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Existing assessments of the ecosystem service of pollination have been largely restricted
to diurnal insects, with a particular focus on generalist foragers such as wild and honey
bees. As knowledge of how these plant-pollinator systems function, their relevance to
food security and biodiversity, and the fragility of these mutually beneficial interactions
increases, attention is diverting to other, less well-studied pollinator groups. One such
group are those that forage at night. In this review, we document evidence that nocturnal
species are providers of pollination services (including pollination of economically valu-
able and culturally important crops, as well as wild plants of conservation concern), but
highlight how little is known about the scale of such services. We discuss the primary
mechanisms involved in night-time communication between plants and insect pollen-
vectors, including floral scent, visual cues (and associated specialized visual systems),
and thermogenic sensitivity (associated with thermogenic flowers). We highlight that
these mechanisms are vulnerable to direct and indirect disruption by a range of anthropo-
genic drivers of environmental change, including air and soil pollution, artificial light at
night, and climate change. Lastly, we highlight a number of directions for future research
that will be important if nocturnal pollination services are to be fully understood and
ultimately conserved.

Introduction
The close co-evolution of plants and pollinators has fascinated biologists for well over a century,
evident by the extent and depth to which key pollinating species and their flower-visiting interactions
have been investigated and reported [1]. The ability of plants to attract, reward and exploit effective
pollinators is key in the diversification of floral traits to maximize reproductive success and maintain
gene flow [2]. Nocturnal pollination is arguably one of the most intriguing facets of this discipline, yet
it remains little explored. This is surprising as plants require sophisticated adaptations to ensure that
floral signals are detectable to nocturnal pollen-vectors [3]. There are numerous benefits for nocturnal
functioning for both partner organisms. For example, pollinators are able to feed in relative safety in
absence of diurnal predators, while avoiding direct competition from most bees for pollen and nectar
[4]. Plant partners can reduce their visibility to foraging antagonists, while increasing pollination effi-
ciency and/or reducing the risk of heterospecific pollen interference (given that generalist diurnal pol-
linators, e.g. bees, may visit other sympatric flowering plants over the course of their lifetime [5]) [6].
Additionally, recent work suggests that many generalist flowers are visited nocturnally as well as
during the day [7]. Despite these facts, nocturnal pollinators have been less frequently studied
(Table 1), and may therefore be undervalued.
Anthropogenic change to ecosystems has impacted insect diversity and abundance, and insect polli-

nators in particular are widely considered to be in global decline [8]. This is of substantial concern
because over one-third of global crop production by volume depends on animal pollination [9], as
well as culturally important or endangered wild plant species [10,11]. Understanding the key
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Table 1 Nocturnal pollinator taxa, ordered by hits to searches in Web of Science and Scopus

Taxon

Search terms
Search engine
hits Web of Science hits with additional search terms:

Generic Taxon-specific
Web of
Science Scopus

AND
(‘ecosystem
service*’ OR
‘pollination
service*’)

AND (‘floral
scent’ OR
‘floral
volatile*’)

AND (‘climate
change’ OR
‘climate warming’
OR ‘global
warming’)

AND
(‘artificial light
at night’ OR
‘light
pollution’)

Nocturnal
pollinator
taxa

pollinat* AND
(nocturnal OR
night) AND…

Bees (Hymenoptera OR
Apoidea OR bee*) NOT
ant

385 380 11 (2.9%) 61 (15.9%) 5 (1.3%) 7 (1.8%)

Moths (Lepidoptera OR moth*)
NOT butterfl*

210 226 8 (3.8%) 44 (21.0%) 4 (1.9%) 7 (3.3%)

Bats (Chiroptera OR bat*) 163 153 8 (4.9%) 11 (6.7%) 3 (1.8%) 5 (3.1%)

Flies (Diptera OR fly OR
mosquito* OR midge*
OR gnat*) NOT syrphid*
NOT hoverfl*

101 68 2 (2.0%) 11 (10.9%) 1 (1.0%) 0 (0.0%)

Beetles (Coleoptera OR beetle*) 97 89 2 (2.1%) 26 (26.8%) 0 (0.0%) 1 (1.0%)

Mammals
(other than
bats)

(mammal* OR rodent*
OR primate*) NOT
Chiroptera NOT bat*

27 27 2 (7.4%) 2 (7.4%) 0 (0.0%) 1 (3.7%)

Ants (Hymenoptera OR
Formicidae OR ant OR
ants) NOT Apoidea NOT
bee*

20 22 1 (5.0%) 2 (10.0%) 0 (0.0%) 0 (0.0%)

Thrips (Thysanoptera OR
thrips*)

9 11 1 (11.1%) 2 (22.2%) 0 (0.0%) 0 (0.0%)

Orthopterans (Orthoptera OR cricket*
OR weta*)

9 9 0 (0.0%) 1 (11.1%) 0 (0.0%) 0 (0.0%)

Cockroaches (Blattodea OR
cockroach*)

8 7 0 (0.0%) 3 (37.5%) 0 (0.0%) 0 (0.0%)

Reptiles (reptil* OR Gekkota OR
gecko*)

1 2 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Diurnal
pollinator
taxa

pollinat* NOT
nocturnal NOT
night AND…

Bees (Hymenoptera OR
Apoidea OR bee*) NOT
ant

16 269 17 337 1511 (9.3%) 344 (2.1%) 547 (3.4%) 4 (0.0%)

Hoverflies (Diptera OR syrphid* OR
hoverfl*) NOT mosquito*
NOT midge* NOT gnat*

1075 1254 145 (13.5%) 39 (3.6%) 32 (3.0%) 0 (0.0%)

Butterflies (Lepidoptera OR
butterfl*) NOT moth*

918 931 93 (10.1%) 16 (1.7%) 60 (6.5%) 0 (0.0%)

Three major groups of diurnal pollinators are included for comparison, showing that nocturnal pollinator taxa are poorly represented in the scientific literature. Searches were
conducted using Boolean terminology on 5th May 2020, and the total number of hits recorded in each search engine. Generic search terms for nocturnal and diurnal pollinator
taxa respectively were combined with taxon-specific terms to create the exact query for each row (generic and taxon-specific terms are given in columns 2 and 3 respectively).
Taxa are ordered within guilds from most to least hits in WoS. Within the hits for each taxon, we conducted additional key-word searches to assess coverage of a range of
research topics we have identified for future attention. For each additional search, the number of hits is presented along with the percentage of all hits for the corresponding taxon.

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and the Royal Society of Biology and distributed under the Creative Commons

Attribution License 4.0 (CC BY).

20

Emerging Topics in Life Sciences (2020) 4 19–32
https://doi.org/10.1042/ETLS20190134

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


ecological, social and economic impacts of current pollinator declines, and the potentially undervalued role of
wild pollinator taxa in pollination service provision, are considered key research priorities [1]. Wild pollinators
(including wild bees, syrphid and non-syrphid flies, and other taxa) provide the majority of pollination services
[12]; despite common assumptions to the contrary, domestic honey bees play only a supporting role [13,14].
Visits from wild pollinators can be as efficient and effective [15], or even more so [16], than those from honey
bees, and provide a substantial proportion of all flower visits to a range of crops globally [17]. Evidence exists
of community-level declines in insect abundance and biomass [18–20], taxon-level declines in total abundance,
biomass, or diversity of beetles, caddisflies, butterflies, moths [21–24], and species-level declines in a wide
range of insect taxa (e.g. [25]). Although not all taxa have shown declines [26], change may be regionally [27]
and temporally [24] variable. Drivers of these declines are hypothesized to include climate change, habitat loss
and fragmentation, agrochemical use, artificial light at night, and changing biotic interactions with pathogens,
invasive non-native species, and wild plant resources [8,28–30], with likely interactions between combinations
of drivers [31]. However, the relationship between pollination services and wild pollinator diversity is not
straightforward [32]. Therefore, it is now of paramount importance to understand the range of wild pollinators
that can contribute to pollination services, and the relative importance of each service provider. Among wild
pollinators, the nocturnally active guild have been particularly overlooked, largely because of practical obstacles
to using standard field methodologies at night-time [33].
Through this review our aim is to promote nocturnal pollination as an area of research that is underrepre-

sented. We illustrate the relevance of nocturnal pollinators by highlighting known nocturnal pollination ser-
vices, and discuss key mechanisms that underpin interactions between nocturnal pollinators and plants. We
highlight evidence which demonstrates how anthropogenic disruptors impact these fragile mechanisms. We
conclude with recommendations on where future research would serve to expand knowledge and alleviate
threats to nocturnal plant-insect mutualisms.

Nocturnal pollinators and pollination services
Moths
At present, moths (Lepidoptera) probably represent the best-studied of the nocturnal pollinator taxa (Table 1),
being of importance in both temperate and tropical zones [33]. A widely held perception is that moth pollin-
ation consists primarily of highly specialized, co-evolved interactions between single species of Sphingidae and
plants (often Orchidaceae); whilst such interactions do exist (e.g. [34]), this view is not supported by review of
the global literature [33], because like butterflies, many moth species are generalist nectarivores as adults
(Figure 1). Recent studies have highlighted the richness of moth-flower interactions at community-level
[7,35,36] and the potential for moths to interact with, and substantially increase pollination success in, general-
ist flowers (Figure 1), even in the presence of diurnal pollinators [37].

Beetles
Beetle (Coleoptera) pollination also includes both examples of specialized flowers featuring beetle-attracting
traits [38], and visitation to generalist flowers [39]. Beetles more commonly visit flowers in search of pollen or
edible flower parts than nectar [39]. Among beetle-pollinated flowers, nocturnal visitation is most strongly asso-
ciated with ‘chamber blossoms’, whereas other syndromes (especially ‘painted bowls’) are visited diurnally [39].

Bees
Over 250 species from at least four families of bees (Apoidea: Andrenidae, Apidae, Colletidae and Halictidae)
have been described with nocturnal or crepuscular activity [40], with multiple hypotheses proposed for why
some bees might have evolved to forage at night. Such strategies could reduce competition for nectar and
pollen rewards, which are often more abundant in the early morning and late at night [40,41]. Additional
advantages, such as avoiding predation and parasitism, may also be a factor [41].

Bats
Pollination is provided in the tropics by bats (Chiroptera) of the families Pteropodidae and Phyllostomidae,
including both specialist nectarivores and opportunistic frugivores [42]. Bat-pollinated flowers are typically
large in size and frequently tubular in shape [43]; as such, those that are generalist often have other long-
tongued taxa as additional pollinators (e.g. hawk-moths and hummingbirds [44]) rather than generalist bees.
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Thrips
Flower-thrips (Thysanoptera) are minute insects, highly elusive due to their nocturnal and thigmotactic (i.e.
crevice-seeking) behaviour. Many species are intrinsically linked to their hosts as brood-site pollinators [45];
thrips exchange pollination for food and reproductive sites in flowers (e.g. [46,47]). They may be particularly
effective at pollinating species traditionally thought to be wind-pollinated, with traits such as large numbers of
flowers, large quantities of powdery pollen, and large stigmas [48].

Others
Further to the mounting evidence for pollination service provision by the above taxa, a range of other groups
of nocturnal invertebrates and vertebrates have been reported to act as pollinators. Notably, whilst some groups
of diurnal Diptera (especially Syrphidae [49] but also others [50]) are well-characterized as pollinators, there
has been less attention on flower-visiting species in crepuscular and nocturnal groups; e.g. fungus gnats [51].
Beyond Diptera, recent work has revealed a number of previously unsuspected functional nocturnal pollination
interactions between small mammals (including mice and elephant-shrews) and several plant species in South
Africa [52,53], suggesting that a considerable amount remains unknown about flower-visiting behaviour even
in generally well-studied taxa like mammals. More generally, further night-active taxa including species of cock-
roaches (Blattodea), grasshoppers and crickets (Orthoptera), ants (Hymenoptera), geckos and primates have all
been documented acting as pollinators. Knowledge of the efficiency and effectiveness of these taxa and others
as nocturnal pollinators of generalist plants remains extremely limited (Table 1).

Current evidence for a ‘nocturnal pollination service’
Ecosystem functions become ecosystem services where they provide a tangible direct or indirect benefit to
humanity [54]. Whilst it is accepted that pollination is an ecosystem service, the value of nocturnal pollinators
is unclear. Nonetheless, evidence supports the existence of at least three classes of nocturnal pollination service:
pollination of commercially valuable crops, pollination of culturally important plants, and pollination of rare
and endangered species. Beyond these examples of directly observable services, pollination in general underpins

Figure 1. An illustrative temperate grassland network incorporating nocturnal moths.

Many moth species are generalist nectarivores as adults, and may provide redundancy to diurnally pollinated plants. Nodes

represent species: white = diurnal insects, black = nocturnal insects, grey = plants. Links represent hypothetical pollination

interactions: solid = diurnal, dashed = nocturnal. Nocturnal interactions are derived from [33] and diurnal interactions from [133].

Reproduced from [33] under a CC BY 4.0 licence (see [33] for full image credits).
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effective vascular plant reproduction [55], which in turn is critical to a broad spectrum of further ecosystem
functions (and by extension services) [56,57]. However, it is near-impossible to quantify the value of such pol-
lination, or the contribution of nocturnal pollinators towards it.
The clearest example of a nocturnal pollination service is the pollination by bats of a range of commercially

important crops in the tropics, most notably Agave tequilana F.A.C.Weber (Asparagaceae; the source of tequila)
and Durio spp. (Malvaceae; durian fruit) [42]. Bats visit flowers of Durio zibethinus to feed on pollen shed in late
evening, incidentally pollinating the flowers [58]. Durian flowers can be damaged during pollination [58], which
is often misconstrued as loss of potential fruit and income, leading to negative attitudes and culling of pteropodid
bats as agricultural pests [59]. Thrips are more often considered as pests of temperate crops, yet there are an
increasing number of studies which demonstrate their contribution to pollination in crops in tropical and sub-
tropical regions [60], including Solanum melongena L. (Solanaceae; aubergine) [46] and Elaeis guineensis Jacq.
(Arecaceae; oil palm) [61]. Thrips also inhabit flowers of Coffea canephora Pierre ex A. Froehner (Rubiaceae;
coffee) in high abundance, carrying pollen on their bodies, and may therefore supplement the pollination services
of bees [62]. Fewer studies of thrips pollinating temperate crops exist, but Sambucus nigra L. (Adoxaceae; elder-
flower) flowers open at night and fruit set was found to be reduced in populations in southern England when
thrips were excluded from inflorescences [47]. A range of Myrtaceae fruit crops are pollinated by nocturnal bees
in South America [63]. Moths are also considered possible crop pollinators, though with weaker evidence. Moths
have been recorded transporting pollen from several insect-pollinated crops in a UK agro-ecosystem [36], and
have also been recorded visiting oil palm [61]. However, it has not yet been established that moths increase the
productivity of any commercial crop. To the best of our knowledge, there is only one documented example of
nocturnal beetles pollinating a crop species: Myristica fragrans Houtt. (Myristicaceae; commercial nutmeg) [64].
Finally, Persea americana (Lauraceae; avocado) is primarily considered to be bee-pollinated, but under marginal
climate conditions can become night-flowering, when it is visited by a generalist suite of pollinator taxa [65].
Of substantial social and cultural value (but of regional, rather than global commercial value), is Paullinia

cupana Kunth (Sapindaceae; guarana), a caffeine-rich seed widely consumed in South America. A substantial
proportion of flower visits take place nocturnally shortly after anthesis [66], with variation in floral volatiles
between day- and night-time that may be adapted to maximize attractiveness to both diurnal and nocturnal
bees [67]. Similarly, species of Jasmine Jasminum spp. (Oleaceae) and Honeysuckle Lonicera spp.
(Caprifoliaceae) are of regional importance in south and south-east Asia, with a wide range of cultural uses.
Thrips feature amongst a wide range of taxa reported to carry pollen of Jasminum flowers [68], whilst Lonicera
species are adapted to moth-pollination [6]. Stenocereus queretaroensis (F.A.C.Weber ex Mathes.) Buxb.
(Cactaceae; pitaya), a culturally important crop in central Mexico, displays reductions in yield, fruit quality and
seed set in the absence of flower-visits from bats [69].
All groups of nocturnal pollinators provide pollination to wild plants, and amongst these may be ecologically

important, rare and endangered species [42]. In addition to generally maintaining the cultural ecosystem services
provided by all wild plants, pollination of designated conservation-priority species tangibly benefits humans since
investment of time or resources into conservation of such species will be wasted if they cannot reproduce. One
such example is Platanthera bifolia (L.) Rich. (Orchidaceae; Lesser Butterfly Orchid), the subject of targeted con-
servation efforts in England [70]. P. bifolia is pollination-limited [71] and pollinated by nocturnal moths [72];
therefore its pollinators must play a role in ensuring the project’s success. Likewise, studies of the South American
tree species Ocotea porosa (Nees & Mart.) Barroso (Lauraceae), listed as Vulnerable on the IUCN Red List,
suggest it is primarily or exclusively pollinated by the thrips Frankliniella gardeniae (Moulton, 1948), leading to
calls for thrips to be explicitly considered in conservation planning for this species [73]. At a broader scale, 31%
of cactus species (Cactaceae) are assigned to IUCN Red List categories Vulnerable, Endangered or Critically
Endangered [74]. Since many cacti (especially ceroid cacti) are adapted to pollination by bats and/or moths
[33,42], a nocturnal pollination service may apply to any efforts to conserve these species.
Whilst we have acknowledged, in this section, the full taxonomic breadth of providers of nocturnal pollin-

ation (including the often-important role of bats as providers of nocturnal pollination), we will henceforth
remain within the authors’ areas of particular expertize, referring primarily to insect pollinators, and especially
to moths and thrips.

Key mechanisms for night-time pollination interactions
Critical to pollination are the individual-level interactions between plants and their pollen-vectors. From the
pollinators’ perspective, the opportunity to obtain a food reward (or occasionally to reproduce) will drive these
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time-critical interactions. Plants must have mechanisms to attract an effective pollinator and in turn, pollinators
must efficiently detect and decipher plant cues to compete for potentially limited resources. Here we describe
some of the mechanisms that are important in underpinning these interactions in nocturnal pollination
systems.

Floral scent
Floral scent is important in many nocturnal plant-pollinator mutualisms [75]. Floral volatile chemistry has
been characterized for taxa pollinated by moths [76–78], beetles [38,79,80], nocturnal bees [63,67,81], and to a
lesser extent smaller nocturnal and crepuscular pollinators, such as mosquitoes [82] and thrips [47,83].
Parallels can be drawn between floral scent profiles of plants associated with nocturnal pollinator taxa; for
example, moth-pollinated flowers often emit a combination of acyclic terpene alcohols (e.g. linalool), aromatic
alcohols (e.g. benzenoids), derived esters, and trace nitrogen-containing components [76–78]. Some compounds
are relevant to the attraction of multiple nocturnal taxa, such as linalool, which may attract moths, bees, mos-
quitoes, thrips and others [47,82,84,85]. However, this may only become apparent when the timing of the
release of component volatiles in scent emissions is quantified, since floral scent emissions are often rhythmic
[67,86]; for example, in Petunia spp. (Solanaceae) pollinated by hawk-moths (Sphingidae), diurnal volatile
emissions are significantly less attractive to pollinators than nocturnal emissions [87]. Such rhythmic floral
scent emissions, driven by an internal gene-regulated circadian clock [3], are often most evident in long-lived
flowers associated with nocturnal pollinators [47,86]. Emissions of volatiles in circadian rhythms can be an
adaptation to nocturnal pollinator behaviour [88], but avoiding attraction of (or repelling) diurnal herbivorous
insects [89] can equally contribute to adaptive selection of nocturnal scent emissions in some species.

Night vision
Nocturnal insects have extraordinarily advanced visual systems, including scotopic colour vision [90], which
enable them to navigate within and between flowering plants. Nocturnal compound eyes are highly adapted to
obtain enough light to generate optical stimuli, whilst limiting internal physiological noise which threatens the
clarity of visual signals [40]. Fully nocturnal taxa (e.g. moths) typically have superposition compound eyes,
with complex adaptations to improve sensitivity [40], but some nocturnal Hymenoptera have retained and
adapted the apposition eyes of their day-active relatives [91,92]. Common adaptations required for either noc-
turnal eye form lie in the ability to slow the processing response of photoreceptors and manage the summation
of the light signals in space and time, enabling insects to maximize light and movement sensitivity in low light
conditions. Nonetheless, it is most probable that nocturnal pollinators combine vision with other senses when
foraging. This is evident in crepuscular bees that fly exclusively in dim light conditions (e.g. Ptiloglossa:
Colletidae and Megalopta: Halictidae), using a combination of visual [93] and olfactory senses to seek floral
rewards [94]. From the plants’ perspective, many species adapted to nocturnal pollination (especially by moths)
are pale or white in colour, likely to increase visibility in low light conditions [95].

Thermogenic sensitivity
In addition to reduced light, cooler ambient temperatures are characteristic of the nocturnal environment. Most
pollinating insects are ectotherms, so the ability to distinguish flowers offering floral warmth would be advanta-
geous [75]. Flowers can retain external heat [96] or produce their own [97], and plants producing heat rewards,
especially those growing in in cooler environments, may be preferentially visited by ectothermic pollinators
[98,99]. In addition to providing warm shelter, thermogenesis increases floral scent volatilization [100].
Thermogenesis occurs widely among both gymnosperms and angiosperms, including species of cycads (e.g.
Zamiaceae) pollinated by thrips [101] and beetles [102], and species of Araceae pollinated by beetles and flies
[103,104]. While it is difficult to isolate heat stimulus from other stimuli to afford importance of floral heating
as a pollinator attraction mechanism, it has been proposed that nectar-feeding insects with the capacity to
detect infrared (IR) thermal radiation (e.g. mosquitoes and other blood-feeding taxa) could use this to detect to
detect and track the floral nectaries of thermogenic flowers at night [105]. Certainly, plants appear to exploit
pre-existing stimuli in other, similar ways in order to attract their pollinators (e.g. by producing volatiles that
are chemically similar to pheromones [38]), but nocturnal thermogenic attraction has not yet been demon-
strated to occur.

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and the Royal Society of Biology and distributed under the Creative Commons

Attribution License 4.0 (CC BY).

24

Emerging Topics in Life Sciences (2020) 4 19–32
https://doi.org/10.1042/ETLS20190134

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Anthropogenic disturbance of nocturnal pollination
The reliance of nocturnal pollination systems on such complex interspecific plant-insect signalling mechanisms
means that they are highly vulnerable to influence by their unique abiotic and biotic environments.
Anthropogenic drivers of environmental change, especially large-scale habitat loss and global climate change,
are implicated in driving pollinator declines [106], with severe implications for insect-pollinated plants [29].
However, an insidious effect of such drivers is their potential to directly disrupt the fine balance of mutualisms
between plants and pollinators at a local scale. Such effects are harder to detect than declining pollinator abun-
dance or distribution, but may have equivalent impacts on plant reproductive success by reducing effective vis-
itation rates. Here we discuss three anthropogenic drivers of change with the potential to disrupt each of the
key mechanisms described above.

Pollution
Environmental pollution takes many forms, and can in turn disrupt scent-based communication between
flowers and pollinators through several mechanisms. Most obviously, air pollution (release of anthropogenic
volatile pollutants (AVPs) from traffic, industry etc.) provides direct interference to such communication. AVPs
simply add background noise to floral signals, masking their detection [107], but also increase degradation
rates for floral volatiles [108,109] including linalool [110], reducing signalling efficiency and range. Less directly,
nitrogen enrichment of habitats (linked both to air pollution and agricultural intensification [111], and consid-
ered a threat to biodiversity e.g. [112]) may also influence floral scent. Soil nitrogen availability influences pro-
duction and emission of a range of plant volatiles, including those involved in plant-insect signalling [113],
though evidence of such effects on floral volatiles specifically is limited [114,115]. It is plausible that changes in
other properties of soil chemistry might have similar effects [116], but this does not appear to have been exten-
sively studied.

Artificial light at night
Artificial light at night (ALAN) is increasingly understood to be an important and increasing source of ecological
disruption [117], and may impact both visual and floral scent cues for nocturnal pollinators. Presence of bright
sources of ALAN can lead to rapid reductions in ocular sensitivity, inhibiting night-time vision away from the light
source [33]. Such light sources may also alter the nocturnal colour environment, with the result that some flowers
stand out more from their environment and others are masked, compared with natural night-time light spectra
[33,118]. Such effects might benefit certain plant species through increased visitation rates, but unbalance plant-
pollinator interactions at the community level [118]. Regarding floral scent, adaptive circadian rhythms are import-
ant in timing the release of floral volatiles in some nocturnally pollinated plants [119], and these are likely to be
disrupted by presence of ALAN obscuring photoperiodic cues [120]. If this were to result in reductions in visitation
by preferred pollinator taxa [37], and/or increase visitation by less efficient taxa, then there may be a possibility of
reduced productivity and higher floral costs, but such effects have not been investigated. Finally, ALAN is under-
stood to directly disrupt pollinator behaviour, with the likely outcome that less time is spent foraging (and therefore
fewer flowers visited). For example, in moths, exposure to ALAN reduces feeding behaviour [121] and increases
flight activity at the height of street-lamps, away from flowers [122].

Climate change
The general effects of elevated global temperature on plant-pollinator interactions are diverse, and are reviewed
in detail elsewhere in this issue [123]. With specific regard to thermogenic sensitivity and its hypothesized role
in detection of flowers by certain pollinators, two factors may determine the impacts of climate change on such
interactions. First, thermogenic plants must be able to maintain thermogenesis under elevated temperatures.
Given that thermogenesis operates by increasing respiration rates at higher ambient temperatures [97], climate
warming may lead to physiological limits to respiration rates being encountered, preventing the continuing
maintenance of thermogenesis [124] and altering the efficiency of thermogenic sensitivity detection as a flower-
visitation mechanism [99]. Second, pollinator preference may itself change, with thermogenic flowers becoming
undesirable if ambient temperatures increase enough to place pollinators under thermal stress [125]. Thus,
insects using infrared radiation to seek out thermogenic flowers may rely less on this cue to seek floral
resources under elevated temperatures (or even use it for avoidance), potentially negatively impacting plant-
pollinator interactions at community level as described for ALAN.
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Discussion
In this review we have highlighted the diversity of nocturnal pollinators and the complexity of their interactions
with plants, but it is clear that much remains unknown about the extent, value and vulnerability of pollination
services that occur at night. Evidence of pollination services provided by nocturnal foragers to economically
important crops is becoming increasingly apparent [36,47,65]; nonetheless, such services have been much less
extensively studied than for diurnal pollinators (Table 1). The visual and olfactory systems of nocturnal pollin-
ator taxa, and the corresponding signalling mechanisms of plants, are reasonably well-studied (Table 1), but
often from a single-discipline perspective (plant or insect) and consequently large knowledge gaps remain.
Importantly, all specialized nocturnal detection and signalling mechanisms are liable to be directly or indirectly
disrupted by anthropogenic environmental change (including air pollution, changes in soil chemistry, artificial
light at night, and climate change), with potential detrimental effects for pollination services which have not
been quantified. Increased understanding of the functioning of nocturnal pollination systems is critical for
future efforts to conserve their ecological service. To this end, we have identified a number of important direc-
tions for future research.

Deeper understanding of nocturnal pollination services
Given the vital importance of effective pollination to the yields of many crops, the major pollinators of such
crops are likely to be well-characterized in most cases. It seems unlikely, therefore, that there are any remaining
unknown examples of commercially-important crops where the dominant pollinator comes from a nocturnal
guild. However, the challenges of nocturnal activity, especially when combined with high mobility, minute size
or cryptic habits can confound study of night-time flower visitors, and this may have contributed to the low
proportion of the nocturnal pollinator literature addressing ecosystem service provision (Table 1). Considering
that diurnal pollination systems are widely generalized in nature even when individuals (or even species) act as
specialists [5], nocturnal pollination systems may be more generalized than previously assumed (especially for
moths [35]), so nocturnal pollinators may provide previously unassessed supplementary pollination to general-
ist crops (e.g. [65]), which remains to be evaluated. In contrast, the pollination systems of rare and endangered
plant species may not necessarily be well-characterized. Establishing the full range of taxa which pollinate a
given species, and their relative importance, should therefore form an important component of any plant con-
servation effort. Besides simply adding redundancy to pollination systems, nocturnal pollination could bring
further benefits to generalist plants which also warrant investigation. For example, nocturnal moths have been
shown to disperse pollen over greater distances than diurnal pollinators in several plant species [6,126,127],
potentially increasing gene flow and maintaining genetic diversity within and among populations.
Particularly important to quantifying nocturnal pollination services will be deeper knowledge of the trade-off

between services and disservices when nocturnal pollinators (including moths, thrips and beetles) are also herb-
ivorous, either at the same life stage [47] or as larvae [128]. At present this trade-off is extremely poorly under-
stood except in a few specialized cases (e.g. [129]), but misunderstanding of such trade-offs can lead to
deleterious persecution of beneficial mutualists [59]. Likewise, there is virtually no existing knowledge about
how this balance between ecosystem services and disservices may be affected by the many anthropogenic
drivers of environmental change that can impact moths, thrips, beetles and bats; e.g. if disruption of floral
scent rhythms were to reduce both attraction of nocturnal pollinators and repellence of diurnal herbivores.
Increasing our understanding of these trade-offs and how they may be changing is important, but must also be
viewed with a degree of nuance, since there is likely to be a high degree of variation in these impacts between
different systems and contexts.

Improved mechanistic understanding of individual nocturnal insect-flower
interactions
Visual and olfactory systems, and their relationship to flower-visiting activity, are well understood in some taxa
(e.g. moths [130]) but not in others [75], so a broader mechanistic understanding would be valuable. In par-
ticular, the relative importance of different mechanisms in low-light conditions at night is not known, and is
likely to differ from diurnal pollination systems. More specifically, the hypothesized role of thermogenic sensi-
tivity in attracting pollinators of certain taxa has not been established at all, and it is not even known whether
heat rewards play a role in nocturnal systems, as has been shown for diurnal bees [99], despite the fact that
heat rewards could be especially valuable to insects foraging in cooler night-time temperatures. From the
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plants’ perspective, a greater understanding of the differences between floral signals in diurnal and nocturnal
species might elucidate the selective pressures that have driven the repeated convergent evolution of nocturnal
flowering strategies.

Impacts of environmental change on individual nocturnal insect-flower
interactions
Whilst we have described plausible mechanisms by which nocturnal pollination services may be disrupted by a
range of anthropogenic drivers of environmental change, little research currently exists to demonstrate the
existence of such effects, or their importance/value. Climate change alone forms a greater proportion of the
diurnal pollinator literature than climate change and ALAN combined in studies of nocturnal pollinators,
despite the importance of ALAN to nocturnal systems (Table 1). Furthermore, much of the existing research
investigating environmental factors which influence floral scent composition has been focused on diurnal pol-
lination systems, even though studies of floral scent form a relatively large section of the nocturnal pollinator
literature (Table 1). If abundance and composition of floral scent is of greater importance at night, due to low-
light conditions reducing the utility of visual cues, then the impact of any environmental fluctuations on noc-
turnal plant-pollinator systems may be more extreme. Although better-studied than climate change, the effects
of artificial light at night on nocturnal pollination may vary from species to species [33,37,118,122], making it
challenging to explicitly predict impacts on nocturnal pollination services. Species-by-species assessments may
therefore be necessary, and could ultimately allow traits determining whether effects of ALAN are beneficial or
deleterious to be identified. The effects of other drivers, and on other plant-insect communication mechanisms,
are almost entirely unstudied, but could underlie surprisingly large impacts on pollination systems that will be
important to identify [99].

Conclusions
At a time when public and scientific concern about insect declines has never been greater [131], improving our
understanding of the scale and value of nocturnal pollination services (to crops and wild plants of conservation
concern) may be a powerful tool to advocate pollinator conservation [132], including of a range of non-bee
taxa (but see [32]). This may be especially important for taxa that are often viewed as agricultural pests, but
which may simultaneously be underappreciated ecosystem service providers. However, it is not merely the
insects themselves that are under threat from a range of anthropogenic drivers of environmental change: the
very mechanisms by which plants and their pollinators communicate are vulnerable to disruption.
Understanding the nature of such disruptions is therefore of vital importance in order to develop effective miti-
gation strategies and ultimately conserve the nocturnal pollination service.

Summary
• Understanding the importance of entire guilds of pollinators, including nocturnal taxa, is vitally

important at a time of public concern over biodiversity declines.

• Pollination services are provided nocturnally by a wide range of taxa including moths, bats,
bees, thrips and beetles.

• Nocturnal interactions between plants and pollinators are maintained by complex, specialized
mechanisms, but these mechanisms can be disrupted by anthropogenic drivers of environ-
mental change.

• Improved understanding of the scale of nocturnal pollination, and the potential disruption
caused by environmental change (including the possibility that disruptions shift the status of
the relationship from beneficial to harmful), will be critical to ensuring pollination services are
conserved in the future.
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