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Pharmacogenetics or pharmacogenomics approaches are important for addressing
the individual variabilities of drug efficacy especially in the era of precision medicine.
One particular interesting gene to investigate is APOA5, which has been repeatedly
linked with the inter-individual variations of serum triglycerides. Here, we explored
APOA5-statin interactions in 195 Chinese subjects randomized to rosuvastatin (5–
10 mg/day), atorvastatin (10–20 mg/day), or simvastatin (40 mg/day) for 12 weeks
by performing a targeted genotyping analysis of the APOA5 promoter SNP rs662799
(−1131T > C). There were no significant differences between the treatment arms for any
of the statin-induced changes in clinical biomarkers. Reductions in LDL cholesterol were
influenced by the APOA5 genotype in all three treatment groups. By contrast, changes
in HDL cholesterol, and triglycerides were only affected by the APOA5 genotype in
the atorvastatin and simvastatin groups and not in the rosuvastatin group. Our results
suggest that future studies may need to consider stratifying subjects not only by genetic
background but also by prescribed statin type.

Keywords: APOA5 genotype, statins, triglycerides, LDL cholesterol, dyslipidemia

INTRODUCTION

Statins are the most prescribed class of drugs worldwide for prevention of various cardiovascular
diseases. However, about one third of patients do not respond well to this therapy with respect
to the lipid-lowering effect, suggesting that pharmacogenomics (Postmus et al., 2014) or other
environmental factors such as diet (Jenkins et al., 2005) or the gut microbiome (Kaddurah-Daouk
et al., 2011) may play substantial roles. To date, genome-wide association studies have identified
at least 39 genes that are associated with statin treatment efficacy (Gryn and Hegele, 2014). Most
of these genes are involved in either the direct pharmacokinetic handling of statins or in lipid
metabolism pathways especially those involving cholesterol, the main target of statin therapy
(Mangravite et al., 2006). However, accumulating evidence indicates that statins can also lower

Abbreviations: ApoA5, apolipoprotein A5; BMI, body mass index; FFAs, free fatty acids; HDLc, high-density lipoprotein
cholesterol; LDLc, low-density lipoprotein cholesterol; Lp(a), lipoprotein(a); SNP, single nucleotide polymorphism; T2D,
type 2 diabetes; Tc, total cholesterol; Tg, triglycerides.
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levels of triglycerides, potentially through altering degradation of
apolipoprotein B (ApoB) and related very low-density lipoprotein
(VLDL) balance, although the precise mechanism remains
unclear (Ginsberg et al., 1987; Arad et al., 1992; Ginsberg, 1998).

One gene of particular interest within this context is APOA5
(Guardiola and Ribalta, 2017), which was identified in 2001
(Pennacchio et al., 2001; van der Vliet et al., 2001) and has
been associated with high inter-individual variations of serum
triglycerides in all reported populations (Baum et al., 2003;
Lai et al., 2004; Hubacek et al., 2008; Ouatou et al., 2014;
Son et al., 2015). Accumulating evidence also suggests that
polymorphisms in this gene confers risk for cardiovascular
disease (Lai et al., 2004; Han et al., 2017) and myocardial
infarction (Do et al., 2015). Two of the most characterized
APOA5 SNPs are rs662799 (−1131T > C) and rs3135506
(56C > G) (Hubacek et al., 2004; Lim et al., 2014; Chen
et al., 2018; Kim et al., 2018). Of note, rs662799 is more
common in the Asian population (26–40%) than in Caucasians
(∼8%) (Baum et al., 2003; Kim et al., 2018). According
to one estimation, this SNP alone can contribute to 6.2%
of the genetic component of hypertriglyceridemia (Hegele,
2009).

Although it has previously been suggested that there is a
link between APOA5 and statin treatment (Brautbar et al., 2011;
O’Brien et al., 2015), neither the type nor the dose of statins was
taken into consideration in these earlier studies; it is important
to note that statins differ in terms of their pharmacodynamic
and pharmacogenetic properties (Kivisto et al., 2004; Schachter,
2005) and potency (Palmer et al., 2013; Arshad, 2014; Karlson
et al., 2016). Another retrospective study did not observe an effect
of statin type when investigating the interaction between the
rs662799 variants and statins (Hubacek et al., 2009); however, this
study did not include rosuvastatin, which is often considered to
be a better treatment choice (Scott et al., 2004; McKenney, 2005;
Schachter, 2005).

Here, we performed a pilot study to explore APOA5-statin
interactions in 195 Chinese subjects randomized to rosuvastatin,
atorvastatin, or simvastatin therapy for 12 weeks. To address
whether the reduction in cholesterol and apolipoprotein levels
of three types of statins differ between subjects with the
same APOA5 genetic background, we genotyped the APOA5
rs662799 SNP and measured the fasting plasma concentrations
of triglycerides, cholesterols, FFAs, and four apolipoproteins both
before and after statin treatments.

MATERIALS AND METHODS

Study Subjects and Study Design
Between 2015 and 2016, we screened 240 patients with
treatment-naive dyslipidemia at Shanghai Ruijin Hospital
Luwan Branch (affiliated to Shanghai Jiao Tong University)
and recruited 195 to this study (Supplementary Figure S1).
The inclusion criteria were: (i) preregistered with our medial
examination center for annual routine heath screening; (ii) aged
18 years or older; (iii) newly diagnosed with dyslipidemia
and/or increased risk of atherosclerotic cardiovascular

diseases and recommended to receive statins according to
the 2013 American College of Cardiology and the American
Heart Association Blood Cholesterol Guidelines (Stone et al.,
2014); (iv) capable of understanding the scope and potential
consequences of this study. The exclusion criteria were: (i)
major systematic diseases such as malignancy; (ii) heart
failure experience; (iii) dramatic weight loss and medication
(especially antibiotics) 2 months before recruitment except
antihypertensive therapy; (iv) acute illnesses. All patients
newly diagnosed with dyslipidemia were encouraged to adopt
lifestyle changes first for 2–4 months before moderate statin
treatment; thus, only those who failed to achieve the therapeutic
goal (mostly due to poor adherence to the dietary and/or
exercise recommendations) were considered as eligible for this
study.

The 195 subjects were then randomly divided into three
treatment arms to receive rosuvastatin (5–10 mg/day),
atorvastatin (10–20 mg/day), or simvastatin (40 mg/day)
for 12 weeks (n = 65 for each treatment arm). To achieve
comparable clinical efficacies in response to the three statins,
the different statin doses were selected based on both clinical
practice and evidence suggesting that each rosuvastatin dose
is equivalent to 3–3.5 times of atorvastatin and 7–8 times
of simvastatin (at least in terms of cholesterol reduction)
(Hubacek et al., 2009). Follow-up evaluations were performed
every 2 weeks and no side effects or poor adherence was
reported.

Written informed consent was obtained from all the study
participants. This study conforms to the ethical guidelines
of the 1975 Declaration of Helsinki and was approved by
Ethics Committee of Shanghai Ruijin Hospital Luwan Branch.
Complete clinical trial registration is deposited at chictr.org.cn
(ChiCTR-RRC-16010131).

Laboratory Analyses
Fasting plasma concentrations of triglycerides, total cholesterol,
HDL cholesterol (HDLc), LDL cholesterol (LDLc), FFAs, three
different apolipoproteins (ApoA1, ApoB-100, and ApoE), and
Lp(a) were measured by enzymatic methods using a Beckman
Coulter Chemistry Analyzer AU5800 Series (United States) at
both baseline and 12 weeks after treatments.

After the randomization and initiation of treatments,
DNA was isolated using the TIANamp Blood
DNA kit (purchased from Tiangen, Beijing, China)
and individual APOA5 variants (−1131T > C –
rs662799) were genotyped using a base-quenched
probe method combined with polymerase chain
reaction (PCR) as described before (Luo et al., 2009).
In brief, a 19-nt probe (5′-GGCAAATCTCACTTTC
GCT-3′) containing the targeted SNP site was first conjugated
with 6-carboxyfluorescein and then hybridized to its
complementary target sequence from PCR amplification.
An analytical melting program that involves heating
the amplicon/probe heteroduplex will produce different
fluorescence curves depending on the genotypes of
rs662799. Both the probe and primers (forward: 5′-AGG
AGTGTGGTAGAAAGACCTGTTG-3′; reverse: 5′-AACTA
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CCCAGAGTCACTGTGTCCC-3′) used were synthesized by
Sangon (Shanghai, China).

Statistical Analysis
Statistical differences between groups were estimated by Wilcox
rank-sum test (between two groups), Kruskal–Wallis test (among
three groups) for continuous variables or by Chi-square test

for categorical variables. T/C and C/C subjects were pooled
as C allele carriers for all statistical analyses to increase the
power. Both the percentage and absolute changes of LDLc,
HDLc and triglycerides in response to each statin were further
adjusted for age, sex, and BMI by using linear regression
models. In cases of models based on absolute changes, the
baseline values were also entered as covariates. However, statin

TABLE 1 | Baseline characteristics summarized by statin treatment and APOA5 genotypes, respectively.

Characteristics Statin treatmenta APOA5 genotypea

Atorvastatin Rosuvastatin Simvastatin Pb C/C T/C T/T Pe

n 4/32/29d 5/25/35d 4/34/27d 0.597c 13 91 91 −

Male (%) 53.8 44.6 49.2 0.575c 69.2 41.8 53.8 0.288c

Age (years) 74.9 ± 10.5 75.0 ± 11.8 69.8 ± 17.4 0.344 72.2 ± 13.9 72.9 ± 12.7 73.7 ± 14.8 0.420

BMI (kg/m2) 23.5 ± 3.2 23.5 ± 3.3 23.4 ± 3.2 0.938 24.1 ± 2.7 23.4 ± 3.7 23.3 ± 2.8 0.662

Tc (mg/dl) 193.1 ± 49.5 180.2 ± 40.6 186.7 ± 49.0 0.306 194.1 ± 28.2 191.6 ± 47.3 180.7 ± 47.6 0.093

Tg (mg/dl) 180.1 ± 110.5 162.6 ± 102.6 181.9 ± 138.0 0.482 266.9 ± 151.2 183.3 ± 117.8 153.4 ± 105.8 0.004

HDLc (mg/dl) 42.1 ± 9.9 44.1 ± 10.4 44.6 ± 11.5 0.458 41.1 ± 11.3 43.4 ± 10.7 44.1 ± 10.6 0.513

LDLc (mg/dl) 132.2 ± 42.9 125.8 ± 34.8 125.7 ± 41.1 0.780 145.4 ± 35.0 133.1 ± 41.3 120.1 ± 37.3 0.015

ApoA1 (mg/dl) 114.4 ± 20.6 119.1 ± 23.3 116.9 ± 20.1 0.515 113.4 ± 8.8 116.7 ± 23.2 117.3 ± 20.7 0.708

ApoB-100 (mg/dl) 86.3 ± 31.2 86.5 ± 25.0 94.1 ± 29.2 0.181 99.5 ± 22.2 91.0 ± 29.3 85.4 ± 28.5 0.145

ApoE (mg/dl) 4.4 ± 1.5 3.8 ± 1.0 4.5 ± 1.4 0.019 4.7 ± 1.7 4.3 ± 1.3 4.2 ± 1.3 0.382

FFA (mmol/l) 0.5 ± 0.2 0.5 ± 0.3 0.5 ± 0.2 0.780 0.5 ± 0.1 0.5 ± 0.2 0.4 ± 0.3 0.052

Lp(a) (mg/dl) 17.5 ± 17.0 18.0 ± 15.4 19.8 ± 17.9 0.916 25.3 ± 25.2 17.5 ± 12.6 18.4 ± 18.8 0.575

Type 2 diabetes (%) 43.1 40.0 32.3 0.430c 53.8 38.5 36.3 0.658c

aContinuous variables are expressed as mean ± standard deviations (sd); bP-values were estimated by Krukskal–Wallis test for continuous variables; cP-values were
estimated by Chi-square test for categorical variables; dSample sizes for individuals genotyped as C/C, T/C and T/T, respectively; eP-values were estimated by Wilcox
rank-sum test for continuous variables (C/C and T/C were pooled as one group in this case).

FIGURE 1 | APOA5-statin interactions. (A) Box plots (with median) showing percentage changes in the indicated biomarkers after treatment with rosuvastatin
(5–10 mg/day), atorvastatin (10–20 mg/day) or simvastatin (40 mg/day). ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001 versus before treatment. (Wilcoxon signed-rank test)
(B–E) Box plots (with median) showing percentage changes in total cholesterol (Tc) (B), LDLc (C), HDLc (D), and triglycerides (Tg) (E) in response to each statin in
subjects divided by APOA5 rs662799 genotypes. Sample sizes for each subgroup are given on top of (B–E). ∗P < 0.05; ∗∗P < 0.01 (Wilcoxon rank-sum test; C/C
and T/T subjects were pooled together for statistical testing).
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doses were not considered since similar doses of statin were
prescribed for all subjects within the same treatment arm.
A backward variable selection procedure was performed using
R function ‘step’ based on the Akaike information criterion
(AIC). APOA5-statin interaction was further explored by adding
an interaction term into the models. Associations between
apolipoproteins and concentrations of LDLc and HDLc were
measured by Spearman’s rank correlation analysis. Hardy–
Weinberg Equilibrium was accessed by exact test based on R
package “HardyWeinberg” (Graffelman, 2015). Raw P values
were adjusted by the Benjamini–Hochberg method (Benjamini
and Hochberg, 1995) with a false discovery rate of 5%. A power
of 99.98% was obtained using pwr package (Champely, 2015)
for this study based on 65 patients (sample size for each
treatment arm) with paired design, 5% significance, and an
estimated effect size of 0.7 (i.e., effective in 70% of the patients)
for statins to reduce LDL cholesterol (Cholesterol Treatment
Trialists (CTT) Collaborators, 2012; Ridker et al., 2016). All
statistical tests and data visualizations as well as the stratified
randomization process by considering BMI as covariate were
performed under the R environment (R Development Core
Team, 2015).

RESULTS

Baseline Characteristics
The minor C allele frequency of APOA5 rs662799 SNP in our
cohort was 30%, consistent with other reports based on larger
Chinese cohorts (Baum et al., 2003; Jiang et al., 2010); the
genotype frequency of APOA5 was in agreement with Hardy–
Weinberg Equilibrium (n = 13, 91 and 91 for C/C, T/C, and
T/T allele carriers, respectively; P = 0.171). With the exception
of ApoE, there were no significant baseline differences between
the treatment arms, including the frequencies of the three APOA5
genotypes (P = 0.597) (Table 1). These data suggest that the
treatment groups are in general homogeneous and this study
design is suitable for addressing the relationship between APOA5
variations and the clinical responses of three statins.

When stratifying the subjects by genotype, the C allele carriers
(including both C/C and T/C) had significantly higher plasma
triglycerides than T/T carriers at baseline (Table 1), in agreement
with previous studies (Baum et al., 2003; Lai et al., 2004; Jiang
et al., 2010). We also noted that subjects with the C allele carriers
had higher LDLc than T/T carriers at baseline (Table 1).

Rosuvastatin-Induced Changes in HDLc
and Triglycerides Are Not Associated
With APOA5 Genotype
We next compared the clinical efficacies of the statins (in terms
of changes of cholesterol, triglyceride, and apolipoprotein). As
expected, all three statins promoted significant reductions in total
cholesterol, ApoB, LDLc, ApoE, and triglycerides and significant
increases in ApoA1 and HDLc (Figure 1A). However, there were
no significant differences between the treatment arms for any of
the statin-induced changes in clinical biomarkers after adjusting

for multiple testing (false discovery rate 5%), confirming that the
response to 5–10 mg of rosuvastatin is similar to that of 10–20 mg
atorvastatin and 40 mg of simvastatin as suggested previously
(Hubacek et al., 2009). In agreement, results from a meta-analysis
(Karlson et al., 2016), comparative pharmacology (McTaggart,
2003) and the MERCURY II clinical trial (Ballantyne et al., 2006)
have all shown that rosuvastatin is more potent than the other
statins and thus lower doses can be used to achieve equivalent
responses.

To determine how APOA5 variations were associated with
the clinical responses of the three statins, we investigated how
changes in the biomarker concentrations in response to each
statin varied among the three APOA5 genotypes (Figures 1B–E
and Supplementary Table S1). No significant differences were
observed among three APOA5 variants in terms of the percentage
changes of total cholesterol (Figure 1B), apolipoproteins, FFA,

TABLE 2 | Percentage changes of LDLc, HDLc, and triglycerides in response to
each statin treatment adjusted for sex, age, and BMI using linear regression
models.

Initial models Treatment Final models

%LDLc ∼ sex+age+BMI+
genotype

Atorvastatin %LDLc ∼ genotype

Pmodel = 0.003

Pgenotype = 0.003

Rosuvastatin %LDLc ∼ sex+BMI+genotype

Pmodel = 0.015

Pgenotype = 0.046

Simvastatin %LDLc ∼ sex+age+genotype

Pmodel = 0.002

Pgenotype = 0.02

%LDLc ∼ sex+age+
BMI+genotype+treatment+
interaction

Interaction %LDLc ∼ age+genotype

%HDLc ∼
sex+age+BMI+genotype

Atorvastatin %HDLc ∼ age+genotype

Pmodel = 0.0004

Pgenotype = 0.002

Rosuvastatin Not significant

Simvastatin %HDLc ∼ genotype

Pmodel = 0.002

Pgenotype = 0.002

%HDLc ∼ sex+age+
BMI+genotype+treatment+
interaction

Interaction %HDLc ∼ age+genotype+
treatment+interaction

%Tg ∼ sex+age+BMI+
genotype

Atorvastatin %Tg ∼ genotype

Pmodel = 0.01

Pgenotype = 0.01

Rosuvastatin %Tg ∼ BMI

Pmodel = 0.01

Simvastatin %Tg ∼ genotype

Pmodel = 0.006

Pgenotype = 0.006

%Tg ∼ sex+age+
BMI+genotype+treatment+
interaction

Interaction %Tg ∼ BMI+genotype+
treatment+interaction
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and Lp(a) (data not shown) in response to any of the three
statins. However, compared with the C allele carriers, patients
homozygous for the major T allele exhibited: (1) lower baseline
LDLc levels independent of statin type (Table 1); (2) significantly
larger statin-induced LDLc reductions, independent of statin type
(Figure 1C); and (3) more pronounced statin-induced changes
in HDLc and triglycerides upon atorvastatin or simvastatin
treatment (Figures 1D,E). By contrast, rosuvastatin-induced
changes in HDLc and triglycerides showed little variation among
the threeAPOA5 variants (Figures 1D,E). This finding suggesting
that statin–APOA5 interactions may also depend on the statin
type was further supported by linear regression analyses by
adding the treatment and genotype interaction term (Table 2);
the results were still valid after adjusting for age, sex, and BMI
(Table 2). We obtained similar results when using the absolute
changes of each biomarker additionally adjusted for the baseline
biomarker values (Supplementary Table S2).

Statin–APOA5 Interactions Altered the
Correlations Between Apolipoproteins
and LDLc/HDLc
Although most therapies to reduce cardiovascular disease
risk currently focus on reduction of LDLc and triglycerides,
atherogenic proteins such as ApoB have also been suggested
to have great predictive value (Ballantyne et al., 2008).
Accordingly, the American Diabetes Association and the
American College of Cardiology Foundation recommend that
therapy for patients with high cardiovascular disease risk should
aim to lower ApoB concentrations to below 90 mg/dl in

addition to reducing LDLc levels (Brunzell et al., 2008). To
address whether the well-known associations between ApoB
and LDLc both before and after statin treatments (Ballantyne
et al., 2008) differ among patients with different APOA5
genotypes, we additionally analyzed ApoB–LDLc correlations
within each APOA5 SNP subgroup. For C allele carriers, the
Spearman correlation coefficients between ApoB and LDLc were
comparable before and after treatment [ρ = 0.55 (P < 0.001) and
0.50 (P < 0.001), respectively] (Figure 2). By contrast, in T/T
homozygotes, the ApoB–LDLc correlation reduced dramatically
after treatment [from 0.78 (P < 0.001) before treatment to
0.44 (P < 0.001)], indicating that the statin-induced reduction
of ApoB in absolute values was much smaller than the statin-
induced reduction of LDLc in these patients. Thus, further
treatment to reduce the levels of ApoB even after achieving
recommended LDLc reductions could be beneficial in T/T
carriers. Similar observations were found between ApoA1 and
HDLc (Supplementary Figure S2).

DISCUSSION

Our pilot study revealed that rosuvastatin achieved comparable
improvements in all biomarkers examined despite the fact that
it was prescribed at a much lower dose than atorvastatin and
simvastatin. We further demonstrated that the reduction of
LDLc was strongly affected by APOA5 independent of the statin
type prescribed. In contrast, the percentage changes of HDLc
and triglycerides were less affected by APOA5 variants in the
rosuvastatin group than in the other two treatment arms.

FIGURE 2 | | Both APOA5 and statin alter the ApoB–LDLc correlations. Correlations between ApoB and LDLc before (A) and after (B) statin treatment in subjects
with APOA5 rs662799 C or T/T allele.
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Our findings about the strong APOA5-LDLc interactions are
consistent with observations in a larger cohort (Lai et al., 2004)
but not with an earlier study involving only Chinese men (Baum
et al., 2003). It is not clear how APOA5 variants affect LDLc as
ApoA5 has only been detected on HDL and VLDL and not on
LDL particles (Ballantyne et al., 2006). However, ApoA5 has been
shown to directly interact with members of the LDL-receptor
family (Nilsson et al., 2007). In addition, an earlier study has
shown a significant association between the APOA5 rs662799
SNP and increased risk of early-onset myocardial infarction
even after adjusting for triglycerides (De Caterina et al., 2011),
providing further evidence that this SNP may simultaneously
affect other atherogenic lipids such as LDLc. It is also possible
that this SNP is in complete linkage disequilibrium with other
polymorphism(s) that can explain the observed LDLc levels.

In contrast to LDLc, we observed significant APOA5-HDLc
and -triglyceride interactions in the atorvastatin and simvastatin
groups but not in the rosuvastatin group. Possible explanations
for these different treatment responses according to genotype
include the following: (1) the hydrophilic rosuvastatin is largely
excreted unchanged (Martin et al., 2003) whereas the other
two lipophilic statins undergo substantial metabolism by the
CYP450 pathways and thus are potentially more affected by
gene polymorphisms (Kivisto et al., 2004; Schachter, 2005); (2)
rosuvastatin differs from the other statins by its stronger binding
to 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA)
reductase, lower systemic bioavailability, longer elimination half-
life (McTaggart, 2003) and greater hepatoselectivity (Schachter,
2005); (3) an involvement of other apolipoproteins as APOA5
variants have been associated with modulations of lipoprotein
subclasses especially VLDL and HDL; however, no link between
APOA5 and ApoB has been reported (Talmud et al., 2004;
Guardiola et al., 2015; Guardiola and Ribalta, 2017); and (4)
an involvement of other SNPs, such as the APOA5 variant
rs2266788, that are in strong linkage disequilibrium with
rs662799 (Caussy et al., 2014). To fully understand how
APOA5 affects statin treatments, in-depth characterizations of
its functional role are still needed.

Our findings in this pilot study are limited by both the sample
size and targeted genotyping of a single SNP. A further limitation
is that we did not measure ApoA5 protein levels; however,
previous studies have suggested that the APOA5 SNP rs662799
studied here is not associated with APOA5 mRNA expression
levels or with circulating concentrations of this apolipoprotein
(Talmud et al., 2006; Henneman et al., 2007; Kim et al., 2018).
Some of the participants did not respond to statins, and we
cannot exclude the possibility that poor adherence to their
prescribed treatment played a role. However, good adherence to
statin treatment was reported.

CONCLUSION

In summary, our results show that low-dose rosuvastatin achieves
improvements in clinical responses that are comparable to those
observed with higher doses of atorvastatin and simvastatin but
are less affected by APOA5 genotype. These findings support
the growing recognition that rosuvastatin is a potentially better
treatment option for patients with dyslipidemia and/or at high
risk of cardiovascular diseases when genetic information is
not available. In addition, integrated efforts, such as the NIH
Pharmacogenetics Research Network (Giacomini et al., 2007),
should be encouraged in the era of precision medicine to
accelerate pharmacogenetics or pharmacogenomics research.
Future studies may also need to consider stratifying populations
by genetic background and by prescribed statin type.
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