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ABSTRACT

Prophages are phages in lysogeny that are inte-
grated into, and replicated as part of, the host bac-
terial genome. These mobile elements can have
tremendous impact on their bacterial hosts’
genomes and phenotypes, which may lead to
strain emergence and diversification, increased
virulence or antibiotic resistance. However, finding
prophages in microbial genomes remains a problem
with no definitive solution. The majority of existing
tools rely on detecting genomic regions enriched in
protein-coding genes with known phage homologs,
which hinders the de novo discovery of phage
regions. In this study, a weighted phage detection
algorithm, PhiSpy was developed based on seven
distinctive characteristics of prophages, i.e.
protein length, transcription strand directionality,
customized AT and GC skew, the abundance of
unique phage words, phage insertion points and
the similarity of phage proteins. The first five char-
acteristics are capable of identifying prophages
without any sequence similarity with known phage
genes. PhiSpy locates prophages by ranking
genomic regions enriched in distinctive phage
traits, which leads to the successful prediction of
94% of prophages in 50 complete bacterial
genomes with a 6% false-negative rate and a
0.66% false-positive rate.

INTRODUCTION

Phages, viruses that infect bacteria, have two lifestyles:
lytic and lysogenic. During lysogenic growth, phages

infect their host and then remain inside the microbial
cell replicating with the genome. In this state, they are
called prophages. These prophages will be part of the bac-
terial DNA in future cell divisions until appropriate envir-
onmental conditions cause them to release from their host
and enter into a virulent lifestyle. The advantages of a
lysogenic lifestyle for phages are numerous, including
increased fecundity and increased survival within the pro-
tective bacterial environment. Integrated prophages can
constitute up to 20% of a bacterial genome (1–3) and
play a key role in the bacterial life cycle. Prophage inte-
gration can regulate bacterial populations, make inactive
or alter the expression of some bacterial genes, and can
convert non-pathogenic bacteria into pathogens and some
virulent into hyper-virulent strains (4–6).
A prophage normally integrates into a genome by site-

specific recombination, which is catalyzed by a family of
proteins called integrases (7). These proteins recognize
sequences on both the phage (attP, attachment site in
the phage genome) and bacterial (attB, attachment site
in the bacterial genome) genomes, and homologous re-
combination between these sites results in duplication of
a short stretch of DNA in the continuity of the chromo-
some, resulting in the duplicated sites, attL and attR,
flanking the inserted prophage and ready for the reverse
reaction, excision of the phage from the chromosome. The
att regions vary widely in total length and in the extent of
the resulting duplication, which depends on the phage
and its specific integration site within a bacterial genome
(1,8–11). Phages often integrate into tRNA/tmRNA genes
but do not exclusively use those loci as the target site for
integration (12).
Identification of prophages in bacterial genomes is a

difficult process. Current methodology of automated
prophage identification usually relies on protein similarity
searches to identify clusters of protein-encoding genes that
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have some similarity to known or predicted phage genes.
Based on this approach, Phage_Finder (12) was one of the
first automated applications for detecting prophages.
Phage_Finder screens the bacterial genome with a fixed
window size of 10 Kb and searches [using hidden
Marokov models and BLAST (13)] for windows with at
least four hits against a collection of bacteriophage
proteins. These windows are then extended gene-by-gene
if the annotated gene belongs to tRNAs, integrase gene,
etc (12). ACLAME ProPhinder is another successful
phage-finding algorithm that combines protein similarity
and statistical methods (14,15). ProPhinder starts by
determining phage-like coding sequences in an input bac-
terial genome by BLASTP similarity analysis against the
ACLAME phage protein database. Then, it evaluates
each phage-like genomic segment for the presence of po-
tential prophages using statistical methods. Because these
applications use homology-based approaches, they are
limited to finding known prophages and it is difficult to
locate those prophages that are not similar to known
phages. An alternative approach for detecting prophages
(DRAD) that depends on the dinucleotide relative abun-
dance instead of sequence similarity was able to locate
some of those prophages found by Prophinder and
Phage_Finder as well as some novel prophages (16). No
single tool is able to find all prophages in all bacterial
genomes (16). This suggests that combining multiple
methods or different characteristics of prophages may
identify a larger set of prophages.
In this study, a bioinformatics tool (PhiSpy) was

developed for identifying prophages, which focuses on
the characteristics of prophages that exhibit no similarity
to sequenced genomes. In particular, five distinctive
similarity-agnostic characteristics were identified and their
relative capabilities to define prophages were tested in
the absence of homology to known phage proteins. These
characteristics are protein length, transcription strand dir-
ectionality, customized AT and GC skew, and the abun-
dance of unique phage DNA sequence words. Optimized
metrics were designed to quantify each of these character-
istics and the random forest classification algorithm was
used to predict prophages by ranking genomic regions
based on those characteristics. In addition to each of
thesemetrics, phiSpy also uses similarity-based approaches,
thus enabling a complete identification of prophages in a
genome. Finally, each predicted prophage region was
evaluated by the identification of duplicate att sites and
by phage protein similarity. PhiSpy found 94% of pro-
phages in 50 bacterial genomes with a 6% false-negative
rate and a 0.66% false-positive rate.

MATERIALS AND METHODS

Data collection

All bacterial genomes used in this analysis were retrieved
from the Phage Annotation Tools and Methods server
(Phantome server: http://www.phantome.org). As of
March 2010, the server contained 547 complete bacterial
genomes (at most 20 contigs) of which only 41 bacterial
genomes (Supplemental Table S1) had 190 manually

annotated prophages. All other lytic and lysogenic phage
genomes were also collected from the Phantome server.

Data analysis

PhiSpy publicly available at http://phispy.sourceforge.net/
was written in python and C++. It has four steps
(Supplemental Figure S1 is a flow chart of each step).
Each step is described below.

Calculation of different characteristics
The first step calculates different parameters for the whole
genome. The calculation of these parameters depends on a
group of genes rather than a single gene. Therefore, for a
complete genome, these parameters were computed using
a sliding window of n genes. The average number of genes
of the 190 known prophages is 39; so a window size of 40
genes was considered. The parameters are as follows:

Customized AT and GC skew. The customized AT/GC
skew was calculated by modifying the cumulative skew
calculation (17,18). For a group of consecutive genes,
the average skew of A, C, G and T were measured using
the following formula:
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where n is the number of genes, Ai is the number of A
nucleotide in the ith gene and so on. The customized AT
and GC skews (described under ‘Results’ section) were
developed and were calculated as follows:
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This customized version combines AT/GC and com-
pensates for local deviations in the composition due to,
for example, strand bias.

Difference in median protein length. The median (M) of
the lengths of all the proteins in a bacterial genome was
calculated. For a group of proteins in a given window, the
median protein length (m) was calculated and the
difference in median length was computed as (M�m).

Transcription strand orientation. For a given window
size, the genes were partitioned in such a way so that all
consecutive genes in a particular partition pointed in the
same direction. The sum of the number of genes in the two
largest partitions was taken for the window to maximize
the number of consecutive genes in the same direction.
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Abundance of phage words. A ‘word’ is defined as a set
of 12 consecutive base pairs. Each gene was split into
12 bp long non-overlapping words (four consecutive
amino acids each). A unique ‘phage word library’ was
built based on the 41 bacterial genomes that have well-
annotated prophages. The library was constructed as
follows:

Bacterial words, B={the ‘words’ of all bacterial genes
of those 41 genomes but not including genes in prophages}

Phage words, P={the ‘words’ of all prophage genes of
those 41 genomes}

Unique ‘phage word library’=P – B
To measure the abundance of phage ‘words’, Shannon’s

index (19,20) and the frequency of the presence of phage
words were calculated.

Shannon’s index was calculated by the following
formula:

H ¼ �
X

i
pi logðpiÞ

where pi is the frequency of those words which are
present in the ‘phage word library’. The frequency of
words (F) of a window was calculated by dividing the
number of available phage words with the total number
of words. For a given window, the abundance of phage
words is F/H.

Homology. In a window of 40 genes, if there are at least
10 genes whose functional description is in phage subsys-
tems (i.e. phage functional categories in the Phantome
SEED database: http://www.phantome.org/PhageSeed/
seedviewer.cgi), the window was considered a prophage
window otherwise it was considered a bacterial window.

Classification algorithm
The second step of PhiSpy is to classify a window as a
bacterial or a prophage window using random forests (21).
A random forest is a classification algorithm that consists
of multiple independent decision trees. The random forest
requires a training set with multiple variables to build
the forest of decision trees. In this case, there were five
parameters whose values vary among distantly related
genomes. If the similarities between two genomes were
evolutionary significant, then they were considered as
closely related genomes; otherwise, they were considered
as distantly related genomes [the SEED API was used to
determine relatedness (22)]. Therefore, for every group of
closely related genomes, a different training set was
constructed.

Training/test set. In the Phantome server, there were 547
complete bacterial genomes that had 20 contigs or fewer
(as of March 2010). From these 547 bacterial genomes, 19
groups of closely related genomes were constructed, where
each group has at least one genome from the set of 41
bacterial genomes with annotated prophages. These 19
groups included 114 out of 547 bacterial genomes. For
each group, one genome with manually annotated
prophages was used as the training set for the rest of
the genomes of that group (Table 1 and Supplemental
Table S2). The genomes that did not belong to any
group and had no manually annotated prophages were
tested using a universal generic training set (constructed

in the same way described above but using all 41 bacterial
genomes). The parameter ‘abundance of phage word’ was
ignored in the universal generic training set (Table 2).
The statistical software program, R (http://www

.r-project.org), was used to implement the random forest
(23). The random forest produces a rank for each window
of the whole genome that suggests whether the window
consists of bacterial or phage genes.

Processing the final rank for each gene
The third step of PhiSpy provides a prediction status—
either 0 (for non prophage genes) or 1 (for prophage
genes) for each gene in the genome. If the window size
was n, each gene contributed to 1 to n windows. Therefore,
the final rank of a particular gene was measured by taking
the average rank of the window in which the gene
participated. The prophage prediction status was
calculated from the final rank. If the final rank was
greater than half of the maximum rank of any gene in
the genome, then the gene was considered as a phage
gene; otherwise, it was considered as a bacterial gene.

Evaluation of the prediction
The final step is to define the att sites for the predicted
prophages and the overall evaluation of the prophages.
When phages integrate into their hosts’ genome, they are
usually bounded by two att sites—a short repeated
sequence that flanks the insertion site. To find this inser-
tion site, for each predicted prophage region (considered
an initial prediction), the following steps were followed.

(i) Extending the predicted region up to 2000 bp on
both sides.

(ii) Identifying all duplicate short DNA sequences in
that region.

(iii) Finding the repeated pair that has minimum
distance (<1000 bp) from either integrase/recombin-
ase or tRNA/tmRNA genes or both. If there are
multiple repeated pairs, the pair that covers the
largest region was considered as the potential att
sites. If no integrase/recombinase or tRNA/tmRNA
genes were found, then the initially predicted region
was considered.

After identifying the att sites, the next step is verifying the
att sites. If the att sites lie inside the initial prediction, the
number of phage-like proteins was counted for the two
gaps (between attL and the start of the initial prediction
and between attR and the end of the initial prediction). If
the function of one-quarter of the genes in those two gaps
belongs to phage subsystems, the initial prediction was
considered as the final prediction otherwise the region
covered by att sites was considered as the final prediction.
If the att sites were outside the initial prediction, the same
procedure was followed.
After verifying the att sites, the predicted prophages

were evaluated by checking the function of all proteins
in that region. If there are more than five proteins whose
functions belong to the phage subsystems or are unknown
and the number of phage-like/unknown proteins is at least
half of the total number of proteins in the predicted
region, then the region was considered as a potential
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prophage. However, if a group of proteins, whose func-
tions belong to the phage subsystems, was not considered
in the classification step as a probable prophage, then this
region was also considered as a potential prophage.

Calculation of false positives and false negatives
The manually curated phage subsystems were used to
evaluate the accuracy of the approach. A two-step
program was designed to automatically calculate the
error rate of the prophage prediction (for those genomes
which have no information about prophages in their
original genome analysis paper). In the first step of the
program, true positives (TP) and false positives (FP)
were predicted. If the predicted region consists of at
least six phage proteins or 50% of the proteins within
the predicted region belong to phage subsystems or are
unknown, the predicted region was considered a TP
prophage otherwise the region was considered a FP and
not a prophage (those limits were determined by empiric-
ally). Prophages considered as TPs were divided into two
groups: (i) known prophages—if the region contains
phage-like proteins; we considered that it would be
identified by similarity based approaches and therefore
denoted it as a ‘known’ and (ii) undefined prophages—if
the region has no phage-like protein; thus this would
unlikely to be called a prophage. In the second step of
the program, a region was considered as a false negative
(FN) if there were at least six consecutive genes, whose
functions belonged to the phage subsystems and the region
was unidentified as a potential prophage. However, hypo-
thetical proteins were ignored in this case, because the
presence of several hypothetical proteins was not sufficient
to predict a region as a prophage region.

RESULTS

Transcriptional strand orientation

The orientation of transcriptional units along the genome
highly correlates with the direction of replication (24).
Near the replication origin, genes are oriented in such a
way that the direction of transcription coincides with the
direction of replication (25). In a bacterial genome, which
typically has a single origin of replication within its
circular DNA, two replication forks can proceed inde-
pendently (26). Phage genes cluster along the genome as
they are organized into transcriptional units that are
co-regulated (27). This causes a large cluster of phage
genes to be oriented in the same direction, even if it
collides with DNA replication (27). To test this hypoth-
esis, 600 complete phage genomes (both lytic and
lysogenic) and 110 complete bacterial genomes were
analyzed. For both phage and bacterial genomes, the
longest stretch of consecutive genes in the same direction
was calculated as a percentage of the number of genes in
the genome (Supplemental Figure S2). Likewise, the
number of gene transcription strand changes was
calculated as a percentage of the number of genes in the
genome. For phage genomes, most of the consecutive
genes are encoded on the same strand (Figure 1). In
contrast, for bacterial genomes, the longest consecutive

cluster of genes (presumably a co-transcribed region) is a
small fraction of the genome, and genes frequently change
their transcriptional direction. For bacterial genomes,
these clusters of genes that have the same transcriptional
orientation are most likely operons although this cannot
be determined from the sequence alone. Other studies
have shown that the average bacterial operon size is
three genes (28) but the average phage operon size has
not been reported.

Customized AT and GC skew

Amino acid composition and codon usage
Several articles have discussed how the adaptation of
phages towards their hosts plays an important role in
viral evolution (29,30). By comparing the 190 prophages
in 41 bacterial genomes, it was apparent that the overall
amino acid usage in prophages and their hosts is very
similar (Figure 2), although for some amino acids
(notably Asp, Glu, Phe, Gly, Lys, Pro, Arg), codon
usage differs between prophages and their hosts’
genomes (Figure 3). For Lys and Phe, the frequency of
AAA (in Lys) and TTT (in Phe) is higher in prophages
than in bacteria, which is probably caused by the different
usage of nucleotides A and T in prophages. Similarly,
there are six codons that encode arginine—CGT, CGC,
CGA, CGG, AGA and AGG from which CGC is more
frequently used and AGA is less frequently used in
bacteria. Presumably, this skew maintains the balance of
G and C nucleotides in Arg codons.

The GC skew of bacterial chromosomes directly correl-
ates with the direction of replication (31). Local changes
or distortion in the cumulative skew distribution may
result from the insertion of foreign DNA into the chromo-
some (17). Therefore, customized AT and GC skew
profiles were designed. Unlike the conventional calcula-
tions of cumulative DNA skew (18), the customized
skew was designed not only for identifying local distor-
tions but also for quantifying the variation of the codon
usage in the window of genes.

The customized AT and GC skews (see ‘Materials and
Methods’ section) were calculated separately for 41 bac-
terial genomes and their 190 prophages. For all genomes
except Xylella fastidiosa, prophages have different AT and
GC skews (either positive or negative) than their hosts
(Figure 4). If there were no bias between the two DNA
strands for mutation or selection, the base composition
within each strand should be such that A=T and G=C
(32,33). This implies that the customized AT or GC skew
of the whole bacterial genome would be very small. In
contrast, it was hypothesized that the customized skew
of prophages should be different than that of the whole
bacterial genome. To test this hypothesis, two independent
samples were constructed. The first sample consisted of
the absolute difference between the customized AT/GC
skew of prophage genes and the customized AT/GC
skew of regions immediately flanking the prophage inser-
tion. The manually curated prophages were used to con-
struct the first sample, and so the sample size was 190. To
construct the second sample, 800 different bacterial
regions were randomly selected from the 41 bacterial
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genomes that have manually curated prophages. The
absolute differences of the customized AT/GC skew of
these regions and the customized AT/GC skew of the
flanking genes of these regions was calculated for the
second sample. A permutation test was used to analyze
whether these two samples are statistically different
(Supplemental Materials) (34). The customized AT skew
was significantly different at the 1% level (using both the
mean and the median of the sample) between prophage
genes and their flanking genes when compared to random
chromosomal segments and their flanking genes. The
customized GC skew was also significantly different
between these samples at the 1% level using the mean
value of the sample (but only at 5% level using the
median of the sample). Therefore, the calculation of the
customized AT/GC skew is useful to distinguish prophage
genes from the bacterial genome, but with very slightly
different confidence levels (Supplemental Figure S3).

Protein length

Anecdotal evidence from the study of mycobacterial
phages (35) suggests that phages typically have shorter
genes than bacterial genes. The reasons are not clear,
but phage genomes may enrich for smaller genes because
of selective constraints on genome size, i.e. for faster rep-
lication or more efficient packaging. The mean protein
length was calculated for 41 bacterial genomes and their
prophages (Figure 5) and the result supports the previous
study. However, our testing demonstrates that the median
length works better than the mean length for dis-
criminating prophage and bacterial genes. As each char-
acteristic was calculated for sliding window (of several
genes), using median length calculation, a sharp change
occurs at the beginning of a prophage region, but using
mean length, the change occurs gradually. The difference
between the median of all protein lengths in a genome and

Figure 1. Orientation of proteins in 110 bacterial genomes (triangles) and 600 phages (x). Most of the phages have a large group of proteins facing in
same direction and fewer proteins change their transcriptional directions. Bacteria, in contrast, cluster fewer proteins in the same direction and have
high number of transcriptional direction changes.

Figure 2. Amino acid distribution in the predicted proteins encoded in 41 bacterial genomes (filled square) and their 190 prophages (open square).
The amino acid utilization is similar for both but the standard deviation (vertical bars) is higher for prophages than for bacteria.
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the median length of phage proteins in that genome is
much higher than the same calculation for bacterial
proteins (Supplemental Figure S4).

Abundance of phage words

To find a signature pattern of prophages, the oligonucleo-
tide composition between prophages and their hosts was
analyzed for 190 prophages from 41 bacterial genomes.
Each gene was split into 12 bp non-overlapping words,
i.e. four non-overlapping codons (from empirical testing,
we found that nine bp sequences had too few combin-
ations to be discriminatory and 15 bp sequences were
too rare for accurate statistical modeling). For a DNA
sequence of length 12, there are 412 different possible com-
binations. However, only 27% of the words from these
combinations are present in our data set of 41 bacterial
genomes with prophages. In total, 25% of the words
(4 223 854) are present in bacterial genes, 0.65% of the
words (109 533) are present in phage genes and 1.34% of
the words (226 228) are common to both phage and bac-
terial genes. To verify whether these 0.65% words (phage
word library) represent the phageness and are uncommon
in bacterial genomes, Shannon’s index and the frequency
of the presence of these words (see ‘Materials and
Methods’ section) were calculated for 600 complete
phage genomes and 400 complete bacterial genomes.

Shannon’s index was used to measure the presence of
the different combination of phage words, while the fre-
quency measurement was used for the presence of phage
words. For all bacterial genomes, Shannon’s index (H) is
<1 and the frequency of phage words (F) is <6%. In
contrast, for phages, H varies from 0 to 5.5 and F varies
from 0% to 45% (Figure 6). The relation betweenH and F
was given by an equation F=8.57 H+0.047 for phages
(regression coefficient R2=0.995) and F=5.85 H+0.014
for bacterial genomes (regression coefficient R2=0.993).
The constant term for both equations is negligibly small,
and the difference between the two slopes is statistically
significant (P< 0.001; details in Supplemental Materials).
The abundance of phage words was calculated as the slope
(F/H) and the value distinguishes phages and bacterial
genomes (Figure 6). This indicates that the words from
the phage word library are more frequent in phage
genomes than bacterial genomes.

Importance of different characteristics

All the characteristics described above were used to
predict prophages in bacterial genomes. The importance
of each characteristic varies between different organisms
and depends on the training genomes (Table 2). If a
training genome and a test genome are closely related,
then for most cases, the abundance of phage words is

Figure 3. Frequency of codon usage in 41 bacterial genomes (filled square) with 190 prophages (open square). For some amino acids (notably, Asp,
Glu, Phe, Gly, Lys, Pro, Arg), codon usage differs between prophages and their hosts’ genomes.
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the most important characteristic. The directionality of
the transcriptional strand is a strong indicator in all
cases, although short phages are missed when this criter-
ion is used alone. Protein length gives better performance
in closely related genomes and can work for distantly
related genomes when the genome has similar protein
length with the training genome. The customized AT

and GC skew calculation works better for closely related
genomes and gives better performance in bacteria with
extreme AT or GC composition, rather those with ap-
proximately even distribution of bases. In general, identi-
fication of prophages, even without similarity, was
strongly assisted by training sets of closely related
genomes with well-characterized prophages.

Figure 4. (A) Customized AT skew for 41 complete bacterial genomes (filled square) and their prophages (open square). The x-axis is sorted
(ascending order) based on the genomes’ GC content as shown below the figure. (B) Customized GC skew for 41 complete bacterial genomes
(filled square) and their prophages (open square). The x-axis is sorted (ascending order) based on the genomes’ GC content.

Figure 5. Average length of bacterial proteins (filled square) and phage proteins (open square) for 41 bacterial genomes and their prophages. Phage
proteins are smaller than bacterial proteins. The x-axis is not sorted.

PAGE 7 OF 13 Nucleic Acids Research, 2012, Vol. 40, No. 16 e126



Performance analysis

PhiSpy was used to predict prophages in 95 complete
bacterial genomes using the training set of closely related
genomes and 412 complete bacterial genomes using a
universal generic training set (these predicted prophages
are accessible at http://www.phantome.org/Downloads/
Prophages/PhiSpy/ and Supplemental Table S3). A
detailed flow chart of the performance analysis is described
in the Supplemental Figure S5. In the 95 genomes, 320
potential prophages were identified. Among those, three
prophages (in Streptococcus agalactiae NEM316) had no
phage-like proteins and were considered as previously un-
defined prophages (Supplemental Table S2). For perform-
ance analysis, the predicted prophages were manually
checked (based on the phage subsystems) for 50 genomes
(out of the 95 genomes). Most of the genomes with
manually annotated prophages (1) were not used in the
performance analysis because these prophages were also
used to parameterize one of the five criteria (abundance
of phage words) developed to identify prophages, and so
the result will be biased. We did not test whether phiSpy
could detect those prophages used in training the classifier,

as that would be a biased assessment. However, to
compare with the published data, four genomes were con-
sidered which have manually annotated prophages (gray
colored genomes in Table 1). For Streptococcus pyogenes
M1 GAS and Streptococcus pyogenes MGAS315, the
identified prophages matched with the published data. In
Escherichia coli O157:H7 EDL933, 13 prophage regions
were found to contain 17 prophages by phiSpy although
18 prophages were found in the original analysis of this
genome (36). Of those 18 published prophages, there were
four instances where two adjacent prophages were merged
by phiSpy. The prophage that was not identified is a short
prophage (�8.26 kb) and only has four phage-like proteins.
The same reason goes for the unidentified prophage in
Neisseria meningitidis Z2491 (Table 1). The three uniden-
tified prophages in Pseudomonas fluorescens Pf-5 are de-
fective prophages (37).

To compare the performance of phiSpy with other
phage finding tools, phiSpy, phage_finder, prophinder
and the DRAD method were used to predict prophages
in 50 genomes (using default settings). For DRAD, no
prophages were identified. As shown in Table 1, phiSpy
identified 94% of the prophages with a 6% FN rate and a

Figure 6. Comparison of the abundance of phage words in bacteria (triangles) and phage genomes (x). (A) The Shannon’s index (H) versus the
frequency (F) of the presence of phage words for 600 complete phage genomes and 400 randomly chosen complete bacterial genomes. Both H and F
are very small for bacterial genomes compared to phage genomes. The relationship between H and F for phages is F=8.57 H+0.047 with a
regression coefficient R2=0.995 and for bacterial genome the relation is F=5.85 H+0.014 with a regression coefficient R2=0.993. (B) The ratio of
the frequency and Shannon’s index, i.e. F/H for 600 complete phage genomes and 400 randomly chosen complete bacterial genomes. There is a
statistically significant difference in F/H (abundance of phage words) between phages and bacteria.

e126 Nucleic Acids Research, 2012, Vol. 40, No. 16 PAGE 8 OF 13

http://www.phantome.org/Downloads/Prophages/PhiSpy/
http://www.phantome.org/Downloads/Prophages/PhiSpy/
http://nar.oxfordjournals.org/cgi/content/full/gks406/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks406/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks406/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks406/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks406/DC1


Table 1. Performance analysis of phiSpy and comparison with phage_finder and prophinder

Training organism Organism Ref.
Prophage

TP FP FN TP FP FN TP FP FN

Bacillus subtilis Bacillus licheniformis ATCC 14580 4 0 0 4 0 0 4 0 0
Brucella melitensis Brucella abortus biovar 1 str. 9-941 0 0 0 0 0 0 0 0 0
Escherichia coli K12 Escherichia coli APEC O1 10 (38) 10 0 0 10 0 0 10 0 0
Escherichia coli K12 Escherichia coli HS 3 (39) 2 0 1 3 1 0 3 1 0
Escherichia coli K12 Escherichia coli O157:H7 EDL933 18 (36) 17 0 1 15 0 3 18 0 0
Haemophilus influenzae Rd KW20 Haemophilus influenzae 86-028NP 3 0 0 3 0 0 3 0 0
Haemophilus influenzae Rd KW20 Haemophilus influenzae R2866 3 0 0 3 0 0 3 0 0
Lactococcus lactis subsp. lactis Il1403 Lactococcus lactis subsp. cremoris

SK11
5 0 0 4 0 1 4 0 1

Listeria innocua Listeria monocytogenes str. 4b F2365 0 (40) 0 0 0 0 0 0 0 1 0
Listeria innocua Listeria welshimeri serovar 6b str.

SLCC5334
1 (41) 1 0 0 1 0 0 1 1 0

Mycobacterium tuberculosis Mycobacterium avium subsp.
paratuberculosis str. k10

0 (42) 0 0 0 0 0 0 0 1 0

Mycobacterium tuberculosis Mycobacterium bovis AF2122/97 1 (43) 1 0 0 0 0 1 0 0 1
Mycobacterium tuberculosis Mycobacterium bovis BCG str.

Pasteur 1173P2
0 (44) 0 0 0 0 0 0 0 0 0

Mycobacterium tuberculosis Mycobacterium leprae TN 0 (45) 0 0 0 0 0 0 0 1 0
Neisseria meningitidis MC58 Neisseria gonorrhoeae FA 1090 1 0 1 2 0 0 2 0 0
Neisseria meningitidis MC58 Neisseria meningitidis Z2491 3 (46) 2 0 1 2 0 1 2 0 1
Pseudomonas aeruginosa PA01 Pseudomonas aeruginosa

UCBPP-PA14
1 0 0 0 0 1 1 3 0

Pseudomonas putida KT2440 Pseudomonas entomophila L48 1 0 0 1 0 0 1 0 0
Pseudomonas putida KT2440 Pseudomonas fluorescens Pf-5 6 (37) 3 0 3 2 1 4 4 0 2
Pseudomonas putida KT2440 Pseudomonas fluorescens PfO-1 2 (47) 1 0 1 1 0 1 1 1 1
Pseudomonas putida KT2440 Pseudomonas putida F1 2 0 0 2 0 0 2 1 0
Pseudomonas putida KT2440 Pseudomonas putida GB-1 3 0 0 3 0 0 3 0 0
Pseudomonas putida KT2440 Pseudomonas syringae pv. syringae

B728a
2 0 0 2 0 0 2 0 0

Escherichia coli K12 Salmonella bongori 12149 3 0 0 2 0 1 3 0 0
Escherichia coli K12 Salmonella enterica subsp. enterica

serovar Paratypi A
2 0 0 2 0 0 2 1 0

Escherichia coli K12 Salmonella enterica subsp. enterica
serovar Typhi Ty2

7 (48) 6 0 1 5 0 2 6 0 1

Shewanella oneidensis Shewanella frigidimarina NCIMB
400

1 0 0 1 0 0 1 0 0

Shewanella oneidensis Shewanella putrefaciens CN-32 0 0 0 0 0 0 0 0 0
Shewanella oneidensis Shewanella sp. MR-4 0 0 0 0 0 0 0 0 0
Shewanella oneidensis Shewanella sp. MR-7 1 0 0 1 0 0 1 0 0
Shewanella oneidensis Shewanella sp. W3-18-1 2 0 0 2 0 0 2 0 0
Staphylococcus aureus subsp. aureus

Mu50
Staphylococcus aureus subsp. aureus

MSSA476
2 (49) 2 0 0 2 0 0 2 0 0

Staphylococcus aureus subsp. aureus
Mu50

Staphylococcus aureus subsp. aureus
Mu3

3 0 0 3 0 0 3 1 0

Staphylococcus aureus subsp. aureus
Mu50

Staphylococcus aureus subsp. aureus
N315

1 (50) 1 1 0 1 0 0 1 1 0

Staphylococcus aureus subsp. aureus
Mu50

Staphylococcus aureus subsp. aureus
str. Newman

4 (51) 4 0 0 4 0 0 4 0 0

Staphylococcus aureus subsp. aureus
Mu50

Staphylococcus epidermidis RP62A 1 (50) 1 0 0 1 0 0 1 0 0

Streptococcus agalactiae 2603V/R Streptococcus agalactiae A909 3 0 0 2 0 1 2 1 1
Streptococcus pyogenes MGAS8232 Streptococcus pyogenes M1 GAS 4 (52) 4 0 0 3 0 1 3 0 1
Streptococcus pyogenes MGAS8232 Streptococcus pyogenes MGAS10270 5 (53) 5 0 0 3 0 2 3 0 2
Streptococcus pyogenes MGAS8232 Streptococcus pyogenes MGAS10750 4 (53) 4 0 0 3 0 1 3 0 1
Streptococcus pyogenes MGAS8232 Streptococcus pyogenes MGAS2096 2 (53) 2 0 0 2 0 0 2 0 0
Streptococcus pyogenes MGAS8232 Streptococcus pyogenes MGAS315 6 (53) 6 0 0 6 0 0 6 0 0
Streptococcus pyogenes MGAS8232 Streptococcus pyogenes MGAS5005 3 (53) 3 0 0 3 0 0 3 0 0
Streptococcus pyogenes MGAS8232 Streptococcus pyogenes MGAS6180 4 (53) 4 0 0 2 0 2 2 0 2
Streptococcus pyogenes MGAS8232 Streptococcus pyogenes MGAS9429 3 (53) 3 0 0 3 0 0 3 0 0
Streptococcus pyogenes MGAS8232 Streptococcus pyogenes SSI-1 6 (53) 6 0 0 6 0 0 6 0 0
Xanthomonas axonopodis pv. citri

str. 306
Xanthomonas oryzae pv. oryzae

KACC10331
1 (54) 1 0 0 1 0 0 1 1 0

Yersinia pestis CO92 Yersinia pestis Antiqua 4 0 0 2 0 2 3 1 1
Yersinia pestis CO92 Yersinia pestis Nepal516 4 0 0 3 0 1 4 1 0
Yersinia pestis CO92 Yersinia pestis Pestoides F 4 0 0 2 0 2 3 1 1

Total 141 1 9 123 2 27 134 18 16
FP% 0.66667 FP% 1.33333 FP% 12.0
FN% 6.0 FN% 18 FN% 11
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0.66% FP rate, whereas phage_finder predicted 82% of
the prophages with a 18% FN rate and a 1.33% FP rate
and prophinder identified 89% prophages with a 11% FN
rate and a 12% FP rate (the predicted prophages from
phiSpy, phage_finder and prophinder are available at
http://www.phantome.org/Downloads/Prophages/PhiSpy/
Manually_Verified/). Therefore, phiSpy can identify more
prophages than other phage finding tools with the lowest
FP rate and FN rate. For prophinder, most of the FP
prophages have a low score. Most of the prophages that
were not reported by phiSpy were mainly misclassified in
the evaluation step, because there were few proteins
annotated as phage proteins in those prophage regions.
Also, some comparatively short prophages which were
unidentified by phage_finder were also missed in our clas-
sification step but found in our evaluation step.
From 412 complete bacterial genomes where no closely

related genomes with manually annotated prophages were
available to construct training sets, 826 prophages were
predicted by phiSpy and 284 of those were considered
previously undefined, as they have no known phage
genes. Therefore, phiSpy can detect potentially new pro-
phages without relying on a training set. To check whether
other phage finding applications can identify the
prophages having hypothetical or unknown proteins,
phage_finder and prophinder were used to predict
prophages in those 412 bacterial genomes (Figure 7 and

Supplementary Table S3). Phage_finder identified 378
prophages where 22 of them are undefined prophages
and prophinder predicted 339 prophages where 43 of
them are undefined prophages (Figure 7). There are 198
known prophages and zero undefined prophages identified
in common between phiSpy, phage_phinder and
prophinder. There are 52 prophages predicted by both
prophinder and phiSpy but not predicted by phage_finder,
120 prophages predicted by both phiSpy and phage_finder
but not predicted by prophinder, and only two prophages
identified by both phage_finder and prophinder but not
predicted by phiSpy. Hence, phiSpy can predict more
known and undefined prophages compared to those
tools. The prediction of novel prophages in genomes is
only the first step: biological experiments are required to
investigate whether these phage-like regions are viable or
can be induced out of the chromosome. Recently, an
approach was described to test prophage viability in
Salmonella enterica that could be used to test some of
these prophages (55).

DISCUSSION

In this report, we describe the identification of prophage
regions within bacterial genome sequences. We have
advanced the current analysis of prophage identification
by introducing five distinctive characteristics of prophages

Figure 7. (A) Comparative analysis of all prophages identified in 412 complete bacterial genomes by phiSpy, phage_finder and prophinder.
(B) Comparative analysis of undefined prophages (no phage-like proteins) identified from 412 complete bacterial genomes.

Table 2. Effectiveness of different characteristics

Closely related genomesa Distantly related genomesb

GC/AT rich
genome

Moderate GC%
genome

GC/AT rich
genome

Moderate GC%
genome

Transcription strand Directionality +++ +++ + +
Protein length ++ ++ +/� +/�
Customized AT skew ++ + +/� �

Customized GC skew ++ + +/� �

Abundance of phage words ++ ++ � �

aThe effectiveness of different characteristics when the training genome and test genome are closely related.
bThe effectiveness of different characteristics when the training genome and test genome are distantly related.
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that do not depend on sequence similarities. These char-
acteristics were applied for the initial prediction of poten-
tial prophages, and each of these predictions was
evaluated by identifying the phage insertion point and
the similarity of phage proteins. PhiSpy was used to
predict prophages in 507 complete bacterial genomes
and a total of 1146 potential prophages were identified,
including 287 putative prophages that have no homology
to existing phages and may be novel mobile genetic
elements. However, the total number of identified pro-
phages might be different from the actually identified
prophages for two reasons: (i) if there are several short
prophage regions in close proximity then one large
phage region might be reported instead of several
shorter ones and (ii) if more than one integrase was
found in a single predicted prophage, more than one
prophage might be reported.

Despite the use of multiple distinctive parameters to
classify genes within a genomic region, the current
random forest protocol does not allow the accurate deter-
mination of the phage start and end. To address this issue,
we resorted to the analysis of phage attachment sites by
detecting direct or inverted repeats, which are common at
the insertion sites of most phages. As insertions are often
flanked by several repeated sequences, two criteria were
used to consider for all the candidate att sites: (i) proxim-
ity to tRNA or integrase genes, as phages can integrate
into tRNA/tmRNA genes and the integrase gene is often at
the end of the prophage (1) and (ii) inclusion of the
greatest number of proteins thought to be included in
phage subsystems, to provide further confidence in the
prediction of the att sites.

The classification step of phiSpy predicts prophage
regions more accurately if it is trained with genomes that
are closely related to the test genome because: (i) differ-
ences in the GC% between the training genome and the
test genome result in an incorrect weight for the customized
AT/GC skew; (ii) differences in the protein length between
the training genome and the test genome result in the
wrong protein length prediction parameters; (iii) different
operon sizes between the training genome and the test
genome result in incorrect transcriptional strand orienta-
tion parameters; and (iv) finally, if the test genome (or a
genome closely related to the test genome) was not included
in the phage word library, two circumstances might occur:
(a) some words in the phage library may match with the
test genome’s word and (b) the genome might have
some different prophages whose distinct words are absent
in the library, which leads to a bad prediction for the
calculation of the abundance of phage words.

The prophages not identified by PhiSpy in the classifi-
cation step, might fall into one of three categories: (i) if
there are few phage genes in a window whose character-
istics were dominated by the bacterial genes of that
window and those few phage genes were missed; (ii) if
several short prophages are located very close together
(this often happens in E coli or Salmonella), they were
identified either as one long prophage or some of them
were ignored in the processing of the final rank; (iii)
while processing the final rank, sometimes the prediction
of prophages was skewed leftwards by its windowing

process (which proceeds left to right). The reason for the
prophages identified in classification step but misclassified
in evolution step is either there are few proteins annotated
as phage proteins in the prophage regions or the function
of the phage proteins are not yet annotated into phage
subsystems.
Some of the characteristics of prophages used here have

been described in previous studies, but none of the
prophage identification tools applies them for identifying
novel prophages. In this article, we have combined
two approaches (similarity-based and composition-based
analysis) and come-up with an automated application that
can identify prophages with or without the homology to
known phage genes.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–3, Supplementary Figures 1–5
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