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Abstract

The major histocompatibility complex (MHC) on chromosome 6p is an established risk locus for 

ulcerative colitis (UC) and Crohn’s disease (CD). We aimed to better define MHC association 

signals in UC and CD by combining data from dense single nucleotide polymorphism (SNP) 

genotyping and from imputation of classical HLA types, their constituent SNPs and corresponding 

amino acids in 562 UC, 611 CD, and 1,428 control subjects. Univariate and multivariate 

association analyses were performed, controlling for ancestry. In univariate analyses, absence of 

the rs9269955 C allele was strongly associated with risk for UC (P = 2.67×10−13). rs9269955 is a 

SNP in the codon for amino acid position 11 of HLA-DRβ1, located in the P6 pocket of the HLA-

DR antigen binding cleft. This amino acid position was also the most significantly UC-associated 

amino acid in omnibus tests (P = 2.68×10−13). Multivariate modeling identified rs9269955-C and 
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13 other variants in best predicting UC versus control status. In contrast, there was only suggestive 

association evidence between the MHC and CD. Taken together, these data demonstrate that 

variation at HLA-DRβ1, amino acid 11 in the P6 pocket of the HLA-DR complex antigen binding 

cleft is a major determinant of chromosome 6p association with ulcerative colitis.
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Introduction

The major histocompatibility complex (MHC) on chromosome 6p contains the highly 

polymorphic human leukocyte antigen (HLA) genes and other immunoregulatory genes.1, 2 

Genetic variants in the MHC have been associated with susceptibility for many infectious 

and immune-mediated diseases including the inflammatory bowel diseases (IBD), ulcerative 

colitis (UC) and Crohn’s disease (CD).3, 4 Features of the MHC such as dense gene 

clustering with broad linkage disequilibrium, extensive polymorphism, and heterogeneity 

among different populations have made localization of causal variants challenging.2

HLA polymorphisms were the focus of attention in several IBD candidate gene association 

studies of relatively small sample size and meta-analyses of these studies found HLA 

associations in UC that were mostly different from those found in CD.3–5 Subsequently, 

linkage between IBD and the chromosome 6p IBD3 locus was found in genome-wide 

linkage scans6–8. Recent genome-wide association studies (GWAS) have confirmed the 

MHC as one of 47 UC loci and 71 CD loci with significant evidence for association (P < 

5×10−8).9, 10 The most significant association signal in a recent meta-analysis of six GWAS 

that included 6,687 UC cases and 19,718 controls of European ancestry was at a single 

nucleotide polymorphism (SNP) in the MHC class II region (rs9268853, P = 1.35×10−55).10 

In contrast, the most significant MHC association signal in a meta-analysis of six CD 

GWAS that included a similar combined sample size (6,333 CD cases and 15,056 controls) 

was less significant than the UC signal and was located in the MHC class III region near the 

lymphotoxin A (LTA) locus (rs1799964, P = 3.98×10−11).9, 10

Here, we explore the MHC association signal in the discovery stage of a new UC and CD 

GWAS with excellent coverage (>10,000 SNPs) across the extended MHC. We used our 

MHC SNP data and an existing reference dataset to impute classical HLA allele types, their 

constituent SNPs, and corresponding amino acids in our UC, CD and control samples. This 

allowed us to evaluate if the observed SNP associations in the MHC can be explained by 

variation specifically in the classical HLA genes.

Results

Analysis of genotyped MHC SNPs in IBD

First, we tested 10,347 genotyped SNPs in the MHC region from 29,299 to 33,884 kb on 

chromosome 6 using NCBI36/hg18 coordinates for association with UC and CD with ileal 

involvement. Among 35 SNPs that reached genome-wide significance (P < 5 × 10−8) in the 

Achkar et al. Page 2

Genes Immun. Author manuscript; available in PMC 2012 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



UC analysis, the most significant SNP was rs2647025 (OR=1.95 [1.62–2.35, 95% 

confidence interval (CI)] for the G allele; P = 1.94×10−12), located in the promoter region of 

HLA-DQB1 (Figure 1A). This SNP is correlated with rs9268853 (r2 = 0.63 in HapMap 3-

CEU11), which was the MHC region SNP with the most significant association in a recent 

UC GWAS meta-analysis10, and it is also correlated with rs2395185 (r2 = 0.60 in our 

dataset), which was the MHC region SNP with the most significant association in the 

NIDDK IBD Genetics Consortium UC GWAS12, both at distances of > 200 kb.

In contrast, there was only suggestive evidence for association between MHC region SNPs 

and CD with ileal involvement (Figure 2). The most significant association signal was found 

at rs17880124 (OR=2.23 [1.52–3.27, 95%CI] for the G allele; P = 3.82×10−5) which is 

located in an exon of the MHC class I polypeptide-related sequence A (MICA) gene. Of 

note, the association observed in UC was many orders of magnitude stronger than that in CD 

with ileal involvement despite a similar number of cases. Therefore, we focused on the UC 

signal through imputation of classical HLA alleles and their corresponding nucleotide and 

amino acid sequences.

Analysis of imputed classical HLA alleles in UC

The following imputed genetic markers were included in our UC vs. control analyses: 156 

classical HLA alleles at four-digit resolution, 95 classical HLA allele groups at two-digit 

resolution, 1,765 binary SNP features at 1,573 nucleotide positions, and 561 binary HLA 

amino acid features at 357 amino acid positions. The most significant association signal in 

UC mapped to rs9269955 (Figure 1B), which is a tri-allelic SNP within the coding region of 

HLA-DRB1 (position 32,660,116 using NCBI36/hg18 coordinates). In combination with the 

nucleotide position directly adjacent to it (rs17878703 at position 32,660,115), rs9269955 

determines the codon for amino acid position 11 of the HLA-DRβ1 protein, where six 

different amino acid alleles are observed in the population at large (Table 1). Chromosome 6 

position 32,660,114 is the third position in this codon, and it is not known to be 

polymorphic. Rs9269955-C (to indicate the presence of the C allele) is associated with 

protection against UC (OR = 0.51 [0.43–0.61, 95% CI], P = 2.67×10−13). In combination 

with the adjacent rs17878703 alleles, rs9269955-C encodes three of the six observed amino 

acids (aspartic acid, valine, or glycine) at HLA-DRβ1 amino acid 11 (Table 1). This SNP is 

correlated with rs2395185 (r2 = 0.88 in our dataset), which was the MHC region SNP with 

the most significant association in the NIDDK IBD Genetics Consortium UC GWAS.12

To analyze the role of specific amino acid positions in the HLA genes in UC, we conducted 

omnibus tests for association with degrees-of-freedom equal to the number of distinct 

residues for that amino acid position minus one (Table 2). The most significant finding was 

for HLA-DRβ1 amino acid 11 (P = 2.68×10−13), consistent with the results noted above 

(Figure 1C). Several other amino acid associations were highly significant including other 

amino acid positions in HLA-DRβ1, HLA-DQα1 or HLA-DQβ1 (Table 2).

Because these results highlighted HLA-DRβ1 amino acid 11, we further analyzed the six 

amino acids at this position and the corresponding classical HLA-DRB1 allele groups at two-

digit resolution (Table 3). The three amino acids (aspartic acid, valine, and glycine) encoded 
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by the rs9269955-C allele in combination with the adjacent rs17878703 alleles, are all 

associated with protection against development of UC.

Among 28 imputed classical HLA-DRB1 alleles tested at four-digit resolution, three were 

significantly associated with UC (DRB1*15:01, OR = 1.59 [1.31–1.93, 95% CI], P = 

3.68×10−6; DRB1*01:03, OR = 38.39 [7.50–196.60, 95% CI], P = 1.20×10−5; DRB1*07:01, 

OR = 0.61 [0.48–0.77, 95% CI] P = 3.38×10−5).

Because the above findings highlighted HLA-DRB1 association in UC, we then evaluated 

the quality of our classical HLA-DRB1 allele imputation at two-digit resolution by 

performing HLA-DRB1 genotyping via SSO probes and also next-generation sequencing 

using genomic DNA from 384 of our study subjects. This analysis demonstrated that the 

imputation procedure we applied was 98.8% accurate (see Supplementary Materials).

We next determined the most parsimonious model to explain the association of HLA-DRβ1 

amino acid 11 with UC using forward stepwise model selection for the six observed amino 

acids. The best model included only three of the six amino acids: valine, glycine and aspartic 

acid. The overall P value for this best model was 3.60×10−13 as compared to a P value of 

2.68×10−13 for the full model that included all six amino acid alleles, suggesting that most 

of the association signal for UC at this position can be accounted for by only these three 

amino acids. Of note, valine, glycine and aspartic acid are the same three amino acids 

encoded by the most significant SNP allele, rs9269955-C, when it is combined with the 

adjacent rs17878703 SNP alleles. This provides good internal validation between these 

different analytic approaches and highlights that variation at HLA-DRβ1 amino acid 11 

explains much of the HLA association with UC.

UC versus control best multivariate model

When we performed analyses conditioned on including either rs9269955-C or the HLA-

DRβ1 amino acid 11 variants, there were residual UC versus control association signals due 

to effects of other variants in the HLA region. This finding is consistent with prior 

observations in UC that multiple independent association signals exist in the MHC. We used 

a forward stepwise model selection procedure to select the best set of markers to predict UC 

(Table 4). This best model has an overall P value of 4.28×10−40 and includes rs9269955-C 

and 13 other markers that span the chromosome 6 region from 29.45 to 33.81 Mb.

UC versus CD with ileal involvement best multivariate model

In order to compare HLA associations between UC and CD with ileal involvement, we 

performed an analysis using UC subjects as cases and CD with ileal involvement subjects as 

controls. Initial association analyses for all markers in our study were performed and then 

we applied stepwise model selection to determine the best model for a UC versus CD with 

ileal involvement comparison (Table 5A). The model that was selected included 11 markers 

and had an overall model P value of 4.48×10−33. Not unexpectedly, there was no overlap 

between these markers and those that were chosen in the UC versus control best model 

described above (Table 4).
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We then used the 11 markers from the UC versus CD with ileal involvement best model to 

perform two further analyses: UC versus control and CD with ileal involvement versus 

control (Tables 5B and 5C). The model P value for UC versus control was 1.59×10−19 

which is less significant than the P value of 4.28×10−40 for the unrestricted UC best model 

(Table 4). The model P value for CD with ileal involvement versus control was 1.42×10−5. 

Divergent effects for each UC versus CD with ileal involvement best model marker in the 

UC versus control compared to the CD with ileal involvement versus control analyses are 

apparent when the odds ratios for each marker are compared.

Discussion

The MHC locus demonstrates the strongest evidence for association to UC among 47 well-

established UC loci identified in a GWAS meta-analysis10, and is also one of 71 well-

established CD loci identified by GWAS meta-analysis.9 In order to better understand MHC 

association signals in UC and CD, we used dense MHC SNP data from the discovery stage 

of an ongoing, new UC and CD GWAS to impute classical HLA types, their constituent 

SNPs and corresponding amino acids, and we performed detailed analyses of the genotyped 

and imputed data.

Our univariate tests of binary SNP and SNP allele markers, and our omnibus tests of 

polymorphic HLA amino acid positions both highlighted HLA-DRβ1, amino acid position 

11 as the MHC feature most significantly associated with UC. The C allele of rs9269955 

was the SNP allele most significantly associated with UC (presence of rs9269955-C is 

associated with protection and absence is associated with risk for UC). In combination with 

the immediately adjacent SNP, it encodes the valine, glycine or aspartic acid amino acid 

residues at HLA-DRβ1, amino acid 11, which were all associated with protection against 

UC. Furthermore, in multivariate analysis, the most parsimonious model to explain the 

association with UC at amino acid 11 consisted of valine, glycine and aspartic acid as the 

only terms.

HLA-DRB1 has extensive polymorphism as demonstrated by its 928 alleles and the 704 

proteins for which it codes (International Immunogenetics Information System/HLA 

Database: http://www.ebi.ac.uk/imgt/hla)13. Valine at amino acid 11 corresponds to the 

common DRB1*04 (DR4) or lower frequency DRB1*10 (DR10) allele groups, glycine to 

DRB1*07 (DR7), and aspartic acid to DRB1*09 (DR9). The HLA-DR4, -DR7 and -DR9 

allele groups were associated with protection against UC in a meta-analysis of prior studies.3 

They almost always occur on haplotypes carrying the HLA-DRB4 gene which encodes the 

DR53 antigen, and HLA-DRB4*01:01 has been associated with protection against UC in 

Japan.14 In addition, the previously reported HLA-DR2 association with risk for UC3, 5 is 

consistent with our observation that proline at position 11 in HLA-DRβ1 is associated with 

risk for UC. Based on the complementary findings from our different analyses and their 

correlation with results from prior studies, we conclude that variation at amino acid position 

11 of HLA-DRβ1 is a major determinant of chromosome 6p association with ulcerative 

colitis.
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The potential biological significance of the UC association of amino acid position 11 relates 

to the peptide binding specificity of HLA class II molecules and their role in antigen 

presentation to T cells.15, 16 The three-dimensional structure of the class II molecule HLA-

DR1 heterodimer (DRA/DRB1*0101) has been well characterized and its peptide binding 

groove has been shown to be determined by polymorphic molecules that form nine pockets 

with different chemical and size characteristics.15, 17 In one of these pockets (P6), amino 

acid position 11 appears to be the only variable residue and thus determines the binding 

specificity of that pocket.18 Of note, hydrophobic amino acid residues at DRβ1 amino acid 

11 were found to be associated with protection against development of sarcoidosis.19 This 

finding suggests that such hydrophobic interactions could affect peptide binding in the P6 

pocket.19 We therefore hypothesize that variation at the amino acid position 11 of HLA-

DRβ1 could have an effect on peptide binding in the HLA-DR complex antigen binding cleft 

that alters risk for the development of UC.

It is important to note that the MHC association signal in UC is complex and not completely 

explained by amino acid position 11 in HLA-DRβ1. In fact, our forward stepwise model 

selection identified 13 other terms besides rs9269955-C. This model is highly significant 

with an overall P value of 4.28×10−40, but it will need to be validated in additional large 

cohorts.

Included in our model was another missense SNP allele in HLA-DRB1, the T allele of 

rs1136759. rs1136759 and two adjacent flanking SNPs encode variation at HLA-DRβ1, 

amino acid 13, which is located in the P4 pocket of the HLA-DR complex antigen binding 

cleft. The finding that two of the terms in the best model for prediction of UC risk relate to 

the HLA-DRβ1 complex antigen binding cleft emphasizes the probable importance of HLA-

DRB1 in the pathogenesis of UC. Four other MHC class II loci variants, including SNPs in 

HLA-DQB1 (rs1130380-C) and HLA-DRA (rs3135391), between HLA-DQA1 and HLA-

DQB1 (rs9273363), and between HLA-DQA2 and HLA-DQB2 (rs6933763), were associated 

with UC in our multivariate model. The HLA-DRB, -DQB and -DPB genes are all highly 

polymorphic and encode β-chains of the class II molecule αβ heterodimer while the α-chains 

are encoded by the HLA-DQA, -DPA genes and -DRA genes.4

Three polymorphisms in MHC class III loci (rs440454, rs28435656, and rs915654) were 

included as terms in our UC versus control model. The MHC class III region is one of the 

most gene dense regions in the human genome. Two of the SNPs in our model, rs440454 

and rs28435656, are in linkage disequilibrium (r2 = 0.54 in HapMap 3-CEU11) and located 

in an MHC class III segment that contains four genes within 30 kb including superkiller 

viralicidic activity 2-like (SKIV2L) and RD RNA binding protein (RDBP).20 rs440454 is in 

perfect linkage disequilibrium (r2 = 1.0 in HapMap 3-CEU11) with SNP rs419788 that was 

associated with risk for lupus.21 rs28435656 is located in the complement component 2 (C2) 

gene which is located immediately adjacent to the region that includes SKIV2L and RDBP. 

Finally, rs915654 is located 5 prime to the lymphotoxin A (LTA) locus which has been 

associated with CD and diabetes.22 All these findings suggest a role for MHC class III genes 

in UC pathogenesis which warrants further investigation.
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Another association of potential pathogenic interest identified in our UC versus control 

model is rs2844677, a synonymous SNP in the coding region of the mucin 21, cell surface 

associated (MUC21) gene. MUC21 is a recently identified gene that is expressed in normal 

colon among other tissues and produces a transmembrane mucin involved in cell 

adhesion.23, 24

In the last part of our analysis, we compared MHC region association signals between UC 

and CD with ileal involvement. The finding that the 11 studied markers each had odds ratios 

with effects in opposite directions for the two IBD phenotypes together with the results from 

our initial association analysis in which the most significant associations in UC were 

different than those for ileal CD, demonstrates that the association signals for UC and ileal 

CD are quite different. This conclusion correlates with results of prior studies which have 

shown that the only consistent associations with risk for both UC and CD have been for 

HLA-DRB1*01:03 and HLA-B52.3, 4 In contrast, alleles of the HLA-DR2 split antigen 

DR15 have been associated in opposite directions with HLA-DRB1*15:01 associated with 

protection against CD and HLA-DRB1*15:02 associated with increased risk for UC.3, 5

In summary, we have performed detailed analyses to better understand MHC association 

signals in UC and CD. Our most significant finding is that a specific variation at amino acid 

position 11 of HLA-DRβ1, the only variable amino acid in the P6 pocket of the HLA-DR 

complex antigen binding cleft, explains a substantial portion of the MHC association signal 

and corresponds with several previously established classical HLA class II associations in 

UC. The observed alteration at amino acid position 11 of HLA-DRβ1 may affect peptide 

binding and result in an altered immune activation underlying protection against UC. We 

have also developed a novel multivariate model that further defines the contribution of MHC 

variation to risk for UC and highlights other genes of potential importance in UC 

pathogenesis. Finally, our multivariate modeling suggests different effects of MHC 

polymorphisms in UC and CD.

Materials and Methods

Study subjects

Our study sample included 574 UC, 630 CD with at least ileal involvement, and 1,508 

control subjects of European ancestry that were recruited for genetic studies at the Cleveland 

Clinic or the University of Pittsburgh under institutional review board-approved protocols. 

All subjects provided written informed consent. IBD diagnoses and assessment of disease 

location were confirmed by IBD physicians via review of primary medical records using 

standard endoscopic, radiographic and histologic criteria.

Genotyping and quality control

Study subjects were genotyped using the Illumina Omni1-quad BeadChip (Illumina, San 

Diego, CA) at the Feinstein Institute for Medical Research of the North Shore-Long Island 

Jewish Health System. Data from samples with preliminary genotype call rates > 0.98 using 

cluster positions provided by Illumina were reclustered using the Illumina GenomeStudio 

software, and the new cluster positions were applied to all samples. Initial quality control of 
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the genotyping data included removal of one sample from each pair with estimated identity-

by-descent proportion > 0.10, removal of samples with genotype missing rates > 0.05, or 

with discordant SNP-determined and reported gender or ambiguous SNP-determined 

gender, and removal of SNPs with genotype missing rates > 0.05, minor allele frequencies in 

controls < 0.005, or Hardy-Weinberg P values in controls < 1×10−6. These quality control 

steps were performed using the PLINK software.25 Subsequently, tag SNPs with genotype 

missing rates < 0.1% and physical separation of at least 0.4 megabases (Mb) were used in 

spectral analysis of ancestry that identified 929 controls with a relatively homogenous 

‘European’ ancestral background. Additional SNPs with minor allele frequencies < 0.005 or 

Hardy-Weinberg P values < 0.001 in these 929 controls were removed from the dataset.

Ancestry matching

To control for potential confounding due to variation in genetic ancestry, study subjects 

were grouped into 11 approximately homogenous clusters, based on genetic distances 

derived from GemTools.26, 27 Ancestry was inferred based on SNPs with genotype missing 

rates < 0.1% and a physical separation of at least 0.2 Mb. In all of the association analyses, 

we controlled for ancestry by including cluster membership as a blocking variable. The 

inflation across the genome-wide SNP data was minimal (genomic control lambda28 = 1.02 

for UC vs. control and 1.03 for CD with ileal involvement vs. control), confirming that the 

samples were well matched.

Imputation of classical HLA, SNP, and amino acid allele dosages

We followed a previously described procedure29 to impute classical HLA alleles and their 

corresponding amino acid sequences in our cases and controls, using the genotyped SNPs in 

our GWAS as input. This imputation procedure is conceptually similar to HLA*IMP32 in 

that haplotype information across the region is used to predict classical HLA alleles based 

on genotyped SNPs. A prior study demonstrated empirical evidence that the imputations 

have good accuracy29 reaching comparable levels of accuracy to the work on which 

HLA*IMP is based.32

As the reference panel, we used a data set of 263 HLA-A, -B, -C, -DRB1, -DQA1, -DQB1, -

DPA1 and -DPB1 classical alleles at four-digit resolution, 3,852 SNPs, and 372 amino acid 

positions in 2,767 unrelated founder individuals of European descent collected by the MHC 

Working Group of the Type 1 Diabetes Genetics Consortium.30 All variants were encoded 

as biallelic markers, allowing us to use standard tools for imputation. For variants with 

greater than two alleles, each allele was coded as present or absent, and analyzed in a 

separate test. We used default parameters for BEAGLE (http://faculty.washington.edu/

browning/beagle/beagle.html): ten iterations of phasing/imputation, testing four pairs of 

haplotype pairs for each individual at each iteration. For each variant, we used the posterior 

probabilities of carrying 0 (AA), 1 (AB) or 2 (BB) copies to calculate the effective dosage 

for allele B (=2xPr(BB) + Pr(AB)). To obtain allele dosages for MHC region Omni1-quad 

SNPs, we used BEAGLECALL.31 Three iterations of BEAGLECALL were run, with 

increasing stringency of genotype calling filters (callthreshold=0.9 and missingcohort=0.1 in 

iteration 1, callthreshold=0.98 and missingcohort=0.02 in iteration 2, and 

callthreshold=0.985 and missingcohort=0.015 in iteration 3). We combined dosage 
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information for markers in the Type 1 Diabetes Genetics Consortium reference panel with 

dosage information for additional Omni1-quad SNPs that appeared in both genome builds 

NCBI36/hg18 and GRCh37/hg19 into a combined set of genetic features in the MHC region 

from 29,299 to 33,884 kilobases (kb) on chromosome 6 using NCBI36/hg18 coordinates.

HLA-DRB1 imputation quality at two-digit resolution was assessed by sequence-specific 

oligonucleotide (SSO) probes and next-generation sequencing of genomic DNA collected 

from 384 of our study subjects (see Supplementary Materials).

Association analyses

Association analyses were performed using allele dosage data from 562 UC, 611 CD with 

ileal involvement, and 1,428 control samples that passed quality control. We examined the 

association between binary markers in the HLA region and UC versus control and CD with 

ileal involvement versus control using logistic regression with a log-additive model. 

Forward stepwise model selection was used to determine a set of markers in the post 

imputation data that jointly predicted disease versus control status, without including 

multiple markers that were in tight linkage disequilibrium. Markers with an allele frequency 

< 0.001 were excluded. The Bayesian Information Criterion (BIC) was used to find a model 

that balanced model complexity with parsimony. The stepwise procedure started by taking 

the best marker (lowest P value) into the regression model and iteratively adding markers 

until the BIC ceased to improve. This procedure was performed in R (http://www.r-

project.org) using the “glm” and “step” functions.

For each polymorphic amino acid position in the HLA region we also conducted an omnibus 

test for association using multivariate logistic regression with degrees-of-freedom equal to 

the number of distinct residues for that amino acid position minus one. For the position 

yielding the smallest P value we used stepwise regression, limited to that position, to select a 

parsimonious model for the site.

Finally, using stepwise regression we determined a model for differentiating UC and CD 

with ileal involvement. In this model, CD with ileal involvement subjects served as controls 

and UC subjects served as cases.

For each multivariate model, we provide the P value associated with the best model. This P 

value pertains to the null hypothesis that none of the terms in the model has any explanatory 

value, versus the alternative hypothesis that at least one term is associated with the 

phenotype. The degrees-of-freedom associated with this test equals the number of markers 

in the multivariate model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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BIC Bayesian Information Criterion
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C2 complement component 2
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HLA human leukocyte antigen
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LTA lymphotoxin A
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MHC major histocompatibility complex

MICA MHC class I polypeptide-related sequence A

MUC21 mucin 21 cell surface associated

NCBI National Center for Biotechnology Information

OR odds ratio

RDBP RD RNA binding protein

SKIV2L superkiller viralicidic activity 2-like

SNP single nucleotide polymorphism
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Figure 1. 
Major histocompatibility complex regional association plots for ulcerative colitis. (A) 

Association results for genotyped SNPs from the Illumina Omni1-quad BeadChip. The 

intensity of the red shading indicates the strength of the pairwise r2 correlation to the most 

associated SNP, rs2647025. (B) Association results for both genotyped (◇ symbols) and 

imputed (■ symbols) nucleotides focused in on the region of peak association in panel A. 

Horizontal lines represent the classical HLA alleles in this region. The intensity of the red 

shading indicates the strength of the pairwise r2 correlation to the most associated SNP 

marker, rs9269955-C. (C) Association results for imputed amino acids in HLA-DRβ1.
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Figure 2. 
Major histocompatibility complex regional association plot for Crohn’s disease with ileal 

involvement. Association results are for genotyped SNPs from the Illumina Omni1-quad 

BeadChip. The intensity of the red shading indicates the strength of the pairwise r2 

correlation to the most associated SNP, rs17880124.
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Table 2

Omnibus amino acid tests for ulcerative colitis versus control. Amino acid positions with omnibus P < 5 × 

10−8 are shown.

HLA amino acid position
Codon middle nucleotide position (chromosome 6, NCBI36/

hg18) Degrees of freedom Omnibus P value

HLA-DRβ1, amino acid 181 32,657,335 1 7.48 × 10−9

HLA-DRβ1, amino acid 104 32,657,566 1 4.70 × 10−12

HLA-DRβ1, amino acid 98 32,657,584 1 4.68 × 10−12

HLA-DRβ1, amino acid 37 32,660,037 4 1.46 × 10−8

HLA-DRβ1, amino acid 30 32,660,058 5 6.01 × 10−10

HLA-DRβ1, amino acid 13 32,660,109 5 1.39 × 10−10

HLA-DRβ1, amino acid 11 32,660,115 5 2.68 × 10−13

HLA-DQα1, amino acid 47 32,717,191 3 2.73 × 10−10

HLA-DQα1, amino acid 50 32,717,200 2 2.95 × 10−11

HLA-DQα1, amino acid 53 32,717,209 2 2.12 × 10−11

HLA-DQα1, amino acid 175 32,717,988 2 2.28 × 10−10

HLA-DQα1, amino acid 215 32,718,464 1 5.95 × 10−12

HLA-DQβ1, amino acid 185 32,737,733 1 8.62 × 10−11
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