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Abstract: A two-dimensional (2D) CeO2-Pd-PDA/rGO heterojunction nanocomposite has been
synthesised via an environmentally friendly, energy efficient, and facile wet chemical procedure and
examined for hydrogen (H2) gas sensing application for the first time. The H2 gas sensing performance
of the developed conductometric sensor has been extensively investigated under different operational
conditions, including working temperature up to 200 ◦C, UV illumination, H2 concentrations from
50–6000 ppm, and relative humidity up to 30% RH. The developed ceria-based nanocomposite
sensor was functional at a relatively low working temperature (100 ◦C), and its sensing properties
were improved under UV illumination (365 nm). The sensor’s response towards 6000 ppm H2 was
drastically enhanced in a humid environment (15% RH), from 172% to 416%. Under optimised
conditions, this highly sensitive and selective H2 sensor enabled the detection of H2 molecules down
to 50 ppm experimentally. The sensing enhancement mechanisms of the developed sensor were
explained in detail. The available 4f electrons and oxygen vacancies on the ceria surface make it a
promising material for H2 sensing applications. Moreover, based on the material characterisation
results, highly reactive oxidant species on the sensor surface formed the electron–hole pairs, facilitated
oxygen mobility, and enhanced the H2 sensing performance.

Keywords: Conductometric sensors; 2D CeO2-Pd-PDA/rGO heterojunction nanocomposite;
H2 sensing; humidity effect; room and low working temperature; UV radiation effect

1. Introduction

Amongst all the clean energy sources, hydrogen (H2) is an alternative renewable
source used in the carbon-neutral hydrogen technologies that can replace traditional energy
sources, such as fossil fuels, to avoid carbon emissions, air pollution, and climate change [1].
Therefore, due to the growing economic demand and energy consumption, H2 is now being
used in different industries to produce green energy and power for mobile and stationary
applications [1,2]. Across the H2 supply chain—from generation, transportation, storage,
and ultimate use—care must be taken to ensure the safe handling of this volatile fuel [3]. H2
gas is lighter than air and tends to accumulate in enclosed spaces from even small leaks. Its
broad explosive range (4 to 75%), minimal ignition energy (0.017 mJ), and near colourless
flame present significant hazards even under a small-scale leakage [4]. Thus, there is a
critical need for the subsequent development of H2 sensing and measurement techniques
that are accurate, robust, real-time, power efficient, and scalable for deployment over large
spatial scales to accommodate critical data for safe, effective, and efficient H2 production,
storage, and usage [1]. Many semiconducting materials are used for conductometric H2
sensing, including graphene-based materials, transition metal dichalcogenides, and metal
oxides [5,6]. Many different sensing technologies have been developed for H2 sensing [7–9]
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and semiconductor-based H2 sensors mainly present high sensitivity, quick response,
and good stability based on their physical and electrochemical characteristics [10–14].
Commonly, the exceptional physical, optical, and electrical properties of 2D semiconductors,
such as high surface to volume ratios and numerous active sites, lead to promising gas
sensing performance (i.e., gas selectivity, excellent response, durability, and quick response
and recovery) because of a change in charge density concentration near or on the sensing
layer [15–18].

Moreover, graphene-based H2 sensors can be considered suitable devices at low operat-
ing temperatures based on their excellent electrochemical stability, low resistance, and high
charge carrier mobility [16,19]. However, the absence of a direct bandgap and few dangling
bonds on the sensing surface result in slow recovery and poor selectivity [20]. Therefore,
hybridising graphene-based materials with metal oxides and/or functionalising them with
noble metals can enhance the gas sensing performance by facilitating the dissociation of the
gas molecules into the sensing surface and forming a dipole layer [21–27]. Moreover, based
on the literature, UV illumination can considerably improve the recovery and response of
the sensors [16,28,29]. Inspired by these studies, in this work, we combined rGO nanosheets
(NSs) with Pd nanoparticles (NPs) to improve the electrocatalytic activities using an en-
vironmentally friendly and efficient technique to prevent spontaneous agglomeration of
rGO NSs [30,31]. The conventional reduction technique limits the anchor sites on rGO
for Pd NPs growth in addition to creating toxic and hazardous chemical residues that are
damaging to the environment on a large scale [32]. Therefore, we utilised dopamine (DA),
which was proved to be a green chemical for GO reduction and functionalisation to reduce
the GO NSs and form a self-polymerised polydopamine (PDA) coating to prevent rGO
agglomeration due to the loss of oxygen functional groups. The PDA modified rGO NSs
were further functionalised with Pd NPs, to form a Pd-PDA/rGO nanocomposite [31,33].

Meanwhile, rare earth metal oxides, including ceria (CeO2), have attracted consid-
erable attention in gas sensing applications due to their electrical conductivity, oxygen
storage capacity, and oxygen deficiency [34–36]. Ceria is an exceedingly versatile mate-
rial that has recently been used in different applications, including environmental gas
monitoring, based on its excellent resistance to chemical corrosion, electrical and optical
properties, non-toxicity, thermal stability, safety, and reliability [37]. More importantly,
having a number of electrons in its 4f subshell results in significant oxygen mobility, a
remarkable oxygen release/storage capability [38], and the unique redox reaction between
Ce4+ and Ce3+ valence states [39], which enhances its gas sensing properties [40].

Although pure ceria has shown poor gas sensing performance because of its wide
bandgap (3.1 eV), which requires more energy to excite the electrons to the conduction band,
and is functional mainly at high temperatures [41], the modified hybrid structures of ceria
have been recently used to detect CO [42], H2S [43], NO2 [35], H2O2 [44], C2H5OH [36],
CS2 [45], and C3H6O [46]. However, to the best of the authors’ knowledge, there have been
no studies on the H2 sensing properties of 2D ceria-based sensors, which is considered
to be the initial motivation for this work. In addition, the use of ceria in the presence of
noble metals (Pd, Pt, and Au) and hybridising with reduced graphene oxide can form
heterojunctions between the material as well as act as a heterogeneous catalyst that enhances
either oxidation or hydrogenation reactions [47–49]. Especially, Pd NPs have proved to
be the best noble metal for H2 gas sensing due to their facilitation of the adsorption and
diffusion of H2 molecules into the sensing layer and the production of PdHx species [50].
Furthermore, Ma et al. [51] reported the H2 adsorption capability of ceria, which can play a
significant role in the overall efficiency of its H2 gas sensing application [40].

Herein, this work reports the development of a photoreactive semiconducting 2D
CeO2-Pd-PDA/rGO heterojunction nanocomposite for H2 gas sensing with enhanced
performance at a relatively low working temperature (100 ◦C). It is worth mentioning
that the developed sensor is also functional at room temperature (30 ◦C). The synthesis
technique, material characterisation, and H2 sensing mechanisms of the developed 2D
CeO2-Pd-PDA/rGO heterojunction nanocomposite are fully explained. The experimen-
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tal results confirm the potential application of 2D CeO2-Pd-PDA/rGO heterojunction
nanocomposite as a high-performance H2 gas sensing device.

2. Materials and Methods
2.1. Material Synthesis Procedure and Gas Sensor Fabrication

Commercially produced graphene oxide (GO) powder was obtained from JCNano Inc.
Advanced Materials Supplier, Nanjing, China, and the 2D cerium oxide (CeO2) dispersion
was purchased from 2D Semiconductors Inc. (Scottsdale, AZ, USA); the concentration
was 0.15 mg/mL and the size was less than 100 nm. All the other materials used for the
synthesis of CeO2-Pd-PDA/rGO heterojunction nanocomposite, (dopamine hydrochloride
(DA), palladium (II) chloride (PdCl2), and sodium borohydride (NaBH4)), were bought
from Sigma-Aldrich, NSW, Australia. Figure 1 demonstrates the schematic diagram of
an environmentally friendly and facile synthesis technique for the CeO2-Pd-PDA/rGO
heterojunction nanocomposite [31,33]. At the start, the GO NSs (10 mg) were mixed in
30 mL of Tris buffer (pH 8.5) and sonicated for 1 h. Then, 10 mg of DA was added to
the suspension and sonication was continued until DA was fully dissolved. Later, the
mixture was put under vigorous shaking conditions for 24 h. The GO was reduced and
functionalised with polydopamine (PDA) through these steps via the self-polymerisation
process. The DA initiates self-polymerisation to form polydopamine (PDA) in the presence
of GO oxygen functional groups in a weak alkaline environment, with the catechol groups
undergoing oxidation until producing the quinone groups, resulting in the reduction of
GO [31,33].
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Figure 1. Schematic illustration of the synthesis process of the CeO2-Pd-PDA/rGO
heterojunction nanocomposite.

Afterwards, the synthesised PDA/rGO nanocomposite was sonicated, centrifuged,
and washed several times with deionised water (DI). Then, DI water (3 mL) and 1 mL of
PdCl2 solution (5 mg/mL) were added to 1 mL of PDA/rGO (1 mg/mL) and mixed for
2 h. Next, 1 mL of freshly made NaBH4 solution (0.5 M) was added to the mixture and
stirred for 5 h. The mixture was then centrifuged and washed 3 times with DI water in
order to collect the final product, the Pd-PDA/rGO nanocomposite [33]. Then, 0.5 mL
of DI was added to the Pd-PDA/rGO nanocomposite powder to form a homogeneous
suspension. Afterwards, 1 µL of Pd-PDA/rGO dispersion (1 mg/mL) was drop-casted
onto 10 × 6 mm gold interdigitated electrode fingers with a spacing of ~10 µm as a first
layer of the sensor. Finally, 1 µL of CeO2 (0.15 mg/mL) dispersion was drop-casted on top
of the Pd-PDA/rGO as the second layer to make the CeO2-Pd-PDA/rGO heterojunction
nanocomposite sensor device.

2.2. Material Surface Characterisation

The structural and morphological characteristics of the CeO2-Pd-PDA/rGO nanocom-
posite were analysed using different techniques. The scanning electron microscope (EBL-SEM)
(Raith150 Two, Raith Germany Co., Ltd., Dortmund, Germany), the high-resolution trans-
mission electron microscope (HRTEM) JEOL ARM200F’ NeoARM’ (JEOL Ltd., Tokyo,
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Japan) at 200 kV, and energy-dispersive X-ray spectroscope (EDS) (TESCAN MIRA3 FEG-
SEM combined with Thermo Scientific UltraDry EDS, ThermoFisher Scientific, Melbourne,
VIC, Australia) were used to investigate the surface morphology and elemental composi-
tion of the CeO2-Pd-PDA/rGO heterojunction nanocomposite. An X-ray diffractometer
(D8-Advanced, Bruker Corporation, Bremen, Germany) with Cu Kα and λ = 1.54 Å at 40 kV
and 20 mA over the range of 5–95 degrees was applied to determine the crystal phases of
the material. Raman spectroscopy (Renishaw plc, Gloucestershire, UK), using 514.5 nm
laser excitation, was utilised to measure the Raman spectra of the material.

2.3. Gas Sensing Measurements

A gas sensing system [16] was used to examine the gas sensing properties of the
conductometric CeO2-Pd-PDA/rGO heterojunction nanocomposite-based sensor under
different operational conditions. The utilised gas sensing system consists of various parts,
including six mass flow controllers (GE50A MFCs) for the regulation of the gas concentra-
tions, temperature and humidity-controlled Linkam stage (T96, Linkam Scientific Instru-
ments Ltd. Tadworth, UK), a built-in heater (LNP96), a Keithly Piccoammeter (model 6487)
to periodically measure interval currents throughout the experiments, a humidity gen-
erator, and a UV LED (365 nm, M365D1 LED, with 8.9 µW/mm2 power-driven with a
current of 700 mA), which was installed on top of the Linkam stage. The sensor was tested
under different working conditions, including temperatures from RT (30 ◦C) up to 200 ◦C,
relative humidity from 0 to ~30% RH at 100 ◦C, and H2 concentration from 50 to 6000 ppm.
Before each experiment, the sensors were left in pure air for 1 h before the gas exposure.
The air/gas mixture flow rate was set at 200 sccm and the target gas exposure time for
each experiment was 15 min, followed by two hours of purging for the recovery. For the
experiments in the humid condition, the humidity was introduced to the system from
the beginning of the experiments and settled for 1 h before gas exposure. The long-term
stability and gas selectivity of the sensor were also investigated. The sensor was exposed to
50 ppm of various gases, including hydrogen, nitrogen dioxide, methane, ammonia, and
acetone. A bias voltage of 1 V was applied throughout the experiments, and the resistivity
change in the sensor was measured upon exposure to the target gas. The response of the
sensor (R) was calculated towards the target gas as follows [52–54]:

R =

(
Rg

Ra

)
× 100 (1)

where Ra is the sensor’s resistivity in air and Rg is the sensor’s resistivity in contact with the
target gas. The response and recovery times were calculated when the sensor reached 90% of
its response and recovery (back to its initial baseline). Three similar sensors were fabricated
for this work, and their gas sensing performance was evaluated. Each experiment was
repeated at least three times under the exact operating conditions to validate the reliability
and repeatability of the gas sensing process. The gas sensing results of all prepared sensors
were comparable.

3. Results and Discussion
3.1. Material Characterisation Analysis

The morphology and surface structure of the 2D CeO2-Pd-PDA/rGO heterojunction
nanocomposite have been analysed by SEM at different magnifications, as shown in Figure 2.
The SEM images show the homogeneous distribution of Pd NPs with an average crystalline
size of <13 nm and small nanoclusters and the heterogeneous distribution of 2D ceria
nanoclusters. When the particle size is small, the surface area increases, resulting in the
presence of more active atoms on the surface and consequently more oxygen vacancies
accompanied by lattice strain [55]. The lattice parameter is higher for the smaller particle
size of CeO2 due to the higher concentration of oxygen vacancies and their associated Ce3+

for ceria particles [55]. The porous and multi-layered structure of the PDA functionalised
rGO can be seen, which confirms the PDA/rGO NSs are interconnected with some folded
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edges. Moreover, Figure 2b,c indicate that the PDA/rGO NSs are wrinkled and crumpled,
showing the good distribution of the Pd NPs and ceria on both sides of the PDA/rGO NSs
and the absence of significant agglomerations.
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Elemental composition and surface coverage of the CeO2-Pd-PDA/rGO heterojunction
nanocomposite were investigated using EDS and presented in Figure 3. The EDS spectrum
(Figure 3f) confirms that the sample (drop-casted on Si substrate) is composed of five
elements of carbon, oxygen, palladium, cerium, and Si (substrate). In addition, Figure 3b–e
illustrates the scattering of each component on the surface, which confirms the formation
of the CeO2-Pd-PDA/rGO heterojunction nanocomposite.

Nanomaterials 2022, 12, x FOR PEER REVIEW 5 of 23 
 

 

2D ceria nanoclusters. When the particle size is small, the surface area increases, resulting 

in the presence of more active atoms on the surface and consequently more oxygen va-

cancies accompanied by lattice strain [55]. The lattice parameter is higher for the smaller 

particle size of CeO2 due to the higher concentration of oxygen vacancies and their asso-

ciated Ce3+ for ceria particles [55]. The porous and multi-layered structure of the PDA 

functionalised rGO can be seen, which confirms the PDA/rGO NSs are interconnected 

with some folded edges. Moreover, Figure 2b,c indicate that the PDA/rGO NSs are wrin-

kled and crumpled, showing the good distribution of the Pd NPs and ceria on both sides 

of the PDA/rGO NSs and the absence of significant agglomerations. 

 

Figure 2. SEM images of the multi-layered porous structure of the CeO2-Pd-PDA/rGO heterojunc-

tion nanocomposite with wrinkles and open edges at different magnifications. Scale bar: (a) 5 µm, 

(b) 1 µm, and (c) 500 nm. 

Elemental composition and surface coverage of the CeO2-Pd-PDA/rGO heterojunc-

tion nanocomposite were investigated using EDS and presented in Figure 3. The EDS 

spectrum (Figure 3f) confirms that the sample (drop-casted on Si substrate) is composed 

of five elements of carbon, oxygen, palladium, cerium, and Si (substrate). In addition, Fig-

ure 3b–e illustrates the scattering of each component on the surface, which confirms the 

formation of the CeO2-Pd-PDA/rGO heterojunction nanocomposite. 

 

Figure 3. (a) SEM image and EDS mapping of (b) carbon, (c) oxygen, (d) palladium, and (e) cerium, 

and (f) EDS spectrum of the CeO2-Pd-PDA/rGO heterojunction nanocomposite. 
Figure 3. (a) SEM image and EDS mapping of (b) carbon, (c) oxygen, (d) palladium, and (e) cerium,
and (f) EDS spectrum of the CeO2-Pd-PDA/rGO heterojunction nanocomposite.

The XRD analysis of the CeO2-Pd-PDA/rGO heterojunction nanocomposite is shown
in Figure 4 to signify its degree of crystallinity. The XRD profile confirmed a relatively
broad peak at 2θ = 27.3◦ corresponding to the (002) graphitic plane of the partially restacked
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rGO NSs with the intralayer spacing of 0.326 nm between the rGO NSs, calculated from
Bragg’s law (2), as shown below:

λ = 2dsin(θ) (2)

where the λ (equals 0.154 nm) is the X-ray beam wavelength, θ is the diffraction angle, and
d is the intralayer spacing between the rGO NSs. Subsequently, the Scherrer Equation (3)
was used to calculate the graphene layers number in rGO NSs to be less than three layers,
as follows:

X =
Kλ

β· cos(θ)
(3)

where the X is the number of rGO layers, K is a dimensionless shape factor, λ is the X-ray
beam wavelength, β is the line broadening at half the maximum intensity (FWHM), and θ

is the Bragg angle.
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From the XRD pattern, the high-intensity diffraction peaks observed at 2θ = 28.6, 32.9,
47.3, 56.7, and 69.4 attributed to the (111), (200), (220), (311), and (400) crystalline planes of
CeO2, respectively, which was a very good fit with the JCPDS data card No. 43-1002 [35].
The results confirm the hexagonal structure of the CeO2, which is consistent with the
HRTEM results that are presented later in this section. The other sharp peaks at 2θ = 38.55,
44.15, 64.7, and 77.7 are attributed to the (111), (200), (222), and (311) lattice planes of Pd NPs,
respectively, which are a good fit to the JCPDS DATA CARD No. 5-681. This result indicates
the face-centred cubic (FCC) structure of the Pd NPs inside the rGO NSs [33]. Hydrogen
adsorption selectivity of the sensing material is highly correlated to the morphology-
dependent oxygen reducibility and oxygen vacancy concentrations [56]. Given that, dif-
ferent morphologies of CeO2 possess unique catalytic behaviour corresponding to the
specific surface characteristics of each particular lattice plane [57,58]. For instance, the
predominant (111) crystal plane is responsible for the selective hydrogenation reaction due
to the lowest surface energy and highest oxygen vacancy concentration [59]. In addition,
the H2 molecules occupying the oxygen vacancies on the sensor’s surface can improve
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the photocatalytic activity of the material due to the enhanced optical absorption and the
bandgap states [48,60].

Raman analysis of the 2D ceria, Pd-PDA/rGO, and CeO2-Pd-PDA/rGO heterojunction
nanocomposite was carried out using a 514 nm laser spectrometer and presented in Figure 5.
Raman spectroscopy provides information about the structural transformation of the
material and can detect the formation of defects inside the material. Generally, the oxygen
vacancies on the surface of ceria are produced due to the reversible reduction of Ce4+ to
Ce3+, based on the defect chemistry [61]. The concentration of oxygen vacancy is a critical
element in the gas sensing characteristics of the ceria. As shown in Figure 5, the Raman
spectrum of CeO2 shows a sharp peak at ~465 cm−1 corresponding to the F2g mode of
symmetric Ce-O8 stretching vibration in the Oh group, which is sensitive to any disorder
in the oxygen sublattice [62]. It can be considered a symmetric breathing mode of six
oxygen atoms around the central cerium ion. The results confirm the hexagonal shape
of the ceria, which is consistent with the TEM results. A small peak at ~265 cm−1 can
be ascribed to the second-order transverse acoustic mode (2TA). 2D bands can be seen
near ~2769 cm−1 and ~2969 cm−1, which are slightly shifted to higher wavenumbers in
comparison with the 2D band of the Pd-PDA/rGO and CeO2-Pd-PDA/rGO heterojunction
nanocomposite (~2730 cm−1 and ~2923 cm−1) due to the layer thickness increase [63]. The
Raman spectrum of the Pd-PDA/rGO shows two characteristic peaks at ~1355 cm−1 and
~1605 cm−1 ascribed to the D and G bands, while the D and G bands of CeO2-Pd-PDA/rGO
are slightly shifted to the lower wavenumbers (~1352 cm−1 and 1601 cm−1), due to the
formation of heterojunction between the ceria and Pd-PDA/rGO, and charge transfer [64].
The presence of D and G bands in two spectra also confirms that the Pd-PDA/rGO NSs
structure has been maintained after combining with ceria. The D band is correlated with
the density of defects in the sp2 material, and the G band corresponds to the active E2g
phonon mode of the graphite’s symmetric structure [65,66]. However, the intensity of
the D and G bands of the composite material is downshifted due to the electron transfer
from the ceria to rGO NSs, confirming the formation of heterojunctions between ceria and
Pd-PDA/rGO NSs, which is consistent with the TEM results [64]. The comparison of the
Raman spectra of the pure ceria and CeO2-Pd-PDA/rGO nanocomposite reveals that the
F2g mode (Ce-O8 vibration unit) is shifted to the lower wavenumber (~446 cm−1) due to
the strong interaction between the ceria Pd-PDA/rGO NSs forming the structural defects,
such as oxygen vacancies, which facilitate the charge transfer from the ceria to the rGO
NSs [67]. The 2D bands are broadened for the nanocomposite, indicating exfoliation of the
rGO [67]. In addition, the Raman spectrum of the nanocomposite confirms that the ceria
is successfully incorporated into the Pd-PDA/rGO NSs. The defect density on the CeO2-
Pd-PDA/rGO heterojunction nanocomposite and Pd-PDA/rGO NSs can be calculated
by the intensity ratio (ID/IG) of the D band to G band, which is increased by loading the
ceria to the Pd-PDA/rGO NSs. The ID/IG for Pd-PDA/rGO NSs and CeO2-Pd-PDA/rGO
nanocomposite were found to be 0.99 and 1.1, respectively, which reflects the higher defect
density in the nanocomposite and greater oxygen vacancies on the nanocomposite surface.

Crystal structural features and internal morphology of 2D CeO2 and CeO2-Pd-PDA/rGO
heterojunction nanocomposite were investigated by HRTEM, as shown in Figure 6.
Figure 6a,b displays the HRTM images of the 2D CeO2 in different magnifications, con-
firming transparency and the 2D structure of the CeO2 and the existence of well-defined
polycrystalline hexagonal structured CeO2 (111), (200), (220), (311), and (400) planes with
interplanar spacings of 0.334, 0.272, 0.192, 0.162, and 0.135 nm, respectively. Likewise,
Figure 6c,d demonstrates a few layers of transparent and thin film-like structure of the
PDA-rGO NSs decorated with the Pd NPs and 2D CeO2. It can be seen that the Pd NPs
are uniformly dispersed onto PDA/rGO NSs surface with a nearly spherical shape, and
CeO2 is heterogeneously dispersed into PDA/rGO NSs with some agglomerations. These
images prove that the distribution and morphology of the 2D CeO2 and Pd NPs into the
PDA-rGO NSs are consistent with the SEM images. The lattice fingers of the Pd NPs planes
can be seen in Figure 6d. The interplanar spacings of 0.233, 0.205, 0.144, and 0.122 nm
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are ascribed to the cubic Pd (111), Pd (200), Pd (222), and Pd (311) lattice planes, re-
spectively. According to Bragg’s law (Equation (2)), the XRD pattern of the CeO2-Pd-
PDA/rGO heterojunction nanocomposite is consistent with the obtained crystal structural
features by HRTEM. As shown in Figure 6c,d, the PDA/rGO NSs are relatively thin layers
that help to support the Pd NPs and nanoclusters and 2D CeO2 to form the CeO2-Pd-
PDA/rGO heterojunction nanocomposite.
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nanocomposite.

3.2. H2 Gas Sensing Description

The effect of different operating conditions, including H2 concentration (50–6000 ppm),
working temperature (30–200 ◦C), UV (365 nm) illumination, and relative humidity (up
to 30% RH) on the H2 sensing performance of the 2D CeO2-Pd-PDA/rGO heterojunction
nanocomposite sensor was investigated, respectively, and reported in the following sections.
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Pd NPs.

3.2.1. Effect of Operating Temperature on the H2 Sensing Performance

The gas sensing properties of semiconductor sensors are greatly dependent on the
operating temperature due to the direct relation with their chemo-resistive adsorption-
desorption behaviour and, more importantly, the association with power consumption and
cost of experiment [68]. Therefore, to optimise the operating temperature as a key element
in gas sensing valuation, the dynamic response of the fabricated CeO2-Pd-PDA/rGO sensor
towards H2 with different concentrations (200–600 ppm) was examined at different working
temperatures (30 ◦C up to 200 ◦C) and 0% relative humidity (% RH) in the dark environment
(Figure 7). As shown in Figure 7, the CeO2-Pd-PDA/rGO sensor behaves as a p-type
semiconductor, where its resistivity increases upon exposure to H2 (reducing gas) due to
the charge transfer from the target gas molecules to the sensing layer [3]. The electrons
move from H2, as an electron donor gas, to the valence band of the CeO2-Pd-PDA/rGO
nanocomposite, which reduces the hole concentration on the surface and, as a result,
its conductivity.
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Figure 7. P-type semiconducting gas sensing dynamic responses of CeO2-Pd-PDA/rGO sensor
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and H2 concentrations.

The 2D CeO2-Pd-PDA/rGO heterojunction nanocomposite-based sensor has shown
promising H2 sensing responses at low operating temperatures in dark conditions, as
shown in Table 1. However, a baseline drift happens due to partly irreversible gas/material
chemisorption, indicating that the sensor is not fully recovered to its baseline. This is
resolved by introducing UV radiation and changing the charge carrier density on the
surface of the CeO2-Pd-PDA/rGO by stimulating the electrons from the valence band.

Table 1. Hydrogen sensing response of CeO2-Pd-PDA/rGO heterojunction nanocomposite at differ-
ent operating temperatures and H2 concentrations in the dark.

H2 Concentration (ppm)
Response (%)

30 ◦C 100 ◦C 150 ◦C 200 ◦C

200 101 103 102 100
300 103 106 103 101
400 104 108 104 102
500 106 111 106 102
600 108 114 108 102

The change in resistivity of the sensor upon exposure to H2 gas at different con-
centrations was measured throughout the experiment. Based on the acceleration of the
adsorption/desorption kinetics between the CeO2-Pd-PDA/rGO nanocomposite and H2
molecules, the sensor’s responses were enhanced by increasing the operating temperature
from 30 ◦C up to 100 ◦C [6,69,70]. The maximum sensor response at 600 ppm H2 was
114% at 100 ◦C; thus, the 100 ◦C was chosen as the optimum working temperature. By
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further increasing the operating temperature above 100 ◦C, the sensing responses gradually
reduced due to the Langmuir effect, where the desorption rate of H2 molecules exceeds its
adsorption rate on the surface of the CeO2-Pd-PDA/rGO nanocomposite [57]. In addition,
by increasing the temperature beyond the optimum, the adsorbed H2 molecules on the
CeO2-Pd-PDA/rGO nanocomposite surface might escape before the charge transfer due to
the high activation, resulting in a poor response [71].

3.2.2. Effect of UV Radiation on the H2 Sensing Performance

The UV radiance effect on H2 sensing performance of the 2D CeO2-Pd-PDA/rGO
heterojunction nanocomposite-based sensor was investigated at 100 ◦C and 0% RH as
a function of H2 concentration. Figure 8 compares the dynamic response of the sensor
upon exposure to H2 with different concentrations (200–600 ppm) at 100 ◦C and 0% RH
without and with UV (365 nm) illumination. The resistivity change depends on the ad-
sorption/desorption rates of the H2 molecules onto the CeO2-Pd-PDA/rGO sensing layer,
which is correlated to the H2 concentrations [72]. By increasing the gas concentration, the
number of gas molecules interacting with the surface of the sensing layer rises until the
adsorption and desorption reach a balanced state [73]. Figure 8 compares the dynamic
response of the sensor in the dark and under UV illumination, which indicates that the
sensor was not fully recovered to its original baseline in the dark. However, the sensor is
fully recovered by introducing the UV, and no drift has happened in the baseline. These
results reveal that the interaction between the H2 molecules and the CeO2-Pd-PDA/rGO
sensing layer under UV radiation is fully reversible [12,74,75].
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The UV photoexcitation weakens the bonding forces between the H2 molecules and
CeO2-Pd-PDA/rGO nanocomposite sensing layer throughout the physisorption, leading to
reversible adsorption/desorption processes [74,76,77]. Moreover, UV illumination stimu-
lates the electrons from the valence band of the CeO2-Pd-PDA/rGO surface [78]. It changes
the charge carrier density on its surface and consequently accelerates the adsorption of
H2 molecules by these photogenerated electrons from the pre-adsorbed ambient oxygen
species [78]. As shown, the oxygen vacancies play a significant role in the photocatalytic
activities and adsorption behaviour in semiconducting metal oxides, including CeO2, due
to the creation of isolated levels below the conduction band [79]. In addition, ceria is a
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photocatalyst with a 4f electron configuration, which improves its adsorption capacity,
especially under UV illumination. When exposed to H2 as a reducing agent, the electrons
transfer into the Ce4f orbitals and consequently to oxygen, forming superoxide anion
radicals [40]. In other words, under UV illumination, highly reactive oxidant species in-
cluding ◦OH, HO2

◦, and O2
◦− can be produced on the CeO2-Pd-PDA/rGO heterojunction

nanocomposite surface, resulting in electron–hole pair formation, i.e., where the electrons
are excited from the valence band to the conduction band, leaving holes in the valence
band [80]. These photoproduced electron–hole pairs migrate to the surface, giving rise to
the reduction reaction of the electron acceptor (O2) to active oxygen (◦O2

−) and the holes
oxidise H2 (the electron donor), forming hydroxyl radicals and/or H2O. The active ◦O2

−

and OH◦ facilitate the oxidisation of the adsorbed H2 molecules, improving its H2 sensing
performance [81].

The response values of the CeO2-Pd-PDA/rGO sensor without and with UV illumina-
tion at 100 ◦C and 0% RH were analysed for each experiment at different H2 concentrations
(200–600 ppm) and reported in Table 2.

Table 2. H2 sensing response of the CeO2-Pd-PDA/rGO heterojunction nanocomposite sensor
towards H2 with different concentrations without and with UV illumination at 100 ◦C and 0% RH.

H2 Concentration (ppm) 200 300 400 500 600

Response (%), without UV 103 106 108 111 114
Response (%), with UV 103 107 111 115 119

Table 2 confirms an enhancement in the H2 sensing responses of the sensor under
UV radiation, which can be attributed to the reduction in the adsorption energy barrier
between the H2 molecules and the photo-induced sensing layer [82]. In addition, the wide
bandgap of ceria (3.1 eV) needs UV illumination to enhance its photocatalytic reaction,
resulting in increased numbers of oxygen vacancies in the CeO2 lattice and Ce3+ ions
on the surface [83]. Therefore, increasing the number of H2 molecules occupying the
oxygen vacancies on the sensor’s surface improves the sensor’s gas sensing activity based
on the UV light effect of shifting the ceria’s bandgap and accelerating the adsorption
rate [48,60]. However, the gas sensing mechanism of the CeO2-Pd-PDA/rGO heterojunction
nanocomposite based-sensor is complicated and cannot be generalised due to various
physical and chemical adsorption/desorption interactions, such as π-π interactions, van
der Waals forces, oxygen molecule adsorption/desorption, formation of different chemical
bonds, and charge transfer between the H2 molecules and the sensing layer [70,84].

3.2.3. Relative Humidity Effect on the H2 Sensing Performance

The above discussed H2 sensing parameters of the CeO2-Pd-PDA/rGO nanocomposite
sensor was investigated under dry ambient conditions. One of the critical environmental
elements affecting the H2 sensing parameters is relative humidity (% RH) [85]. Water
molecules in humid environments contribute to the adsorption/desorption mechanism,
influencing physisorption and chemisorption processes [76,86]. Therefore, we studied
the effect of the humid environment, changing from a dry ambient up to 30% RH, on the
CeO2-Pd-PDA/rGO sensing parameters at different H2 concentrations and 100 ◦C. All
experiments were performed under UV (365 nm) illumination.

Table 3 presents all the calculated H2 sensing response magnitudes of the CeO2-Pd-
PDA/rGO sensor towards H2 concentrations of 4000 and 6000 ppm at different % RH. As in-
dicated in Table 3, the sensor’s responses are improved by raising the H2 concentration from
4000 to 6000 ppm. The sensing mechanism of the p-type CeO2-Pd-PDA/rGO heterojunc-
tion conductometric sensor is based on ion-sorption of H2 molecules, followed by a charge
transfer directly between the H2 molecules and heterostructure-based CeO2-Pd-PDA/rGO
that produces a variation in the Fermi level (i.e., change in the electrical conductivity). The
presence of more H2 molecules on the surface facilitates the electron transfer from the H2,
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as an electron donor gas, to the valence band of the CeO2-Pd-PDA/rGO nanocomposite,
decreasing the hole concentration on the surface and improving the response.

Table 3. H2 sensing response of the CeO2-Pd-PDA/rGO sensor towards 4000 and 6000 ppm H2 at
various relative humidity and 100 ◦C under UV (365 nm) illumination.

H2 Conc (ppm)
Response (%)

0% RH 10% RH 15% RH 20% RH 25% RH 30% RH

4000 160 217 361 225 192 220
6000 172 349 416 373 333 257

It can also be seen that the response magnitude increases by enriching the % RH up to
15%, which may be due to the participation of water molecules in physical and chemical
adsorption/desorption reactions [87]. The water molecules act as electron donors, so by
increasing the humidity percentage, the number of adsorbed water molecules increases on
the surface, resulting in a narrowing of the depletion region and an increase in the sensor’s
resistance [87,88]. This reaction leads to an enhancement in gas sensing response for the
p-type CeO2-Pd-PDA/rGO sensor.

Moreover, carbonyl and hydroxyl functional groups on the CeO2-Pd-PDA/rGO
nanocomposite surface facilitate its interaction with water molecules, consequently chang-
ing the conductivity [89]. On the other hand, the surface-adsorbed active oxygen species
play a significant role in the H2 sensing performance. The interaction between the oxy-
gen species on the CeO2-Pd-PDA/rGO surface and adsorbed H2 molecules can form the
hydroxyl active sites, improving the response [90].

Table 3 also reveals that the response magnitude declines by further elevating the
humidity up to 30%. With increasing the % RH beyond 15%, the excess water molecules
on the surface cause widening of the bandgap by breaking the material sublattice and
symmetry (especially the rGO), which leads to a change in conductivity and a reduction
in the response [91]. Moreover, in an environment with a high humidity level, the water
molecules cannot be readily adsorbed on the surface of the sensing layer because the
size of water molecules is greater than H2 molecules [85]. Therefore, the response of the
sensor decreases.

Table 4 compares the calculated H2 sensing parameters of the CeO2-Pd-PDA/rGO
sensor, including response magnitude and response and recovery times towards H2 with
various concentrations at 0 and 15% RH.

Table 4. Sensing parameters towards H2 different concentrations at 100 ◦C, 0% RH, and 15% RH
under UV (365 nm) illumination.

H2 Conc (ppm)
Response (%) Response Time (s) Recovery Time (s)

0% RH 15% RH 0% RH 15% RH 0% RH 15% RH

2000 127.2 193.5 780 540 510 210
3000 145.6 307 600 420 660 210
4000 160 361 450 210 480 180
5000 168 386 210 150 480 180
6000 172 416 90 70 660 180

It can be seen that by raising the H2 concentration, the response of the sensor increases,
which can be attributed to the increased number of H2 molecules interacting with the
sensor, enhancing its adsorption rate on the surface of the sensing layer. This continues
until the sensor becomes saturated and the adsorption and desorption rate reach a balance.

As shown in Table 4, the maximum response of the CeO2-Pd-PDA/rGO sensor was
172% in dry ambient conditions towards 6000 ppm H2 at 100 ◦C under UV radiation. How-
ever, the sensor response drastically improved, to 416%, by raising the humidity to 15% RH
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under the same operational conditions. This can be attributed to the competition between
the H2 and water molecules to be adsorbed on the sensing layer’s surface [75,92]. The H2O
molecules participate in the adsorption process in the humid environment, influencing
the chemisorption and physisorption sensing mechanisms [6,76,92]. In addition, the high
response of the sensor and its sensing improvement in a humid environment can be due to
the hydroxylation reaction of the water molecules and the reaction between the hydrogen
and oxygen ions (O2−

(ads) and O−
(ads)) on the sensing layer surface [93].

Table 4 also reveals that response and recovery times of the sensor were improved by
introducing 15% RH. Quick response and recovery of 70 s and 180 s were observed when
the sensor was exposed to 6000 ppm H2 at 100 ◦C and 15% RH under UV due to the high
permeability of the CeO2-Pd-PDA/rGO sensor to water molecules.

Figure 9a demonstrates the dynamic response of the sensor at 0% and 15% RH at H2
with different concentrations and 100 ◦C. Figure 9b,c compares the response and recovery
times trends while increasing the humidity and H2 concentrations.
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Figure 9. (a) The UV excited dynamic responses of CeO2-Pd-PDA/rGO sensor at 100 ◦C and various
H2 concentrations (2000–6000 ppm) in dry ambient conditions and under 15% relative humidity;
(b) response times of the sensor at 0 and 15% RH as a function of H2 concentration; (c) recovery times
of the sensor at 0 and 15% RH and different H2 concentrations.

Comparing these dynamic responses reveals that a slight drift happens when the
sensor is functioning at 0% RH, showing that the sensor doesn’t fully recover, which affects
the response. It could be because of some irreversible chemisorption reactions due to the
high number of H2 molecules interacting with the sensing surface at high H2 concentrations.
However, when the sensor operated at 15% RH, it is fully recovered to its original baseline
after each H2 exposure as a result of the presence of H2O molecules.

In a humid environment, the response is improved because of the presence of hydroxyl
active sites (as electron donors) on the surface, which enhances the electric charge density
by forming the hydronium cations from the ionised H2O molecules as in [76,86]:

2H2O↔ OH− + H3O+ (4)

In addition, it is observed that by increasing the H2 concentration from 2000 to
6000 ppm, the response and recovery become quicker due to an increase in the surface
coverage rate, accelerating the adsorption/desorption process of the H2 molecules [70].
Moreover, the sensor reaches its saturation level quicker when exposed to higher H2 concen-
trations. Another critical element affecting the fast response and recovery is the formation
of the covalent bonds on the CeO2-Pd-PDA/rGO sensing layer because of the partici-
pation of the hydroxyl and carbonyl groups in the H2 physisorption and chemisorption
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reactions and also their interactions with water molecules on the surface [94]. The H2O
molecules are known as electron donors, facilitating the ionisation of the OH and COOH
functional groups on the sensing layer surface to generate a concentration gradient of
protons [22]. This gradient induces the diffusion of the protons to the CeO2-Pd-PDA/rGO
nanocomposite, carrying the voltage and current in the external circuit that accelerates the
response [95,96].

3.2.4. Gas Selectivity and Sensor Stability

Gas selectivity of the CeO2-Pd-PDA/rGO sensor was examined at 0% RH and opti-
mum operating temperature of 100 ◦C and displayed in Figure 10a. The sensor was exposed
to 50 ppm of H2, nitrogen dioxide (NO2), acetone (C3H6O), ammonia (NH3), and methane
(CH4) for 30 min. It can be seen that the sensor was highly responsive to H2 in comparison
with the other gases. The sensor showed a 136% response to H2 while indicating a low
response towards NH3 (1.4%), C3H6O (2.6%), and CH4 (3.2%). Although the sensor showed
a 38% response to NO2, it was more selective and responsive to H2.
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Figure 10. (a) Gas selectivity of the CeO2-Pd-PDA/rGO sensor at 100 ◦C and 0% RH towards different
gases at 50 ppm; (b) long-term sensor stability towards 6000 ppm H2 at 100 ◦C and 0% RH over
seven months.

The p-type CeO2-Pd-PDA/rGO nanocomposite sensing mechanism is mainly based
on the charge transfer from the H2 gas to the sensing material along with the adsorp-
tion/desorption interactions of the H2 molecules with the oxygen active sites on the
surface [34,97,98]. The free electrons on the CeO2-Pd-PDA/rGO nanocomposite surface
interact with oxygen molecules in the air to produce reactive oxygen species (O2−, O2

−,
and O−) ions. These reactive ions interact with the H2 molecules as an electron donor gas,
improving the electron charge transfer to the sensing layer, lowering the hole concentra-
tion, and rising resistivity [3,34,99]. As mentioned before, the H2 adsorption selectivity
of the CeO2-Pd-PDA/rGO is highly correlated to its morphology due to oxygen vacancy
concentrations [56]. Therefore, the presence of the CeO2 (111) facet facilitates the selective
hydrogenation reaction based on its lowest surface energy and highest oxygen vacancy con-
centration [59]. The CeO2-Pd-PDA/rGO sensor was repeatedly tested over seven months
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at 100 ◦C and 0% RH towards 6000 ppm H2. Figure 10b indicates comparable responses of
the sensor over time, confirming its long-term stability and lack of significant degradation.

4. Discussion and Conclusions

An environmentally friendly wet chemistry procedure was used to synthesise the
CeO2-Pd-PDA/rGO heterojunction nanocomposite, and its H2 gas sensing behaviour was
thoroughly investigated under different working conditions, including temperature up to
200 ◦C, H2 concentration from 50–6000 ppm, UV radiation, and relative humidity up to 30%
RH. The fabricated p-type sensor performed rapidly with a maximum response of 172%
towards 6000 ppm H2 at the optimum operating temperature of 100 ◦C in dry ambient
conditions, due to the enhanced number of H2 molecules interacting with the sensing
material, accelerating the adsorption/desorption rate on the surface until a balanced state
is reached. The heterostructured CeO2-Pd-PDA/rGO nanocomposite also showed an
excellent response, of 416%, to 6000 ppm H2 at 15% RH and 100 ◦C, with high selectivity
compared to other gases. This could be attributed to the high volume to surface area ratio
of the hybrid sensing material along with the presence of defects on the surface related to
oxygen vacancies, as well as the heterojunction interface between the rGO, Pd NPS, and
2D ceria, which leads to additional reaction sites [100]. The surface physical characteristics
of the sensor confirmed a heterogeneous distribution of the 2D CeO2 and Pd NPs onto
the PDA/rGO nanosheets. In addition, the multi-layered porous structure of the CeO2-
Pd-PDA/rGO nanocomposite improved its H2 gas sensing characteristics. The sensor
efficiently exhibited a high response of 136% at a low concentration (50 ppm) of H2.

The gas sensing mechanisms of hybrid nanocomposites are still under debate. Many
surface characteristics can influence the gas sensing performance, including the grain
size, crystal orientation, surface thickness, and lateral dimension, which require further
systematic studies on the hybridisation impact on the material’s physical, chemical, and
electrical characteristics, consequently improving the sensing properties.

However, for p-type conductometric gas sensors in contact with reducing gas, the
primary sensing mechanism is based on molecular adsorption and chemisorption of the
oxygen species on the surface followed by a charge transfer from the reducing gas molecules
to the heterostructure nanocomposite leading to a change in the Fermi level and electrical
resistance [24]. The surface morphology and particle size of the materials also influence the
H2 sensing properties. As mentioned before, the grain size highly affects the activity of the
sensing layer and the oxygen vacancies on the surface. When the particle size decreases,
the surface area and the available active atoms on the surface increase, i.e., more oxygen
vacancies accompanied by lattice strain [55]. When the CeO2-Pd-PDA/rGO nanocomposite
is exposed to H2 as a reducing gas, Ce3+ is generated through the reduction of Ce4+ by the
electron left behind due to oxygen vacancies. Therefore, as the concentration of oxygen
vacancies increases, the CeO2 lattice parameter rises [55]. In addition, hybridising the Pd
decorated rGO NSs with ceria in the form of the p–n heterojunction nanocomposite has
shown a promising influence on the H2 sensing performance at a low operating temperature
(100 ◦C) with enhanced sensing properties compared to a Pd-rGO sensor [16] and ceria
sensor [39].

Table 5 compares the H2 sensing parameters of the present work with different
graphene-based materials functionalised by noble metals and/or metal oxides and pure
CeO2. The adsorbed oxygen species on the sensing surface react with H2 and form H2O
molecules, as shown below:

H2 → 2H◦ (5)

2 H◦ (ads) + O− (ads)→ H2O + e− (6)

Since ceria is an n-type semiconductor with a bandgap of 3.1 eV, the presence of UV
light reduces its bandgap and activates its photocatalytic reactions. On the other hand,
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when ceria is exposed to a reducing gas such as H2, it releases oxygen, forming suboxides
as follows [40]:

CeO2 + xH2 ↔ CeO2−x + xH2O + xV (7)

where V is an oxygen vacancy. Doping the ceria with noble metals such as Pd can lower
the reduction temperature, while generally, the reduction requires high temperatures [101].
Doping the ceria also introduces a lattice strain that weakens Ce-O bonds, which reduces
oxygen vacancy formation energy and, consequently, alters oxygen ion diffusion [101].
In addition, a further beneficial effect is the formation of Pd-O-Ce bonds in the interface,
which are proposed as the active sites on Pd/CeO2 where chemisorbed H2 reacts with
lattice oxygen [102,103]. In this process, at the optimum temperature, the PdO/Pd phase
transforms to Pd-O-Ce, allowing the Pd NPs to adsorb H2 at low temperatures [103].
Consequently, there is a synergic effect between ceria and Pd, which helps the reducibility
of the Pd at a low temperature due to the formation of active interfacial sites [37]. This
synergic effect also benefits the material’s durability due to the Pd NPs anchoring to the
support with Pd-O-Ce bonds [103].

On the other hand, when the CeO2(111) is exposed to H2 gas, the H atoms sit on
top of the O atoms on the surface, forming hydroxyl O-H bonds [104]. The adsorption
of H atoms on the ceria surface leads to the reduction of Ce ions based on the electron
transfer from the H 1s to Ce 4F orbital [104]. Therefore, the reduced Ce ions can trap
the H2 and increase the response. Hybridising CeO2 with rGO also affected the sensing
performance via the formation of a p–n heterojunction between the rGO and CeO2 and also
the appearance of C-O bonding at the interface between rGO and ceria. In summary, the
CeO2-Pd-PDA/rGO heterojunction nanocomposite can produce highly reactive oxidant
species including ◦OH, HO2

◦, and O2
◦− under UV illumination, where the electrons are

excited from the valence band to the conduction band, leaving holes in the valence band.
This results in the formation of photoproduced electron–hole pairs, which can migrate to
the surface, giving rise to the reduction reaction by adsorbed H2 molecules on its surface.

The H2 adsorption selectivity of the sensing material is highly correlated to the
morphology-dependent oxygen reducibility and oxygen vacancy concentrations [56]. Given
that, different morphologies of CeO2 possess unique catalytic behaviour corresponding to
the specific surface characteristics of each particular lattice plane [57,58]. For instance, the
predominant (111) crystal plane is responsible for the selective hydrogenation reaction due
to the lowest surface energy and highest oxygen vacancy concentration [59]. In addition,
the H2 molecules occupying the oxygen vacancies on the sensor’s surface can improve
the photocatalytic activity of the material due to the enhanced optical adsorption and the
bandgap states [48,60].

More importantly, one of the critical parameters influencing the H2 sensing perfor-
mance is the adsorption of atmospheric H2O molecules as a significant source of inter-
ference [17,26]. According to the literature, the effect of humidity on the gas sensing
parameters is a complex challenge for most resistive H2 sensors [17,105,106]. However,
fabricating H2 sensors capable of detecting H2 in a humid environment is necessary for
real-world operating conditions [107]. Therefore, the effect of the % RH on the H2 sensing
performance of the 2D CeO2-Pd-PDA/rGO heterojunction nanocomposite-based sensor
was investigated in this study. The response of the sensor was drastically enhanced from
172% to 416% by increasing the humidity to 15% at 6000 ppm H2 and 100 ◦C under UV
light. The response and recovery times also improved from 90 s to 70 s and 660 s to 180
s, respectively. This result can be ascribed to increasing the charge carriers on the sensing
layer surface by enriching the % RH because of the adsorbed ionised water molecules.
Water is known as a reducing agent and transfers electrons to the sensing layer. In a humid
environment, the following reactions can happen:

OH− + h+
(valent band) ↔ ◦OH (8)

H2O + h+
(valent band) ↔ ◦OH + H+ (9)
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OH− + h+
(valent band) ↔ ◦OH (10)

O2 + e−(conduction band) ↔ HO2
◦ (11)

While exposed to H2O molecules, the transition of electrons into the Ce4f orbitals and
ambient oxygen develops highly reactive oxidant species including ◦OH, HO2

◦, and O2
◦−

on the CeO2-Pd-PDA/rGO surface, forming the electron–hole pairs and improving the
sensing performance of the material [80,84].

Table 5. Summarising H2 sensing parameters of different graphene-based materials functionalised
by noble metals and/or metal oxides and a pure CeO2 compared with this work.

Base Material Hybrid Material Synthesis Method H2 Conc.
(ppm)

Temp.
(◦C) RH (%) Response (%) Response

Time (s)
Recovery
Time (s)

rGO [108] WO3- Pd NPs Hydrothermal 100 RT - 38 52 155
rGO [109] SnO2- Pd NPs Microwave synthesis 10,000 RT - 3 7 6
rGO [110] NiO Freeze drying 10,000 50 - 0.64 28 142

Graphene [111] Pd NPs-SiO2 Thermal CVD 500 RT - 4.1 213 600
rGO [16] Pd NPs Wet chemistry 5000 100 10 18.2 170 1440

rGO [112] Pd-Pt Hummers’ method,
Hydrothermal 8000 25 - 0.52 300 600

rGO [109] Pt-SnO2
Hummers’ method,

Hydrothermal 5000 RT - 3 3 2

CeO2 [39] - Wet chemistry 100 400 - 2 420 660
CeO2 [39] Pd NPs Wet chemistry 100 350 - 19 60 360
PDA/rGO
(this work)

Pd NPs- 2D
CeO2

Wet chemistry 6000 100 15 416 70 180

As shown in Table 5, the H2 gas sensing parameters of the developed 2D CeO2-
Pd-PDA/rGO nanocomposite-based sensor are more promising in comparison with the
reviewed literature, including pure ceria, Pd-rGO, and metal oxide-doped rGO sensors.
Based on the experimental results, reducing the GO by adding the DA, as an environ-
mentally friendly chemical, considerably improved its reduction process, affecting the
sensing performance. Moreover, hybridising the PDA/rGO with Pd NPs and 2D CeO2
suggestively enhanced the H2 sensing parameters [23]. Last, but not least, the fabricated
2D CeO2-Pd-PDA/rGO heterojunction nanocomposite was highly selective to H2 and
displayed acceptable durability over seven months, as well as a very high response and
quick response and recovery, and ability to function at low operating temperature.
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