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Abstract: Integral membrane proteins from the ancient SPFH (stomatin, prohibitin, flotillin, HflK/
HflC) protein superfamily are found in nearly all living organisms. Mammalian SPFH proteins are
primarily associated with mitochondrial functions but also coordinate key processes such as ion
transport, signaling, and mechanosensation. In addition, SPFH proteins are required for virulence in
parasites. While mitochondrial functions of SPFH proteins are conserved in fungi, recent evidence
has uncovered additional roles for SPFH proteins in filamentation and stress signaling. Inhibitors
that target SPFH proteins have been successfully used in cancer and inflammation treatment. Thus,
SPFH proteins may serve as a potential target for novel antifungal drug development. This review
article surveys SPFH function in various fungal species with a special focus on the most common
human fungal pathogen, Candida albicans.
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1. Introduction

The SPFH protein family is present in all domains of life. Proteins of this family are
characterized by a conserved SPFH domain and diverge highly at their N- and C-terminal
regions [1–4]. Furthermore, the distribution of SPFH proteins across species varies [1,2,4].
Proteomic and cellular analyses identified SPFH proteins in various cellular membranes,
such as the inner mitochondrial membrane and plasma membrane [5–12]. SPFH proteins
also localize to the endoplasmic reticulum and lysosome/vacuole [5,13,14]. Biochemical
events dependent on SPFH proteins include palmitoylation and oligomerization and
have supported a hypothesis that SPFH proteins are membrane scaffolds [15]. In vitro
biochemical results showed that human stomatin protein binds directly to cholesterol
and actin mainly through key amino acid sequences in the C-terminus [16]. Moreover,
sequences in the SPFH domain are required for SPFH protein homo-oligomerization [16,17].
However, the details underlying the molecular function of SPFH proteins are limited.

SPFH proteins in mammals carry diverse functions. Prohibitin 1 (PHB1) and prohibitin
2 (PHB2) regulate mitophagy, or the removal of damaged mitochondria [18,19]. Stomatin-
like protein 2 (SLP2) is required for respiratory chain complex assembly and mitochondrial
translation [15,20–22]. Additional physiological roles associated with mammalian and
nematode SPFH proteins include signaling, mechanosensation, and ion transport [23–26].
Importantly, disruption of SPFH protein function has been linked to several life-threatening
conditions in humans, such as cancer, Alzheimer’s disease, kidney disease, and cardiac
disease [27–29].

Several parasites require SPFH proteins for virulence. In the malaria-causing parasite,
Plasmodium berghei, the prohibitin-like protein PHBL maintains mitochondrial membrane
potential, and phbl- mutants failed to colonize their mosquito host [30]. Protozoan parasites
from the genus Leishmania colonize vertebrate macrophages, causing chronic and debili-
tating skin diseases [31]. In L. major, mitochondrial prohibitin 1 and prohibitin 2 mediate
survival in response to macrophage-induced oxidative stress [31]. Lastly, in the parasite,

Microorganisms 2021, 9, 2287. https://doi.org/10.3390/microorganisms9112287 https://www.mdpi.com/journal/microorganisms

https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0001-6247-1252
https://orcid.org/0000-0002-3978-7694
https://doi.org/10.3390/microorganisms9112287
https://doi.org/10.3390/microorganisms9112287
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/microorganisms9112287
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms9112287?type=check_update&version=1


Microorganisms 2021, 9, 2287 2 of 10

Trypanosoma brucei, the causative agent of African sleeping sickness, prohibitins are required
for mitochondrial translation and maintaining mitochondrial membrane potential [32]. The
diverse functions of SPFH proteins and their contributions to human disease emphasize
the biological and clinical relevance of studying this protein superfamily.

2. SPFH Protein Function in Non-Pathogenic Fungi

Most of the knowledge for SPFH protein function in fungi has been acquired from
experiments using non-pathogenic species [28,33–38]. In those studies, the mitochondrion
has emerged as a focal point for understanding SPFH function. The mitochondrion is a
specialized organelle found in eukaryotes and serves as the master regulator of metabolism,
generating ATP via oxidative phosphorylation. Mitochondria also control key physiological
activities, such as lipid synthesis and trafficking, aging, reactive oxygen species production,
apoptosis, and cellular signaling.

In the baker’s yeast Saccharomyces cerevisiae, the sole SPFH proteins, prohibitin 1 and
prohibitin 2 (Phb1, Phb2), form ring-shaped complexes within the inner mitochondrial
membrane and are associated with several mitochondrial functions [9]. Phb1 and Phb2
interact with Mdm33 to regulate mitochondrial ultrastructure and shape [34]. In addition,
Phb1 and Phb2 interact with the chaperones Atp10 and Atp23 to assist formation of F1Fo-
ATP synthase [37]. Depletion of prohibitins reduces yeast life span and is characterized
by abnormal mitochondrial structure and delayed mitochondrial segregation to budding
daughter cells [36,39,40].

Synthetic genetic arrays using a phb1∆ mutant strain identified 35 genes that are
required for viability or normal growth [36]. Interestingly, 31 of these genes encode mi-
tochondrial proteins. 19 of these genes were associated with respiratory chain assembly
and maintenance of mitochondrial structure. Major PHB1 genetic partners include YTA10,
YTA11, and YME1 [36]. These genes encode proteins which belong to the conserved,
ATP-dependent mitochondrial m-AAA protease family, which maintain the mitochondrial
proteome [41]. Other PHB1 genetic partners include the cytochrome c complex subunit-
encoding genes, COX6 and COX24 [36]. In addition, 8 genes are required for the synthesis
of the mitochondrial membrane lipids, cardiolipin and phosphatidylethanolamine. These
partners include the highly conserved genes, UPS1 and UPS2 [36]. Lastly, prohibitin func-
tion and localization was associated with the presence of the yeast [PSI+] prion. Proteomic
analysis revealed that aberrant mitochondrial function observed in [PSI+] prion yeast
strains was caused, in part, by Phb1 mislocalization in the cytoplasm [35]. See Figure 1 for
a summary of SPFH function in S. cerevisiae.

SPFH function has also been characterized in other non-pathogenic fungi. In the
fission yeast Schizosaccharomyces pombe, Phb1 and Phb2 localize to the mitochondria [33].
Overexpression or deletion of the phb2 gene caused resistance to various antifungal drugs
including terbinafine, fluconazole, amphotericin B, and clotrimazole [33]. Moreover, in-
creased production of intracellular nitric oxide and reactive oxygen species were observed
in Phb2 overexpression or deletion strains [33]. In contrast, only a ∆phb1 deletion strain
was resistant to antifungal drugs [33]. Additional genetic evidence showed that mito-
chondrial dysfunction caused by phb2 deletion and overexpression activated the oxidative
stress response transcriptional regulator, Pap1, thus linking prohibitins to stress response
signaling [33]. Paradoxically, S. cerevisiae phb2∆ mutants were sensitive to fluconazole,
amphotericin B, and clotrimazole, highlighting the differences of SPFH protein function in
different yeast species [33]. However, the basis of this phenotype is unknown.
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Figure 1. SPFH protein distribution and functions in S. cerevisiae. Phb1 and Phb2 form ring-shaped
complexes that localize to the inner mitochondrial membrane. Known mitochondrial functions
associated with the Phb1/Phb2 complex are depicted in the blue boxes. Figure adapted from
references [9,34–37,39] and created with Biorender.com.

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-
TOF-MS) analyses on mitochondrial extracts identified three SPFH proteins (Phb1, Phb2
and Slp2) in the filamentous fungus, Neurospora crassa [38]. Consistent with the structural
dynamics of prohibitins from mammals, nematodes, and yeast, N. crassa Phb1 and Phb2
localized to the inner mitochondrial membrane and formed large membrane complexes of
various sizes. Notably, one high molecular weight prohibitin complex co-migrated with
m-AAA protease MAP-1. This suggests that m-AAA proteins may physically interact with
prohibitins in N. crassa, similar to observations with S. cerevisiae prohibitins [38]. Moreover,
the stomatin, Slp2, was found to co-migrate in a high molecular weight complex with
the N. crassa i-MMM protease homolog, IAP-1, suggesting that Slp2 and IAP-1 physically
interact in the inner mitochondrial membrane [38]. Taken together, these findings demon-
strate the importance of SPFH protein function in mitochondrial ultrastructure, respiratory
function, and antifungal drug resistance.

3. SPFH Protein Function in Pathogenic Fungi

In fungal pathogens, mitochondria are required for virulence determinants including
morphogenesis, drug susceptibility, cell wall biogenesis, and biofilm formation [42–44].
The knowledge underlying the molecular and cellular aspects of mitochondrial function
in human pathogenic fungi is based primarily on studies in Candida albicans. C. albicans
resides on mucosal tissue in the oral cavity and genitourinary and gastrointestinal tracts in
a harmless commensal state [45]. Under permissive conditions, such as a change in host
immunity, C. albicans causes superficial vaginal or oral mucosal infections. Disseminated
invasive candidiasis is a major cause of morbidity and mortality for immunocompromised
patients [46–48]. Mitochondrial function is critical for C. albicans commensalism and
virulence [42]. Indeed, C. albicans cells treated with respiratory inhibitors display aberrant
cell wall structure and increased macrophage recognition [49]. Moreover, mutations to
fungal-specific mitochondrial genes, such as GOA1, NUO3, NUO4, and GEM1, attenuate
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virulence [50–53]. Genome-wide transcriptional profiling revealed that genes encoding
proteins with mitochondrial functions are significantly upregulated following cell wall
damage or osmotic stress [54–56]. The molecular details underlying C. albicans respiration
have been reviewed [42,45,57,58]. The expanded role of the mitochondria in growth, stress
adaptation, and virulence underscores the need to study all aspects of mitochondrial
function. Therefore, SPFH proteins are excellent candidates to broaden our understanding
of C. albicans mitochondrial dynamics.

The C. albicans genome includes five SPFH family members: PHB1, PHB2, PHB12,
SLP2, and SLP3 (stomatin-like protein 3) [59]. We were the first group to identify a role for
SPFH proteins in C. albicans. We found that SLP3 transcription and protein localization
significantly increased following treatment with oxidative, osmotic, cell wall, or plasma
membrane stress agents, categorizing SLP3 as a general stress response gene [5,55,56].
Slp3p formed visible puncta along the plasma membrane similar to mammalian stomatin
complexes when viewed using fluorescence microscopy [5,60]. Slp3 plasma membrane lo-
calization was also confirmed via liquid chromatography-mass spectrometry (LC-MS/MS)
and MALDI-TOF analysis on C. albicans plasma membrane extracts [6]. Interestingly, we
also observed Slp3 localization at the vacuolar lumen; however, the basis for this result
is unknown [5]. SLP3 transcription was significantly downregulated in cells undergoing
the yeast-to-hyphae transition [61]. In concordance with this observation, Slp3 plasma
membrane and vacuolar localization was absent in hyphal cells, categorizing Slp3 as a
yeast-phase specific protein. [5]. A slp3∆/slp3∆ homozygous mutant strain did not show a
growth defect under standard growth conditions or when exposed to a variety of environ-
mental stress conditions or antifungal drugs [5]. Moreover, the slp3∆/slp3∆ mutant did not
display any apparent cell structure abnormality, organelle malfunction, or ion transport
defect [5].

SPFH protein overproduction in mammals, nematodes, yeast, and mice causes a
broad array of phenotypes, including drug resistance, aging, apoptosis, and tumorigene-
sis [27,28,62]. Consistent with these observations, we found that C. albicans Slp3 overpro-
duction severely disrupted mitochondrial membrane potential and triggered apoptotic-like
death specifically following prolonged exposure to oxidative stress [5]. Moreover, Slp3
overproduction in hyphal cells caused aberrant filament structure [5].

C. albicans Slp2, Phb1, Phb2, and Phb12 each contain a putative mitochondrial localiza-
tion signal motif (our preliminary findings). We observed Slp2 mitochondrial localization
(our preliminary findings), suggesting that the mitochondrial functions for prohibitins and
Slp2 may be conserved. See Figure 2 for a summary of C. albicans SPFH protein function.

Other pathogenic fungi where SPFH protein function has been investigated include
Aspergillus nidulans and Pneumocystis carinii. For both species, SPFH proteins were not
associated with mitochondrial function. In A. nidulans, the flotillin, FloA, localized to the
plasma membrane and mediates formation of plasma membrane sterol-rich domains. The
stomatin, StoA, localized to the plasma membrane and endosomal/vacuolar-like structures
and is required for hyphal polarized growth [63]. Heterologous expression of P. carinii
prohibitin in human fibroblasts caused cell cycle arrest, suggesting a role for prohibitin
in regulating proliferation and development [64]. Collectively, these findings highlight
the expanded role of SPFH proteins in growth, filamentation, mitochondrial function, and
stress signaling in pathogenic fungi. See Table 1 and Figure 3 for a summary and schematic
of SPFH proteins with known functions in various fungal species.
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Figure 2. SPFH protein distribution and function in C. albicans. Illustration depicting the cellular
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unpublished findings and created with Biorender.com.

Table 1. SPFH proteins with known functions in fungi. SPFH protein localization and function for each fungal species listed
have been experimentally confirmed in the referenced literature.

Protein Localization Function References
S. cerevisiae

Phb1 and Phb2 inner mitochondrial membrane,
Phb1-Phb2 complex

regulation of mitochondrial ultrastructure
and segregation, mitochondrial protein

stabilization, regulation of replicative life
span, regulation of mitochondrial

membrane lipid synthesis, involvement in
ATP synthase formation

[34–37,39,40]

S. pombe
Phb1 mitochondria multi-drug resistance [33]

Phb2 mitochondria multi-drug resistance, oxidative stress
signaling [33]

C. albicans

Slp3 plasma membrane,
vacuolar lumen

yeast-specific general stress response
signaling, involved in maintenance of

mitochondrial membrane integrity
[5,6]

N. crassa
Slp2 mitochondria interactions with i-MMM protein IAP-1 [38]

Phb1 and Phb2 inner mitochondrial membrane,
Phb1-Phb2 complex interactions with m-AAA protease MAP-1 [38]
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Table 1. Cont.

Protein Localization Function References
A. nidulans

FloA plasma membrane formation of sterol-rich domains in plasma
membrane [63]

StoA plasma membrane,
endosome/vacuole polarized hyphal growth [63]

P. carinii

Prohibitin inner mitochondrial membrane
(predicted)

regulation of cell proliferation and
development [64]
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4. Perspectives and Future Directions

It is critical that we advance our understanding of mitochondrial function in fungi to
facilitate the development of new approaches for antifungal interventions [69]. The efficacy
of antifungal drugs is limited due to mammalian tissue toxicity, parenteral formulations,
and emerging drug resistant species [45,70]. Mitochondria are a premier pharmacological
target in candidiasis treatment. The frequently prescribed antifungal drug, fluconazole,
targets the lipid-synthesizing mitochondrial protein Erg11 [71].

The N- and C-terminal primary sequences between C. albicans and human SPFH
proteins are highly divergent [5]; therefore, these regions can be potentially exploited in
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the development of novel antifungal therapeutics. For example, our findings that Slp3
overproduction disrupts C. albicans filamentation and depolarizes mitochondria can be
used as a basis to develop a SPFH-derived antifungal strategy. In support of this idea,
the therapeutic potential of targeting SPFH proteins have been recently demonstrated in
bacteria, worms, and mammals [72]. The flavaglines class of natural chemical compounds
inhibits mitochondrial PHB2 function, blocking mitophagy in human cancer cells [19].
Moreover, the small molecule synthetic compounds, OB-1 and OB-2 (oligomerization
blockers 1 and 2), inhibit STOML3-dependent mechanosensation, thus alleviating painful
diabetic neuropathy in mice [60].

Despite the progress made in revealing the structural characteristics and biochem-
ical mechanisms governing SPFH protein function in model eukaryotes, we still do not
know the function, physical and genetic targets, and mechanism-of-action for SPFH family
members in pathogenic fungi. For example, the impact of C. albicans Slp3 on mitochon-
drial function suggests that SPFH proteins may mediate direct interactions between the
plasma membrane or vacuole with the mitochondria. In S. cerevisiae, mitochondria directly
associate with the plasma membrane and organelles such as the vacuole or endoplasmic
reticulum to mediate lipid metabolism and mitochondrial biogenesis [73]. SPFH proteins
have not yet been implicated in those interactions. In addition, the absence of an apparent
phenotype in a slp3∆/slp3∆ mutant suggests there may be functional redundancy among
C. albicans SPFH proteins.

Thus, a comprehensive analysis for SPFH protein function in C. albicans and other
fungal pathogens will require a proteomic and genetic approach along with a cost-effective
in vivo infection assay. The recent development of optimized CRISPR-Cas9 genome editing
methods in C. albicans [74] will facilitate the development of yeast strains containing
mutations to multiple SPFH genes or SPFH genes and candidate SPFH protein targets
to investigate genetic interactions. Hetero-oligomeric complexes with SPFH proteins
and various transporter proteins as well as among SPFH stomatins and prohibitins have
been observed in humans [10,14,75]. Co-Interacting Protein Identification Technology
(Co-PIT) [76], and LC-MS/MS analyses can be used to determine the constituents of SPFH
protein complexes in C. albicans.

Finally, the invertebrate planarian, Schmidtea mediterranea, has recently been shown to
be an excellent host to study C. albicans pathogenesis in vivo [77]. The simple planarian
anatomical design allows visualization of all phases of C. albicans infection, such as adher-
ence, yeast-to-hyphae transition, and invasive growth in a cost-effective and time-saving
manner [77]. To determine the role of SPFH proteins in C. albicans virulence, SPFH mutant
and overexpressing strains can be analyzed in infection assays. Collectively, such findings
will characterize the SPFH family in the context of a critical area in C. albicans biology:
The molecular framework underlying mitochondrial function. In addition, the knowledge
gained from C. albicans SPFH analysis will provide a detailed model for SPFH function in
other fungal pathogens, such as Candida auris and Candida glabrata.
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