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Ensemble clustering can improve the generalization ability of a single clustering algorithm and generate a more robust clustering
result by integrating multiple base clusterings, so it becomes the focus of current clustering research. Ensemble clustering aims
at finding a consensus partition which agrees as much as possible with base clusterings. Genetic algorithm is a highly parallel,
stochastic, and adaptive search algorithm developed from the natural selection and evolutionary mechanism of biology. In this
paper, an improved genetic algorithm is designed by improving the coding of chromosome. A new membrane evolutionary
algorithm is constructed by using genetic mechanisms as evolution rules and combines with the communication mechanism of
cell-like P system. The proposed algorithm is used to optimize the base clusterings and find the optimal chromosome as the final
ensemble clustering result. The global optimization ability of the genetic algorithm and the rapid convergence of the membrane
systemmake membrane evolutionary algorithm perform better than several state-of-the-art techniques on six real-world UCI data
sets.

1. Introduction

Cluster analysis, also known as clustering, is a core technique
in machine learning and artificial intelligence [1], which is
a process of dividing a data object into subsets, each subset
is defined as a cluster, and objects in the same cluster are as
similar as possible, yet objects between two clusters are as
different as possible.

Ensemble clustering, also known as consensus clustering
or cluster aggregation, is simply reconciling clustering result
coming from different clustering algorithms [2] or different
initialization parameters run in the same algorithm [3]. The
purpose of ensemble clustering is to find a consensus result
which is as similar as possible to multiple existing base clus-
terings [4]. Compared with the single clustering algorithm,
the clustering ensemble algorithm has higher robustness
and stability, and the clustering results are insensitive to
noise, isolated points, and sampling changes, so ensemble
clustering has become a hotspot of cluster research in recent
years. Existing ensemble clustering research methods can be
divided into three categories, that is, the median partition

based methods [5, 6], the pairwise similarity based methods
[7–10], and the graph partitioning based methods [4, 11–13].
Among them, the median partition based methods aim to
find a clustering that maximizes the similarity between this
clustering and all of the base clusterings which can be viewed
as the median point of the median partition [5, 6, 14].

The clustering problem of finding the optimal solution
in many base clusterings becomes an optimization problem.
Due to the large space of all possible base clusterings, finding
the optimal solution is generally infeasible, and genetic algo-
rithm as a classic optimization problem solving method has
attracted my attention. Genetic algorithm is a randomized
search method which simulates the evolution of biological
laws [15]. It has inherent parallelism and global optimiza-
tion ability. Using probabilistic optimization method, it can
automatically obtain and guide the optimization search
space and adaptively adjust the search direction [16–18].
The ensemble clustering problem is generally regarded as
the median partition problem. In fact, the median partition
problem is NP-complete [5]. Genetic algorithm has been
proposed to find the approximative solution, in which the
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base clusterings are represented as chromosomes [5, 19].
In their study, chromosome is defined by base clustering
class labels; when the number of data objects is large, the
evolutionary efficiency is very low. In this paper, we improve
the coding of chromosomes, and then the improved genetic
algorithm is combined with membrane computing model for
ensemble clustering.

P system, also known as a novel membrane computing
model, is a biological computational model inspired by the
study of the living cells, initiated by Păun in 1998. It aims
to achieve calculation process by simulating the function
of living cells, tissues, and organs. Objects in this model,
which has complete computing capability, can evolve in a
maximal parallelism anddistributedmanner [20]. It is exactly
because of the maximum parallelism of membrane system
that realizes multiple cell object concurrent evolution to
search the optimal solution, which is similar to the effect of
multipopulation evolution, thus making better performance
of ensemble clustering. Membrane systems have the same
computing power as Turing machines and even do what
Turing machines can do more efficient [21, 22]. According
to the different organizational structure of the system, the
P system is divided into three categories: cell-like P system
[23], tissue-like P system [24], and neural-like P system [25].
Among them, the cell-like P system is the first membrane
model proposed by scholars, and the research of this P system
is also most complete [26–28]. Its basic components include
membrane structure, objects, and membrane rules. In the
cell-like P system, membranes divide the whole system into
different regions in which objects and rules exist; the objects
are usually represented by characters or strings of symbols;
the rules in each region are used to process the objects in the
corresponding membrane. Objects are operated by rules in
themembrane in a highly parallel mechanism [29–31], so that
the system can make ensemble clustering more efficient.

In this paper, we introduce three genetic operators (selec-
tion, crossover, and mutation) of the genetic mechanism
to realize the evolution of the chromosome and use the
communication mechanism of cell-like P system to realize
the sharing of outstanding objects between the membranes;
it accelerates the convergence of the algorithm.The proposed
algorithm is used to optimize the base clusterings and find the
optimal chromosome as the final ensemble clustering result.
In Section 2, we give basic concept of ensemble clustering and
genetic algorithm and cell-like P system. Section 3 describes
the improved GA-based consensus clustering algorithm.
Section 4 addresses proposed algorithm. Section 5 shows the
result of the experiment and finally we summarized the work
in this paper and then plan the future work in Section 6.

2. Preliminaries

In this section, we introduce some basic concepts of ensemble
clustering, genetic algorithm, and cell-like P system.

2.1. Ensemble Clustering. Ensemble clustering process is
divided into two steps; first we generate a set of different
base clusterings and then use consensus function to find a
consensus clustering result which agrees as much as possible

with existing base clusterings. In order to produce a number
of diversified base clusterings, from the perspective of the
algorithm, same clustering algorithm can be used with differ-
ent initialization parameters or the use of different clustering
algorithms. From the data set preprocessing point of view,
we can choose different attributes or different sample subsets
of data sets. The ensemble clustering process is shown as
Figure 1.

2.2. Genetic Algorithm. Genetic algorithm is one of the
intelligent optimization algorithms; it has the advantages of
fast search speed, good universality, and global search ability.

The basic steps of genetic algorithm are as follows:

(1) Select encoding mode; set the crossover rate, muta-
tion rate, and the evolution generation Gen = 0.

(2) The initial population is P(Gen).
(3) Calculate the fitness of each chromosome in the

population according to the objective function.
(4) Gen = Gen + 1.
(5) If Gen reaches the set condition, go to step (11);

otherwise go to step (6).
(6) Two chromosomes are selected from P(Gen − 1),

and the probability of selection was proportional to
chromosome’s fitness.

(7) Crossover is performed at a randomly determined
point of each pair selected chromosome at a preset
hybridization rate.

(8) A point is randomly selected from each selected chro-
mosome in accordance with the preselected mutation
rate, and the corresponding bit value is changed.

(9) Thenew generated chromosomes and those with high
fitness value in P(Gen − 1) are selected for evolution
to the next generation P(Gen).

(10) If termination condition is not satisfied, go to (3).
(11) The chromosome with the highest fitness in the pop-

ulation P(Gen) is the final result, and the algorithm
stops.

2.3. Cell-Like P System. P system is a distributed, maxi-
mal parallelism and nondeterministic computation model;
numerous studies [32] have shown that many simple mem-
brane computing models have the same compute power as
Turing machines in theory and may even have the potential
to go beyond the limitations of Turing machines.

Cell-like P system is the earliest membrane computing
model; three basic elements of the P system are membrane
structure, the multiple sets of objects, and evolutionary rules.
The data set is represented by strings or characters; objects
are controlled by this intramembrane evolution rule and
can pass through the membrane. P system is divided into
many regions by membranes; the outermost layer of the
membrane structure is called skin membrane. A plurality of
submembranes is contained in the skin membrane; the basic
membrane structure is shown as Figure 2.
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Figure 2: A basic membrane structure.

A cell-like P system of degree𝑚 is defined as follows:

∏ = (𝑉, 𝑇, 𝐶, 𝜇, 𝑤1, . . . , 𝑤𝑚, 𝑅1, . . . , 𝑅𝑚, 𝜌𝑖, 𝑖out) , (1)

where

(1) 𝑉 is an alphabet which includes all the objects of the
system.

(2) 𝑇 ⊆ 𝑉 is the output alphabet.
(3) 𝐶 ⊆ 𝑉 − 𝑇 is a set of catalysts whose elements

will not change during evolution and do not produce
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Figure 3: The generation of microcluster.

new characters, but they are necessary for some
evolutionary rules.

(4) 𝜇 is the membrane structure of degree𝑚.

(5) 𝑤1, . . . , 𝑤𝑚 ∈ 𝑉 are the multisets of objects in each
membrane region 𝜇.

(6) 𝑅𝑖 (1 < 𝑖 < 𝑚) are the revolutionary rules in
membrane 𝑖.

(7) 𝜌𝑖 is the precedence level of rule 𝑅𝑖.
(8) 𝑖out is the output of this P system.

In the cell-like P system, the basic evolutionary rule is the
two tuples (𝑢, V), which can also be expressed as 𝑢 → V, 𝑢
is the string of 𝑉, and V = V󸀠, or V = V󸀠𝛿, V󸀠 is the string in
arbitrary {𝑎here, 𝑎out, 𝑎in𝑗 | 𝑎 ∈ 𝑉, 1 < 𝑗 < 𝑚}, 𝑎here means the
object remains in membrane 𝑖, 𝑎out means the object will be
sent to the outer membrane, and 𝑎in𝑗 means the object will
be sent to the inner membrane 𝑗. If the evolutionary rule𝑅𝑖 contains 𝛿, this membrane is dissolved after the rule is
executed. P system starts with the initial state (represented by
the object multiset) and uses the evolutionary rule to process
and transport objects to complete the calculation.

3. Improved GA-Based Ensemble
Clustering Algorithm

3.1. Microcluster Based Chromosome Encoding. The fitness
function guides the evolution direction of the population.
Genetic algorithm is one of the solutions for clustering
problem. In the previous studies, in genetic-based ensemble
clustering algorithm, the class labels of base clusterings are
used as chromosome encoding. When the number of data
objects is large, it occupies a lot of space and the efficiency is
reduced. In addition, crossover andmutation operationsmay
result in the reassignment of the data points that have been
assigned in the same clusters. Specifically, if two objects are
divided into the same clusters among all the base clusterings,
we consider them fully similar, and they will be considered
to be one object that cannot be separated by crossover
and mutations operations. So in this paper, we improve the
coding of chromosome and proposed the microcluster based
chromosome encoding approach.

We introduce the concept of the microcluster for a more
compact representation of the base clusterings. Let 𝑋 ={𝑥1, . . . , 𝑥𝑖} be a date set of 𝑁 objects. We run 𝑟 times basic
clustering algorithms to partition 𝑋 to 𝑟 base clusterings∏ = {𝜋1, 𝜋2, . . . , 𝜋𝑟}, where 𝜋𝑘 is the 𝑘th base clustering.
Let Cls𝑘(𝑥𝑖) be the cluster in 𝜋𝑘 that contains object 𝑥𝑖. The
objects 𝑥𝑖 and 𝑥𝑗 are regarded as a microcluster if they are
divided into the same cluster for all of the 𝑟 base clusterings;
that is, for 𝑘 = 1, . . . , 𝑟, Cls𝑘(𝑥𝑖) = Cls𝑘(𝑥𝑗).

Given multiple base clusterings, we can obtain a set of𝑁
nonoverlapping microclusters shown in Figure 3, donated as

𝑌 = {𝑦1, . . . , 𝑦𝑁} . (2)

In Figure 3, we show the generation process of micro-
cluster, and we use a date set with seven objects as a sample.
Two base clusterings 𝜋1 and 𝜋2 are shown in (a) and (b),
which contain two clusters and three clusters; we overlap (a)
and (b) to get (c); then we generate a set of microclusters in
(d). The process of microclusters generation is as shown in
Figure 3. 𝑌 is a set of microclusters, and 𝑦𝑖 represents the 𝑖th
microclusters.

In this paper, we use the label of microcluster-based to
replace the label of original object to code the chromosome,
and a microcluster contains one or many objects that can
be regarded as an object in the process of chromosome
coding, which can reduce the length of the chromosome and
decrease the error caused by mutation and crossover and
thereby improve the accuracy of the algorithm. For example,
in Figure 3 the two base clusterings are coded with the class
label of objects; they are coded as 𝑎 = {1, 1, 1, 1, 2, 2, 2},𝑏 = {1, 1, 1, 2, 2, 2, 3} in previous approach; in this paper,
we can code them as 𝑎 = {1, 1, 2, 2}, 𝑏 = {1, 2, 2, 3};
each base clustering includes four microclusters and coded
value represents the cluster labels to which they belong.
This method makes the individual coding shorter and thus
reduces the search space, and meanwhile the individuals
considered to be fully similar in the base clusterings are no
longer separated.

3.2. Design of Fitness Function. The fitness function guides
the evolution direction of the population; the solution of the
clustering problem is to find a clustering result that makes the
objects in the same cluster have the largest similarity, but the
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largest difference between two clusters. So in this paper we
use a clustering evaluation method OCQ proposed in [33] as
fitness function. The definition of OCQ is as follows:

OCQ (𝛽) = 1 − (𝛽 ∗ Cmp + (1 − 𝛽) ∗ Sep) , (3)

where Cmp represents cluster compactness and Sep indicates
the cluster’s disposability. 𝛽 is the balance coefficient and 0 <𝛽 < 1, which is used to weight the proportion of the Cmp and
Sep, different data sets with different 𝛽 value. Cmp is defined
as follows:

Cmp = 1𝐶
𝐶∑
𝑖=1

Dev (𝑐𝑖)
Dev (𝐷) , (4)

where 𝐶 is the number of clusters, Dev(𝑐𝑖) is the variance of𝑐𝑖, and Dev(𝐷) is the variance of class 𝐷. Dev(𝐷) is defined
as follows:

Dev (𝑋) = √ 1𝑁
𝑁∑
𝑖=1

𝑑2 (𝑥𝑖, 𝑥), (5)

where 𝑁 is the number of objects in data set 𝑋, 𝑥 =(1/𝑁)∑𝑁𝑖=1 𝑥𝑖, and 𝑑(𝑥𝑖, 𝑥𝑗) is the distance between 𝑥𝑖 and 𝑥𝑗.
The smaller the value ofDev, the better of the clustering result.
Sep is defined as follows:

Sep = 1𝐶 (𝐶 − 1)
𝐶∑
𝑖=1

𝐶∑
𝑗=1,𝑗 ̸=𝑖

exp[[−
𝑑2 (𝑥𝑐𝑖 , 𝑥𝑐𝑗)2𝛿2 ]] , (6)

where 𝛿 is the Gaussian constant, in order to facilitate the
calculation, usually 2𝛿2 = 1, and 𝑥𝑐𝑖 , and 𝑥𝑐𝑗 are the center
of clusters 𝐶𝑖 and 𝐶𝑗. The larger the value of OCQ, the better
of the clustering result.

3.3. Elite Selection Function. In this section, we introduce an
elite selection strategy to preserve the optimal individual in
the evolution of the population. In each generation, a certain
number of high fitness chromosomes are selected directly for
evolution to the next generation in order to save excellent
genes. In addition to the fact that elite strategy improves the
evolution efficiency and optimization ability of the proposed
algorithm, the ratio 𝑝 of the chromosomes that are directly
selected for evolution to the next generation increases linearly
with the number of iterations 𝑡:

𝑝 = 𝑝min + (𝑝max − 𝑝min) 𝑡 − 1𝑇 − 1 , (7)

where 𝑝max and 𝑝min are the maximum and minimum
selection ratio; when the evolution algebra increases, the
proportion of excellent genes in the population also increases,
sowe design this elite selection function to let the ratio𝑝 grow
with 𝑡. Experiments show that when the size is 2%∼10% of the
population, the evolution result is the best, and 𝑝max and 𝑝min
are set as 0.1 and 0.02, respectively.

4. The Proposed GA-Based
Membrane Evolutionary Algorithm

4.1. The Evolution Rules and the Communication Rules of
Cell-Like P System. In cell-like P system, membrane rules
mainly include two types of rules, evolutionary rules and
communication rules. Evolutionary rules are used to promote
the evolution of chromosome. Communication rules are
used to communication and share information between two
regions.

In this paper, the evolutionary rules contain 𝐾-means
rules, AL, SL, and CL rules [14], selection rules, crossover
rules, and mutation rules.𝐾-means rules are used to generate the base clusterings;
the detailed description of 𝐾-means rules is as follows.

Given a data set 𝑥1, 𝑥2, . . . , 𝑥𝑛, and a set of center of
cluster 𝑚1, 𝑚2, . . . , 𝑚𝑘, if the distance between 𝑥𝑖 and 𝑚𝑗 is
less than the distance between 𝑥𝑖 and𝑚𝑖, the object 𝑥𝑖 will be
reassigned to 𝐶𝑗:󵄨󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑚𝑗󵄨󵄨󵄨󵄨󵄨 < 󵄨󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑚𝑝󵄨󵄨󵄨󵄨󵄨 , 𝑝, 𝑗 = 1, . . . , 𝑘, 𝑖 ̸= 𝑗. (8)

When all the points are assigned to the corresponding
clusters, the new center of cluster corresponding to each
cluster is the average value of the points in this cluster:

𝑚∗𝑗 = 1𝑛𝑗 ∑𝑥𝑖∈𝐶𝑗𝑥𝑖, 𝑗 = 1, . . . , 𝑘, (9)

where 𝑚∗𝑗 is the center of the new cluster 𝐶𝑗 and 𝑛𝑗 is the
number of objects belonging to 𝐶𝑗.

For AL, SL, and CL rules, two partitions with the highest
similarity aremerged into a new bigger partition and thus the
number of objects will finally reduce to one.The similarity of
two partitionswill be computed by thementioned three rules.
Let 𝑃(𝑡) = {𝑃(𝑡)1 , . . . , 𝑃(𝑡)

|𝑃(𝑡)|
} be the set of merged partition in

the 𝑡-step for 𝑡 = 1, 2, . . . , 𝑁. 𝑁 is the number of objects of
date set. |𝑃(𝑡)| represents the number of partitions in𝑃(𝑡). Each
partition contains one ormoremicroclusters. Let 𝑦𝑖 represent
a microcluster; we write 𝑦𝑖 ∈ 𝑃(𝑡)𝑗 if microcluster belongs to𝑃(𝑡)𝑗 . Let 𝑆(𝑡) = {𝑠(𝑡)𝑖𝑗 }|𝑃(𝑡)|∗|𝑃(𝑡)|; the similaritymatrix for𝑃(𝑡), AL,
SL, and CL rules can be operated as follows:

𝑠(𝑡)𝑖𝑗

=
{{{{{{{{{{{{{{{{{{{

1󵄨󵄨󵄨󵄨󵄨𝑃(𝑡)𝑖 󵄨󵄨󵄨󵄨󵄨 ⋅ 󵄨󵄨󵄨󵄨󵄨𝑝(𝑡)𝑗 󵄨󵄨󵄨󵄨󵄨 ∑
𝑦𝑘∈𝑃
(𝑡)
𝑖 ,𝑦𝑙∈𝑃

(𝑡)
𝑗

Sim𝑘𝑙 If Method AL,
∑

𝑦𝑘∈𝑃
(𝑡)
𝑖 ,𝑦𝑙∈𝑃

(𝑡)
𝑗

Sim𝑘𝑙 If Method CL,

max
𝑦𝑘∈𝑃
(𝑡)
𝑖 ,𝑦𝑙∈𝑃

(𝑡)
𝑗

Sim𝑘𝑙 If Method SL,

(10)

where Sim𝑘𝑙 is the Cosine similarity and |𝑃(𝑡)𝑖 | is the number
of microclusters of 𝑃(𝑡)𝑖 .

Selection rules imitate the nature laws of natural selection,
which are used to select objects from population to evolution
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to the next generation. In this paper, we calculate the fitness
value of each chromosome, and then the selection probability
of each chromosome is obtained based on the fitness value.
Each chromosome is selected to do crossover and mutation
to improve the fitness. And then a certain percentage of
chromosomes with high fitness are chosen as candidate
set evolution to the next generation. We use the usual
rotating wheel method to define selection rule; the selection
probability formula is as follows:

𝜃 (𝑖) = 𝑓 (𝑖)∑𝑟𝑖=1 𝑓 (𝑖) , (11)

where 𝑟 is the number of the chromosomes and 𝑓(𝑖) is the
fitness value of each individual.

In the evolutionary process, the algorithm often falls into
the local optimum, crossover rate and mutation rate are
increased to improve the global convergence [34], and the
crossover function is as follows:

𝑃𝑐 (Gen){{{
𝑃𝑐temp

, 𝑃𝑐temp
> 𝑃𝑐min𝑃𝑐min

, others, (12)

where 𝑃𝑐temp
= 𝑃𝑐max

∗ 2(−Gen/MaxGen), 𝑃𝑐max
is predefined

maximum crossover rate, and 𝑃𝑐min
is theminimum crossover

rate.
The mutation function is as follows:

𝑃𝑚 (Gen) = {{{
𝑃𝑚temp

, 𝑃𝑚temp
> 𝑃𝑚min𝑃𝑚min

, others, (13)

where 𝑃𝑚(Gen) = 1/(1 + Gen/MaxGen) ∗ 𝑃𝑚max
,𝑃𝑚max

, and𝑃𝑚min
are predefined maximum mutation rate and minimum

mutation rate.
The crossover rule uses the single-point crossover in

which the intersection is according to the crossover proba-
bility (12). The single-point mutation is used to realize the
mutations of objects and produce new individuals. Since the
mutation operation has a certain degree of blindness, we
set the mutation probability very small, and the mutation
probability is calculated as (13). If 𝑚 is a mutation point
determined by the mutation function 𝑝𝑚, its value becomes𝑚󸀠 = random(1, 𝐶), which means a random positive integer
between (1, 𝐶), and 𝐶 is the maximum value of the present
mutation individual.

Communication Rules. Communication rules enable the
exchange of information between two membranes, share
excellent objects, and promote the evolution of the object set
in each membrane.The form of the communication rule is as
follows:

(𝑖, 𝜇
V
, 𝑗) . (14)

This communication rule means object 𝜇 in membrane 𝑖
is exchanged with the object V in membrane 𝑗; if V = 𝜆means
V is null, 𝜇 is transported to V, and vice versa. In this paper,
we define a copy of object 𝜇 that still remains in membrane 𝑖
after 𝜇 is transported to V.

32
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Figure 4: The membrane structure for the GMEAEC.

4.2. Description of the Proposed GA-Based Membrane Evolu-
tionary Algorithm. In this section, we design the membrane
structure for proposed algorithm which is shortly called
GMEAECanddescript the algorithmprocess.Themembrane
structure is as shown in Figure 4.

This cell-like P system is defined as follows:

∏ = (𝑤1, . . . , 𝑤𝑞, 𝑅1, . . . , 𝑅𝑞−1, 𝑅𝑞, 𝑖out) , (15)

where

(1) 𝑤1 represents the initial objects inmembrane 1; initial
objects are the data to be clustered. 𝑤2, . . . , 𝑤𝑞−1, are
the base clusterings randomly selected from mem-
brane 1, 𝑤𝑞 are elite individuals selected from 𝑞 −2 subpopulations according to the probability (7),
and 𝑤0 is the best chromosomes in each generation
preserved in membrane 0.

(2) 𝑅1, . . . , 𝑅𝑞−1 are the evolution rules in membrane1, . . . , 𝑞 − 1, 𝑅1 are the evolution rules which are used
to generate base clusterings including𝐾-means rules,
and AL, CL, and SL rules, 𝑅2, . . . , 𝑅𝑞−1, include select
rule, crossover rule, mutation rule, and communica-
tion rule in membrane 2, . . . , 𝑞 − 1, which are used
to achieve the evolution of the population, while 𝑅𝑞
is the rule in membrane 𝑞 that is the communication
rule.

(3) 𝑖out is the output result in membrane 0.

The description of the algorithm process is as follows:

(1) Run base clusterings algorithm 𝑟 times in membrane
1 to construct a pool of base clusterings and then
generate microcluster representation.

(2) Randomly select the same number of base clusterings
from membrane 1 to membrane 2, . . . , 𝑞 − 1, respec-
tively, to construct multiple population.

(3) Initialize the population; each chromosome is coded
by a base clustering represented by the microcluster-
based label.

(4) Calculate the fitness of the individuals according to
the fitness function.

(5) Transport 𝑚-elite individuals of each subpopulation
to membrane 𝑞 to construct (𝑞 − 2)𝑚 elite individuals
and simultaneously original populations keep a copy.
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(6) Use selection rules to select the chromosomes accord-
ing to the predefined probability, and use crossover
rule and mutation rule to promote chromosomes
evolution; the population in each membrane evolves
in parallel.

(7) Sort the fitness of the (𝑞 − 2) 𝑚 chromosomes in the
membrane 𝑞 and then select the top-𝑚 chromosomes
and transport them to membrane 2, . . . , 𝑞 − 1 to
replace the𝑚 low fitness chromosomes.

(8) Transport the best chromosome to membrane 0; if its
fitness value is larger than the present one, replace it,
or else abandon it.

(9) If the condition is satisfied, the algorithm ends, and
we obtain the highest fitness chromosome; then map
microclusters back to objects and output the objects
in the membrane 0, or else repeat (4)–(9).

The overall process of our approach is shown in Figure 5.
We first use 𝐾-means and three agglomerative methods
to generate base clusterings pool, and then we assign the
data objects to the microcluster, after that we code the
chromosome with label of microcluster-based introduced in
Section 3.1. The evolutionary mechanism of GA will find the
final ensemble result.

The membrane evolutionary algorithm takes the advan-
tage of the maximum parallelism of membrane systems and
global search optimization ability of genetic algorithm; in the
base clusterings generation step, we use four algorithms com-
bined with different initial parameters to obtain diversified
base clustering which make the ensemble result share the
information of many single clustering results and integrate
them to get a better ensemble clustering result than any one
of them. In the ensemble clustering step, the result is obtained
by the membrane evolutionary algorithm which uses the
improved genetic algorithm; the improved encoding of the
chromosome regards the objects assigned in the same clusters
for all base clustering as a microcluster, so that they will
not be separated by crossover and mutation operation which
increases the accuracy of the clustering. In addition, the
elite selection strategy and parallelism of membrane systems
make the 𝑚-elite chromosomes be generated synchronously
in each membrane and the 𝑚-elite chromosomes among
them are transported to all membranes to guide the evolution
of the next generation. All of the above make the GMEAEC
performs better than other algorithms.

4.3. Time Complexity Analysis. In this section, the time cost
in the worst case of GMEAEC is analyzed. In the base clus-
tering generation step, we put the objects in membrane 1 and
use 𝐾-means and three agglomerative clustering methods
with different initial parameters to generate base clusterings.
Let dataset 𝐷 have 𝑛 records; each record has 𝑚 attributes;
we partition the date set to 𝑘 clusters; the computational
complexity of𝐾-means is𝑂(𝑘𝑛𝑡ℎ𝑚), where 𝑡 is the number of
iterations for the convergence of 𝐾-mean clustering and ℎ is
the number of base clusterings generated by 𝐾-means. The
computational complexity of three agglomerative methods
is 𝑂(ℎ(𝑛 − 𝑘)𝑚𝑛𝑛), and ℎ is the number of base clusterings

Run K-means and three hierarchical clustering
algorithms on date sets

Generate base clusterings pool

Microcluster representation

Calculate the fitness of the population according
to the fitness function

Yes

Coding chromosomes and initial
population

Mutation operation Crossover operation Elite selection

Generate next generation of population

Whether up to the max generation or 
algorithm convergence

Select the optimal individual as the 
ensemble result

No

Figure 5: Flow diagram of the proposed approach.

generated by each agglomerative method. After generating
base clusterings pool, we can compute microclusters, and
the complexity of the microclusters generation is 𝑂(𝑛); the
complexity of the integration step is 𝑂(MaxGen ∗ ℎ𝑘𝑛𝑚),
where MaxGen is the number of iterations for convergence
of genetic algorithm. As a result, the complexity of the base
clustering generation is𝑂(𝑘𝑛𝑡ℎ𝑚)+𝑂(ℎ(𝑛−𝑘)𝑚𝑛𝑛), and the
complexity of the ensemble clustering step is 𝑂(MaxGen ∗ℎ𝑘𝑛𝑚) + 𝑂(𝑛) = 𝑂(MaxGen ∗ ℎ𝑘𝑛𝑚).
5. Experiment Analysis

5.1. Experimental Setup

Experimental Data. We use six real-world data sets of UC
Irvine Machine Learning Repository [35] in our experiment.
Table 1 shows some important characteristics of these data
sets.

Validation Measure. It is used to measure the accuracy of
the proposed algorithm; in this paper, we use normalized
rand index (𝑅𝑛) [36] since the cluster label of all data sets
is known. Its value usually ranges between [0, 1]. The higher
value means the high accuracy of the clustering result.
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Table 1: Some characteristics of data sets.

Data sets Source Objects Attributes Classes
Balance UCI 625 4 2
Iris UCI 150 4 3
Pima UCI 768 8 2
Wine UCI 178 13 3
Magic04 UCI 19020 10 2
Segmentation UCI 2100 19 7

Base Clusterings Generation. It has been shown that ensem-
ble clustering will be more effective when the base clus-
terings errors are different; that is, diversity among the
base clusterings will enhance the ensemble result. A single
clustering algorithm over many iterations usually generates
similar result, so for each dataset we use 𝐾-means and
three agglomerative clustering methods, namely, average-
linkage (AL), complete-linkage (CL), and single-linkage (SL)
to generate base clusterings pool, with initial number of
clusters 𝑘 randomly within [𝐾, 𝑏]; 𝐾 is the true number of
clusters = min{√𝑁/2}, and 𝑁 is the number of the data
sets. By running 𝐾-means and AL, CL, and SL 50 times,
respectively, a pool of 200 base clusterings is obtained for each
benchmark dataset, for each run of the proposed algorithm
and comparison ensemble algorithm we randomly select 𝑀
base clusterings for ensemble. To rule out the factor of getting
lucky occasionally, for each𝑀we repeat selectionmany times
for each experiment and get the average performance of all
ensemblemethods. Unless speciallymentioned, the ensemble
size is𝑀 = 10 in our experiment.

Parameter Setting. The maximum iterate times of the pro-
posed algorithm are set according to the dataset size. The
crossover rate and mutation rate are set as follows: 𝑃𝑐max

and𝑃𝑐min
are 0.3 and 0.1 𝑃𝑚max

and 𝑃𝑚min
are 0.09 and 0.01. We

design the crossover rate and mutation rate associated with
the evolution algebra to improve the global convergence of
the proposed algorithm. The number of the membranes is𝑞 = 12, among which membrane 0 is used for saving the
optimal solution and membrane 1 is used to generate base
clustering pool, membrane 𝑞 is used for preserving the better
individual in each population, and othermembranes are used
for the evolution of individuals in a parallel way; among them
the top-𝑚 individuals with high fitness will directly evolve
to the next generation. Evolution generation is various in
different data sets for the best result.

5.2. Comparison against Base Clusterings. The purpose of the
ensemble clustering is to generate amore accuracy and robust
clustering result than base clusterings algorithm by integrat-
ing multiple base clusterings results to a consensus one; in
this section, we compare our proposed algorithm GAEAEC
against the base clusterings to prove the effectiveness of the
algorithm. The average value of 𝑅𝑛 scores is obtained over
100 times runs for each algorithm. As shown in Figure 6, the
proposed GMEAEC algorithm outperforms base clusterings
algorithms on all of the given data sets.

Balance Iris Pima Wine Magic04 Seg

Base clusterings
GMEAEC

0

0.1

0.2
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0.4

0.5
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0.7

0.8

0.9

1
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n

Figure 6: GMEAEC versus base clusterings.

5.3. Comparison against Other Ensemble Clustering Approach-
es. In this section, we evaluate the effectiveness and robust-
ness of the proposed algorithm by comparing it with five
other ensemble clustering approaches, five types of ensem-
ble clustering method, namely, 𝐾-means based consensus
clustering (KCC) [37]; a GA-based ensemble clustering algo-
rithm [19] which is shortly called CEGA; and three graph
partitioning algorithms, CSPA, HGPA, andMCLA [4] which
are employed for the comparison purpose. KCC is a method
which transforms the consensus clustering to 𝐾-means clus-
tering by the contingency matrix and binary data set. CEGA
is aGA-based ensemble clusteringmethodwhich encodes the
chromosomewith the class label of the base clusterings. CSPA
is one of the most primitive ensemble clustering methods;
if the objects are divided into the same cluster for all base
clusterings, then they are considered to be completely similar;
if not they are dissimilar, and the similarity of two objects is
defied by the probability of dividing into the same clusters.
Based on the above description, the entire 𝑛∗𝑛matrix 𝑆 can be
computed in one sparse matrix multiplication 𝑆 = 𝑇𝑖𝑗/𝑟, 𝑟 is
the number of base clusterings,𝑇𝑖𝑗 is the times of objects 𝑖, and𝑗 belongs to the same clusters.The graph partitioningmethod
METIS algorithm [38] is used to partition the similarity
graph (vertex = object, edge weight = similarity). HGPA is
a hypergraph partitioning algorithm, each data is regarded as
vertices with the same weight, and each cluster is considered
as a hyperedge. The ensemble clustering is converted into a
hypergraph partitioning by cutting the graph into 𝑘 partitions
with the minimal cut. The idea of MCLA is to group the
hyperedges which is represented by clusters and divide the
object to the hyperedges in which it participates most times.

We run the proposed GMEAEC algorithm and another
ensemble clustering algorithm 100 times on each data set;
for each run, the base clusterings are randomly selected
from the base clusterings pool, and the number of the base
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Figure 7: The number of times each approach is ranked in the top (bottom) 3 across Table 2.

Table 2: Average performances (in terms of 𝑅𝑛) over 100 runs by different ensemble clustering methods (the three highest scores of AVE and
the three lowest scores of Var in each column are highlighted in bold).

Method Balance Iris Pima
MAX MIN AVE VAR MAX MIN AVE VAR MAX MIN AVE VAR

GMEAEC 0.723 0.621 0.679 0.00133 0.917 0.877 0.881 0.00099 0.833 0.733 0.820 0.00254
CEGA 0.699 0.542 0.622 0.00544 0.937 0.755 0.920 0.00756 0.725 0.633 0.676 0.00375
CSPA 0.711 0.520 0.610 0.00989 0.920 0.794 0.879 0.00482 0.820 0.712 0.787 0.00543
HGPA 0.655 0.578 0.610 0.00067 0.842 0.702 0.815 0.00082 0.830 0.648 0.778 0.01211
MCLA 0.633 0.456 0.594 0.01012 0.830 0.768 0.791 0.00101 0.820 0.662 0.738 0.00378
KCC 0.694 0.377 0.544 0.01982 0.878 0.544 0.742 0.01351 0.735 0.698 0.716 0.00012

Method Wine Magic04 Seg
MAX MIN AVE VAR MAX MIN AVE VAR MAX MIN AVE VAR

GMEAEC 0.952 0.878 0.941 0.00134 0.783 0.655 0.731 0.00134 0.751 0.615 0.707 0.00589
CEGA 0.930 0.840 0.920 0.00252 0.712 0.542 0.677 0.00942 0.659 0.421 0.558 0.00983
CSPA 0.723 0.553 0.693 0.00142 0.824 0.554 0.743 0.01564 0.456 0.235 0.373 0.00873
HGPA 0.830 0.662 0.759 0.00756 0.577 0.432 0.520 0.00546 0.658 0.423 0.504 0.01425
MCLA 0.879 0.320 0.776 0.09844 0.654 0.344 0.526 0.02121 0.778 0.684 0.717 0.00178
KCC 0.886 0.226 0.717 0.11254 0.756 0.498 0.624 0.00899 0.755 0.524 0.633 0.00997

clusterings is preset. More detail about it and parameter
setting is descripted in Section 5.1. We show the statistics
of the max, min, average (ave), and variance (var) of 𝑅𝑛
value in Table 2; we use two criteria, average value and
variance, to evaluate the accuracy and the robustness of
the proposed algorithm. We can see from Table 2 that the
top 3 highest scores of average value and the bottom 3
scores of variance are highlighted in bold. The proposed
algorithm achieves the highest scores for balance, pima,
and wine datasets, both average value and maximum value
in terms of 𝑅𝑛 for 100 runs, while the variance values for
wine and magic04 datasets are the lowest. To compare the
performance of these approaches in a clear way, Figure 7(a)
shows the number of each approach to be ranked in the top
3 of the average value which indicates the accuracy of the
algorithm. Figure 7(b) shows the number of each approach
to be ranked in the bottom 3 of the variance value which
illustrates the stability and robustness of the algorithm. The
proposed algorithm achieves the overall best performance in
both clustering accuracy stability and robustness compared
to other ensemble clustering approaches for all the datasets.

5.4. Robustness to Ensemble Size 𝑀. In this section, we
further evaluate the robustness of GMEAEC by varying the
size of base clusterings. For each dataset, we, respectively,
select 10, 20, 30, 40, and 50 base clusterings for clustering
ensemble. For each 𝑀, we run the GMEAEC and other
ensemble clustering algorithms for 10 times and report the
average scores in Figure 8. We can see from Figure 8 that
the GMEAEC performance is nearly consistently the best
for all ensemble sizes 𝑀 and significantly better than other
ensemble methods for all the dataset. Especially for balance
dataset, the GMEAEC appears obviously superior on various
ensemble sizes than other methods, which demonstrates the
advantage of our method in robustness for all dataset and
ensemble size.

6. Concluding Remarks

In this paper, we improve coding of chromosomes in the
previous study; a microcluster-based chromosome encoding
is designed to improve the accuracy of ensemble cluster-
ing. The improved genetic algorithm contains select rule,
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Figure 8: The average performances over 10 runs on different methods by varying ensemble sizes𝑀.

crossover rules, and mutation rules. These rules are used as
evolution rules to combine with the communication mech-
anism of cell-like P system. This novel GA-based membrane
evolution algorithm is proposed for ensemble clustering.The
global convergence of the proposed algorithm and parallel
computing ability of cell-like P system make it show better
performance in six real-world data sets. In the future, we
will combine the GA with other evolutionary algorithms and
other membrane systems to improve accuracy and efficiency
of ensemble clustering.
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