hypointense relative to the liver in the hepatocellular phase of contrast enhancement.

Figure 3 Artefacts over the left lobe of the liver. Diffusion-weighted (a) b¼ 0 s mm�2 and (b) b¼ 500 s mm�2 images.
On the higher b value image (b), note substantial artefacts over the left lobe due to cardiac motion, which can obscure
lesions located in this area.
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diagnostic challenge even on conventional morphologic
imaging. Characterization of solid hepatic lesions is usu-
ally more challenging due to the substantial overlap in
their conventional morphologic appearance, DW-MRI
appearances and the ADC values between benign and
malignant lesions. However, benign lesions have been
shown to have higher (i.e. less impeded) ADC values
than malignant lesions[9,12,13,48,49,57] (Table 5). From
the published literature, it would seem that a threshold
value of approximately 1.7� 10�3 mm2 s�1 has a fairly
high diagnostic sensitivity and specificity for differentiat-
ing benign from malignant focal disease[9,10,12�14,48]. Of
the benign solid lesions, hepatic haemangiomas have the
highest ADC value, typically higher than the adjacent
liver parenchyma, which can be ascribed to the T2
shine-through effect (Fig. 5).

When comparing or interpreting ADC values, it is
important to be aware of the method of ADC calculation
and to compare with values obtained using similar tech-
niques to avoid misinterpretation. For example, ADC
values calculated using or including low b values
(�100 s mm�2) are higher because perfusional effects
are included[49,58]. Consensus recommendations suggest
that the omission of b¼ 0 and calculation using a range
of higher and lower b values[7] may be practical to avoid
measurement uncertainty that may arise from variations
in the flow-sensitive components of the diffusion
measurements.

Quantitative ADC measurements can be used to aid
focal liver lesion characterization, but it may be difficult
to confidently describe a lesion as benign or malignant
based on ADC values alone, due to the considerable
overlap between groups of hepatic pathologies. In one
recent study, benign solid hepatic lesions, such as focal
nodular hyperplasia and adenomas, were found to have
similar ADC values compared with malignant disease,
such as metastases and hepatocellular carcinoma[59].
Mucinous metastatic deposits (e.g. from ovarian or color-
ectal primaries) can mimic benign lesions such as simple

cysts and haemangiomas. For these reasons, one should
not rely on ADC values as the sole basis for disease
characterization. It is important to take into account
the clinical background (e.g. histology of primary
tumour), temporal context (i.e. untreated metastatic
deposits will show an interval increase in size) and
other available imaging before making a radiologic
diagnosis.

In a recently published study, Battal et al.[60] suggest
that simply using visual assessment of source DW-MR
images performed using b0 and b800 allows detection
and differentiation of focal liver lesions. All focal liver
lesions showed hyperintensity on the b0 images, benign
lesions tended to become isointense or hypointense on
b800 images, and malignant lesions remained hyperin-
tense. In their study, qualitative visual assessment per-
formed better than quantitative ADC measurement
with sensitivities of 100% and 100%, and specificities of
92.2% and 89.3%, respectively. However, in that study,
few lesions were haemangiomas, which could have con-
founded the results.

Hepatocellular carcinoma and assessment
of tumour grade

The cirrhotic liver shows impeded diffusion and is asso-
ciated with lower ADC values, which reduces the con-
trast between hepatocellular carcinoma and the
background cirrhotic liver. Histopathologic grade is one
of the important prognostic indicators in hepatocellular
carcinoma (HCC). An early study by Nasu et al.[61]

showed that the signal intensity of lesions on the diffu-
sion acquisition tended to increase as the grade of
tumour increased in 125 surgically resected hypervascu-
lar HCCs. Although some studies showed that well-differ-
entiated HCCs returned higher ADC values, other
studies found no correlation between tumour grade and
the mean ADC value, and there was a large overlap
between grades[61]. More recent data from Nishie
et al.[62] suggests that minimum ADC could be useful

Table 5 Reported ADC values of benign versus malignant hepatic lesions

Namimoto
et al.[9]

Kim
et al.[49]

Taouli
et al.[48]

Bruegel
et al.[12]

Goutsoyianni
et al.[14]

Parikh
et al.[13]

Cieszanowski
et al.[100]

No of patients 51 126 66 102 38 53 73
b value (s mm�2) 30, 1200 5846 5500 50, 300, 600 0, 50, 500, 1000 0, 50, 500 50, 400, 800
ADC values (mm s�1)
Normal liver 0.69 1.02 1.83 1.24 1.25�1.31 Not applicable Not applicable
Metastases 1.15 1.06�1.11 0.94 1.22 0.99 1.50 1.05
HCCs 0.99 0.97�1.28 1.33 1.05 1.38 1.31 0.94
Haemangiomas 1.95 2.04�2.10 2.95 1.92 1.90 2.04 1.55
Cysts 3.05 2.91�3.03 3.63 3.02 2.55 2.54 2.45
Focal nodular

hyperplasia/adenomas
Not applicable Not applicable 1.75 1.40 Not applicable 1.49 1.18

ADC cut-off to
distinguish benign
from malignant

Not applicable 1.60 1.50 1.63 1.47 1.60 1.25

Sensitivity (%) Not applicable 98 84 90 100 74 79
Specificity (%) Not applicable 80 89 86 100 77 83
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in detecting poorly differentiated components of the
tumour and that application of an ADC cut-off at
0.972� 10�3 mm2 s�1 distinguished moderately to
poorly and poorly differentiated HCCs with a sensitivity
of 73.1% and specificity of 72.9%. Similar results were
obtained by Nakanishi et al.[63] who showed that mini-
mum ADC predicted histologic grade in HCC and early
tumour recurrence (56 months after hepatectomy).

However, care is needed to ensure minimum ADC mea-
surements are not confounded by image artefacts, which
can lead to spuriously low values.

In addition, recent studies have found that
combining DW-MRI with conventional contrast-
enhanced MRI can improve the detection of HCC, com-
pared with contrast-enhanced MRI on its own[64]

(Fig. 6).

Figure 5 A 55 year-old woman with a history of breast cancer. (a) T1-weighted arterial phase after Gd-DOTA contrast
administration shows peripheral nodular enhancement of the lesion in the right lobe of the liver. (b) The lesion shows
persistent high signal on the high b-value image (b¼ 750 s mm�2), due to the long T2 relaxation time (T2 shine-
through). (c) The lesion returns a typical ADC value higher than the adjacent liver on the ADC map. Appearances
are in keeping with a hepatic haemangioma.

178 N. Bharwani, D.M. Koh



Tumour response to treatment

The prediction and detection of therapeutic response and
the detection of residual disease are paramount in onco-
logic imaging. DW-MRI is increasingly being used as a
means of assessing tumour response to various treatment
modalities (e.g. chemotherapy, radiotherapy, targeted
therapy, embolization and other combined treatments).
The early detection of treatment responders could allow
changes in therapy to minimize treatment-related toxicity
and individualize management of specific tumour biology.

Tumour response is conventionally assessed by mea-
surement of percentage reduction in tumour size after
therapy (e.g. using RECIST 1.1 criteria[65]). However,
changes in tumour size are insensitive to early treatment
changes and may be inappropriate for monitoring the
effects of novel therapeutic agents, which are frequently
cytostatic (e.g. tyrosine kinase inhibitors). Studies have
shown that effective tumour treatment can result in an
increase in ADC value long before measureable changes
in lesion size are detected[66], and as early as 1�4 weeks
from the start of therapy.

Figure 6 Typical imaging appearances of HCC. In cirrhotic liver, HCC (arrows) typically (a) demonstrates hyperen-
hancement in the arterial phase of low molecular weight Gd contrast-enhanced imaging; (b) appears relatively hypoin-
tense to liver in the portovenous or interstitial phase of contrast enhancement (washout) and (c) shows impeded diffusion
on diffusion-weighted imaging (b¼ 500 s mm�2).
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Studies have been carried out on both primary and
metastatic hepatic lesions to assess treatment-related
DW-MRI changes. In patients with colorectal hepatic
metastases, mean lesional ADC values have been
shown to increase in response to chemotherapy in
those patients showing at least a partial response[67,68],
reflecting a reduction in tissue cellular density and bar-
riers to water movement. This ADC increase was not
seen in lesions that showed no change or disease progres-
sion[67]. An example of ADC increase in response to
treatment in a liver metastasis is shown in Fig. 7.

Patients who are not eligible for surgery often receive
locoregional therapy for liver tumours, most commonly
in the form of radiofrequency ablation (RFA) and trans-
catheter arterial chemoembolization (TACE). DW-MRI
in the follow-up of patients receiving RFA for hepatic
metastases has shown promising results for the detection
of local tumour progression. In 58 of 148 examinations,
peripheral ablation zone hyperintensity was detected,
which corresponded with local tumour progression in
only 17 patients (Fig. 8). However, quantitative evalua-
tion of these hyperintense areas showed significantly
lower ADC values in those patients with tumour recur-
rence than in those without[69]. Several studies have eval-
uated the response of primary HCC to chemo- or
radioembolization and have demonstrated ADC differ-
ences between viable and necrotic portions of the
tumour and measureable changes with treatment[70�75].

Disease prognostication

Prediction of which tumours will respond to treatment
before onset could bring considerable clinical benefit.
There are limited data available on disease

prognostication and the prediction of liver lesion
response to treatment. High pre-treatment ADC values
in colorectal hepatic metastases have been shown to pre-
dict a poor response to chemotherapy[67,68], a finding
that is in agreement with studies on primary rectal
tumours[76]. This observation suggests that those
tumours that are probably necrotic before treatment
(with a resultant higher mean ADC) are more resistant
to chemotherapy. These findings need to be validated in
larger prospective studies but they clearly suggest a poten-
tial role for DW-MRI in disease prognostication.

Evolving developments in DW-MRI in
the liver

There is little doubt that DW-MRI has had an impact on
the routine clinical evaluation of the liver, especially for
the detection of focal liver lesions. With growing conver-
gence in MR hardware and scanning technologies, imple-
menting analogous imaging protocols across different
imaging platforms is becoming a possibility.

As more studies are being conducted to assess the
measurement reproducibility within and between MR
imaging systems, it is clear that in a well-conducted
study in which there is sufficient image SNR and minimal
image artefact, mean ADC measurements have good
reproducibility using the free-breathing fat-suppressed
echo-planar spin-echo DW-MRI technique. A coefficient
of repeatability as low as 10% can be achieved when
whole liver tumours are analysed. In order to have con-
fidence in the magnitude of the mean ADC change that
can be reliably ascertained on individual scanners, the
readers should validate the measurement reproducibility

Figure 7 A 47-year-old man with liver metastasis from a gastrointestinal stromal tumour. ADC maps obtained (a) pre-
treatment and (b) at 12 weeks after that start of treatment show no significant change in tumour size (cross-sectional
area). However, there was a 37% increase in the mean ADC value (pre-treatment ADC¼ 1.49\ 10�3 mm2 s�1; post-
treatment ADC¼ 2.05\ 10�3 mm2 s�1) within the tumour after treatment in keeping with treatment response.
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of their own diagnostic system using a particular imaging
sequence on their MR scanners. Measurement reprodu-
cibility obtained from normal tissues may not be applica-
ble to diseased states because disease tissues are typically
more heterogeneous, which results in poorer measure-
ment reproducibility compared with normal tissues[20].

There is currently considerable interest in using a bi-
exponential model by applying the principles of IVIM to
the evaluation of the liver and focal liver disease. Reports
in the literature suggest that it is possible to measure
perfusion-sensitive parameters such as the perfusion frac-
tion (f) and flow-sensitive pseudodiffusion coefficient
(D*); indeed these parameters have been found to
differ between normal and diseased states. For example,
studies have shown that using IVIM analysis, cirrhotic
liver shows a lower perfusion fraction and pseudodiffu-
sion coefficient. However, these findings are reported on
a background of significant measurement uncertainty
associated with the estimation and quantification of
these parameters. In a clinical setting, it has been
shown that quantification of f and D* are associated
with poor measurement reproducibility[20] (e.g. 50% or
greater) and hence developments to improve the stability
and reproducibility of these estimates would be important
to allow the IVIM analysis to be robustly deployed within
the clinical arena. Nevertheless, studies reported in the
literature suggest that using these additional diffusion
parameters could be helpful in a number of clinical
scenarios.

Conclusions

DW-MRI is now available on most commercial MRI plat-
forms and is routinely incorporated into standard liver
MR imaging protocols in many departments. It is

particularly useful in patients who tolerate gadolinium-
based contrast agents where DW-MRI has the potential
to be an alternative contrast-enhanced technique.

There are convincing data available to show that DW-
MRI contributes to focal liver lesion detection and the
assessment of treatment response. When used in conjunc-
tion with morphologic sequences, the mean ADC values
act as an adjunct to lesion characterization. Although
DW-MRI has been used for the evaluation of liver fibro-
sis, the sensitivity of the technique to early fibrosis
appears limited, and more research is needed to optimize
the measurement reproducibility of quantitative para-
meters derived by IVIM analysis before they can be
robustly and meaningfully deployed in the clinical arena.
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