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Abstract. Calreticulin is an ubiquitous and highly con- 
served high capacity Ca2+-binding protein that plays a 
major role in Ca 2÷ storage within the lumen of the ER. 
Here, using L fibroblast cell lines expressing different 
levels of calreticulin, we show that calreticulin plays a 
role in the control of cell adhesiveness via regulation of 
expression of vinculin, a cytoskeletal protein essential 
for cell-substratum and cell-cell attachments. Both vin- 
culin protein and mRNA levels are increased in cells 
overexpressing calreticulin and are downregulated in 
cells expressing reduced level of calreticulin. Abun- 
dance of actin, talin, cx 5 and 131 integrins, pp125 focal ad- 
hesion kinase, and a-catenin is not affected by the dif- 
ferential calreticulin expression. Overexpression of 
calreticulin increases both cell-substratum and cell-cell 
adhesiveness of L fibroblasts that, most surprisingly, es- 
tablish vinculin-rich cell-ceU junctions. Upregulation of 
calreticulin also affects adhesion-dependent phenom- 

ena such as cell motility (which decreases) and cell 
spreading (which increases). Downregulation of calreti- 
culin brings about inverse effects. 

Cell adhesiveness is Ca > regulated. The level of cal- 
reticulin expression, however, has no effect on either 
the resting cytoplasmic Ca 2+ concentration or the 
magnitude of FGF-induced Ca 2÷ transients. Calreticu- 
lin, however, participates in Ca 2+ homeostasis as its 
level of expression affects cell viability at low concen- 
trations of extracellular Ca 2÷. Consequently, we infer 
that it is not the Ca 2÷ storage function of calreticulin 
that affects cell adhesiveness. Neither endogenous cal- 
reticulin nor overexpressed green fluorescent protein- 
calreticulin construct can be detected outside of the 
ER. Since all of the adhesion-related effects of differen- 
tial calreticulin expression can be explained by its regu- 
lation of vinculin expression, we conclude that it is the 
ER-resident calreticulin that affects cellular adhesiveness. 

C 
ELLS adhere to substrata and to each other with two 

subclasses of adherens-type adhesions: focal con- 
tacts (cell-substratum adhesions) (Burridge et al., 

1988) and zonulae adherens (cell-cell adhesions) (Franke 
et al., 1988). Both types of adhesions universally share an 
adhesion-specific cytoskeletal protein, vinculin (Otto, 1990). 
Although vinculin is essential for formation and function 
of these adhesions, very little is known about its regula- 
tion. Focal contacts link the cytoskeleton to proteins of 
the extracellular matrix (Singer, 1979; Hynes et al., 1982; 
Singer et al., 1984; Burridge and Fath, 1989; Hitt and 
Luna, 1994). This transmembrane linkage can be realized 
by several proteins (Luna and Hitt, 1992), of which the in- 
tegrin superfamily of heterodimeric cell surface receptors 
has been the most studied (Ruoslahti, 1991; Hynes, 1992). 
To function as adhesion receptors, integrins must be clus- 
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tered and immobilized into a focal contact (Schwartz et al., 
1991; McNamee et al., 1993; Yamada and Miyamoto, 1995). 
Experiments with truncated integrins (Yl~inne et al., 1993; 
O'Toole et al., 1994; Williams et al., 1994) show that a con- 
served amino acid sequence, KxGFFKR, found in the cy- 
toplasmic region of the a integrins plays an important role 
in regulation of cell adhesiveness. The GFFKR motif also 
appears in the DNA-binding domain of the steroid recep- 
tors (Laudet et al., 1992). In vitro experiments showed that 
the GFFKR motif, present in the two different cytoplas- 
mic loci, is bound by an ER-resident protein, calreticulin 
(Rojiani et al., 1991). 

Calreticulin, a 60-kD Ca2+-binding protein, is a major 
ER component of nonmuscle cells (Ostwald and MacLen- 
nan, 1974; Fliegel et al., 1989a,b; Treves et al., 1990; Baksh 
and Michalak, 1991; Opas et al., 1991; Michalak et al., 
1992). The protein is synthesized with an NH2-terminal 
signal sequence, and it terminates with the KDEL se- 
quence (Fliegel et al., 1989a,b) that is responsible for local- 
ization of proteins within the lumen of the ER (Pelham, 
1989). Calreticulin plays a central role in intracellular Ca 2÷ 
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homeostasis: it regulates agonist-sensitive, rapidly ex- 
changeable Ca 2÷ storage, and controls Ca 2+ influx via the 
plasma membrane and Ca 2÷ release via the inositot-tris- 
phosphate receptor/Ca 2+ channel of the ER membrane 
(Pozzan et al., 1994; Bastianutto et al., 1995; Camacho and 
Lechleiter, 1995; Mery et al., 1996). Furthermore, calreti- 
culin modulates gene expression (Burns et al., 1994; 
Dedhar et al., 1994; St-Arnaud et al., 1995; Wheeler et al., 
1995) and has a chaperone activity (Nigam et al., 1994; 
Nauseef et al., 1995; Peterson et al., 1995; Wada et al., 
1995; Otteken and Moss, 1996). Most importantly, calreti- 
culin affects cell adhesion (Leung-Hagesteijn et al., 1994; 
Coppolino et al., 1995) as transient downregulation of cal- 
reticulin reduces attachment of cells to extracellular ma- 
trix substrata. It has been postulated that this may be me- 
diated by direct interaction, which was shown to occur in 
vitro, between calreticulin and the KxGFFKR sequence of 

integrins (Rojiani et al., 1991; Dedhar, 1994; Leung-Hag- 
esteijn et al., 1994; Coppolino et al., 1995). Consequently, 
to functionally affect integrins clustered in focal contacts 
in vivo, calreticulin should be present in the cytoplasm, 
but, as of yet, there is no direct evidence of this finding. 

To investigate mechanisms of calreticulin-dependent 
modulation of cell adhesiveness, we used mouse L fibro- 
blasts differentially expressing calreticulin generated and 
extensively characterized previously (Burns et al., 1994; 
Mery et al., 1996). Here we show that changes in the level 
of calreticulin expression evoke corresponding changes in 
the expression of vinculin. Expression of no other adhe- 
sion-related proteins examined so far is affected. Conse- 
quently, we postulate that the adhesion-related effects of 
differential expression of calreticulin are vinculin medi- 
ated. As we find no evidence for the presence of calreticu- 
lin in either cytoplasm or the focal contacts, we hypothe- 
size that calreticulin in vivo performs its adhesion-related 
functions from within the ER lumen. 

Materials and Methods 

Materials 
Human recombinant basic fibroblast growth factor (bFGF) 1, geneticin 
(G-418 sulfate), tissue-culture media, trypsin, trypsin/EDTA, and restric- 
tion endonuclease were from Gibco (Canadian Life Technologies, Burl- 
ington, Ontario, Canada). FBS was from ICN Biomedicals (Costa Mesa, 
CA). pSVL was from Pharmacia (Bale D'Urfe, PQ, Canada). pRc/CMV 
plasmid was from Invitrogen (San Diego, CA). Plasmid purification kit 
was purchased from QIAGEN Inc. (Chatsworth, CA). A human glyceral- 
dehyde 3-phosphate dehydrogenase cDNA probe was from Clontech 
Laboratories (Palo Alto, CA). Human fibronectin was from Collaborative 
Research, Inc. (Bedford, MA). [32p]CTP and Hybond N nylon mem- 
branes were from New England Nuclear (Mandel Inc., Mississauga, On- 
tario, Canada). pGFP10.1 was a gift from Dr. M. Chalfie (Columbia Uni- 
versity, New York). All of the electrophoresis reagents were purchased 
from BioRad Laboratories (Richmond, CA). Chemiluminescence ECL 
Western blotting system was from Amersham (Oakville, Ontario, Can- 
ada). A mouse mAb against vinculin was from ICN ImmunoBiologicals 
(Montreal, PQ, Canada); a mouse mAb against tx-catenin was from Trans- 
duction Laboratories (Lexington, KY); a rabbit polyclonal antibody against 
pp125 focal adhesion kinase was from Santa Cruz Biotechnology, Inc. 
(Santa Cruz, CA); mouse mAbs against actin and cadherin were from 
Sigma Chemical Co. (St. Louis, MO), Anti-talin was from Dr. K. Burridge 

1. Abbreviat ions  used in this paper, bFGF, basic FGF; [Ca+e]o cytosolic 
Ca -z concentration; GFP, green fluorescent protein; HG, high glucose. 

(University of North Carolina); anti-131 integrin was from Dr. M. Ginsberg 
(Scripps Research Institute); and anti-as and anti-131 integrins were from 
Dr. B. Chart (University of Western Ontario, Canada). All secondary anti- 
bodies were from Jackson Immunoresearch Laboratories, Inc. (West 
Grove, PA). Chelex 100 resin and Coomassie brilliant blue were from Bio 
Rad Laboratories (Mississauga, Ontario, Canada). Indo-1/AM, Indo-1 
Na +, Calcium Calibration Kit 1, and rhodamine phalloidin were from Mo- 
lecular Probes (Eugene, OR). Cycloheximide and trypan blue were from 
Sigma Chemical Co. Sudan black B and liquid paraffin were from BDH 
Chemicals Ltd. (Poole, UK). Naphthol blue black was from Industrial 
Chemicals Division. Sodium-pantothenate was from Aldrich Chemical 
Co. (Milwaukee, WI). Poly Mount was from Polysciences Inc., (War- 
rington, PA). Vinol 205S was from St. Lawrence Chemical (Toronto, On- 
tario, Canada). All chemicals were of the highest grade commercially 
available. 

Plasmid Construction 
To construct the calreticulin expression vector, the DraI/Smal restriction 
DNA fragment (nucleotides 20-1653) of pcDx-CRT (GenBank accession 
number J05138) was first inserted into the Smal-digested pSVL vector to 
generate pSCR-1. Next, the full-length calreticulin cDNA was excised 
from the pSCR-1 and cloned into the Xbal site of pRc/CMV vector. Two 
constructs were generated and designated pRCR-DT-1 and pRCR-DT-2, 
which contain calreticulin cDNA in the sense and antisense orientations, 
respectively (Burns et al., 1994). These vectors were used to stably trans- 
fect L fibroblasts. Another  calreticulin expression vector, pSCRGF, con- 
taining the green fluorescent protein (GFP) tag was also constructed to 
study the localization of calreticulin in the cells. The GFP DNA was pre- 
pared by PCR amplification using pGFP10.1 (which contains the EcoRl 
fragment encoding the GFP cDNA in pBluscript II KS [Chalfie et al., 
1994]) as the template. In the PCR reaction the 5' primer (5'-TAT- 
A G C G G C C G C G A T G A G T A A A G G A G A A G - 3 ' )  was designed to in- 
corporate the Notl site at the 5' end of the GFP. The 3' primer (5'- 
G C A T G G A T G A A C T A T A C A A A G A C G A G C T G -  
TAGAGCTCTATA-3 ' )  was designed to include the KDEL sequence and 
incorporate a SaeI site at the 3' end of GFP. The PCR product was then 
cut with the two enzymes NotI and SacI and gel purified. To facilitate the 
insertion of GFP tag, the NotI/SacI DNA fragment of pSCR-1 was re- 
moved (removing the KDEL ER retention sequence), and the PCR frag- 
ment was then cloned into the Notl/SacI site of pSCR-1, generating the 
pSCRGF vector. To generate the control GFP vector (pSGF), the EcoRl 
fragment of pGFP10.1 was first filled at the ends, and then cloned into the 
Sinai site of the pSVL plasmid. These vectors were used to stably trans- 
fect A10 smooth muscle cells. 

Stable Transfection 

For transfection experiments, all plasmids were purified using Mega-plas- 
mid preparation and columns (QIAGEN Inc.) as recommended by the 
manufacturer. Mouse L fibroblasts were transfected with 20 Ixg of pRCR- 
DT-1, pRCR-DT-2, or pRc/CMV plasmid by electroporation (1500 V/cm, 
25 IxF). Cells were then selected for resistance to geneticin (200 p~g/ml) for 
14 d. The clones obtained were then screened for expression of calreticu- 
lin. Two cell lines designated KAB-8 and BAK-4 expressed elevated 
(~2.0-fold KAB) and reduced (0.5-fold BAK) levels of calreticulin as de- 
termined by Western blot analyses (Burns et al., 1994; Mery et al., 1996). 
KAB cells (referred to as calreticulin overexpressers) and BAK cells (re- 
ferred to as calreticulin underexpressers), together with a mock-trans- 
fected L fibroblast cell line (transfected with pRc/CMV vector, designated 
PGK, and referred to as control), were selected for use in the present re- 
port. To create cell lines expressing GFP-calreticulin, A10 smooth muscle 
cells were cotransfected with 3 p.g of pSCRGF or pSGF and 6 ~g of pS- 
VRNeo using the calcium phosphate method and a BES buffer (Ausubel 
et al., 1989). After selection of the cells for resistance to geneticin (150 Ixg 
for 14 d), two stable cell lines were generated and designated ACGF and 
AGF. ACGF cells expressing GFP-calreticulin and AGF control A10 cells 
expressing GFP alone were used in the present work. 

Cell Culture 

Cells were grown in high glucose (HG) DME supplemented with 10% FBS 
and with geneticin at a concentration of 100 tLg/ml (50 i~g/ml for PGK cells). 

Ca2+-free medium was prepared in the same manner as HG DME ex- 
cept for the omission of CaCI2, replacement of vitamin D-calcium pan- 
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tothenate by sodium-pantothenate, and the use of chelated distilled water. 
Chelation of water was carried out with Chelex 100 resin at 5 g/10 liter for 
1 h with stirring. FBS was chelated with 5 g of Chelex per 100 ml for 1 h 
with stirring, after which Chelex was filtrated and the pH was adjusted to 
7.2. Ca 2+ concentration was measured with a fluorescence spectrophotom- 
eter (F-2000; Hitachi Ltd., Tokyo, Japan) using 1.2 I~M Indo-1 Na ÷ dis- 
solved in DMSO. Calibration curve of Ca 2÷ concentrations (0.0-39.8 ixM) 
was made using Calcium Calibration Kit 1. The final Ca 2÷ concentration 
of total medium (HG DME plus serum) was calculated to be ~20 nM. 

Cell Proliferation and Viability 
The L cell lines were plated in tissue-culture dishes (10,000 cells per 50- 
mm qb dish) in normal (i.e., containing 2 mM Ca 2÷) medium. After 48 h, 
the medium for each cell type in one half of the dishes was replaced with 
Ca2+-free medium. At selected time intervals, nonadherent cells were 
washed off the dishes with a brief rinse, and the remaining adherent cells 
were trypsinized and counted (in triplicate) on a Coulter counter (Hia- 
leah, FL). Viability was measured for each point of the growth curve (data 
not shown except for final point) by adding trypan blue solution to me- 
dium at a final concentration of 0.04%~ Dead (i.e., stained) cells were 
counted in 20 areas, each of 0.635 mm 2, under a light microscope. 

Cell Attachment 
Substrata of fibronectin and glass were used to measure cell attachment. 
Fibronectin substratum was made by coating 30-mm qb dishes with 100 Ixg/ml 
human fibronectin diluted in water. Cells used for attachment were 
trypsinized with EDTA-free trypsin and plated onto flbronectin and glass 
substrata at 400,000 cells per 30-mm ~ dish. Cells were allowed to attach 
for various times (data shown are for 2.5 h) before washing, trypsinization, 
and counting on a Coulter counter. In some experiments, cycloheximide 
(0.5 p.g/ml) was added to the cultures 1 h before the experiment and 
present throughout. 

Cell Motility 
Cells were plated in HG DME and grown at a density of ~250,000 cells 
per 50-mm ~ cell culture dish. Cells were prepared for filming by chang- 
ing medium for HG DME plus 10% Hepes buffer, and by covering me- 
dium surface with liquid paraffin to prevent evaporation. Time-lapse re- 
cordings were done in a chamber kept at 37°C with a Hitachi CCD camera 
connected to an inverted phase-contrast microscope (CK; Olympus Corp. 
of America, New Hyde Park, N J). Images were collected at 2-min inter- 
vals over a 16 h period using a frame grabber and digital image processor 
(Image-i; Universal Imaging Corp., West Chester, PA) on a Compaq 386/25 
computer. Average velocity of cells was calculated by tagging and tracking 
cells (i.e., nuclear positions) for measurements of distances traveled over 
unit time. For each cell line, 60 cells were followed over three 2-h intervals 
taken from three different filming sessions, after which ANOVA statisti- 
cal analysis of the data was performed. 

Cell Morphometry 
Cells growing on coverslips were fixed with 3.8% formaldehyde in PBS, 
washed in PBS, and then stained with 1% Coomassie brilliant blue R-250 
and 1% Naphthol blue black in PBS for 60 min. After washing for 15 min 
in PBS, cells were stained with 0.5% Sudan black B in 70% ethanol. Cov- 
erslips were washed with ethanol and mounted in Poly Mount. Phase-con- 
trast images were fed into the Image-1 digital processor. Measurements of 
cell area and shape factor were computed for 300 cells of each of the L cell 
lines, after which ANOVA statistical analysis of the data was performed. 
The cell shape factor is a measure of divergence of the cell shape from a 
circle (i.e., the shape factor of a circle = 1; the shape factor of a line = 0). 
The shape factor of a given object is calculated as: 

4~r X A /P  2, (1) 

where A = object area and P = object perimeter. 

Immunostaining and Fluorescence Microscopy 
Cells on coverslips were fixed in 3.8% formaldehyde in PBS for 10 min. 
After washing (three times for 5 min) in PBS, the cells were permeabilized 
with 0.1% Triton X-100 in buffer containing 100 mM PIPES, 1 mM 
EGTA, and 4% (wt/vol) polyethylene glycol 8000 (pH 6.9) for 2 min, 

washed three times for 5 min in PBS, and then incubated either with goat 
polyclonal anti--calreticulin antibody (diluted 1:50 in PBS) (Michalak and 
MacLennan, 1980; Fliegel et al., 1989a,b; Opas et al., 1991) or with a mouse 
monoclonal anti-vinculin antibody (diluted 1:50 in PBS) for 30 min at 
room temperature. After washing (three times, 5 rain) in PBS, the cells 
were stained with appropriate secondary antibodies for 30 min at room 
temperature. The secondary antibodies were as follows: FITC-conjugated 
donkey anti-mouse IgG(H+L) (diluted 1:30 in PBS), Texas red-conju- 
gated donkey anti-mouse (F(ab')z used at 1:30 dilution), and dichloro-tri- 
azinylamino-fluorescein-conj ugated donkey anti-goat IgG(H + L) (diluted 1: 
30 in PBS). For double labeling, incubations with appropriate antibodies 
were done sequentially. After the final wash (three times, 5 rain), the 
slides were mounted in Vino1205S that contained 0.25% 1,4-diazabicyclo- 
(2,2,2)-octane and 0.002% p-phenylenediamine to prevent photobleach- 
ing. For actin staining, stock solution of 3.3 tLM rhodamine phalloidin in 
methanol was diluted 1:10 in PBS and incubated with fixed and permeabi- 
lized cells for 20 min at room temperature. GFP-calreticulin fluorescence 
was recorded from either living A10 cells or cells fixed with 2.5% glutaral- 
dehyde in PBS. A Bio Rad MRC-600 confocal fluorescence microscope 
equipped with a krypton/argon laser was used for fluorescence, phase con- 
trast, and interference reflection microscopy. 

Measurements of Cytosolic Ca 2+ Concentration 
The cells were trypsinized with EDTA-free trypsin and counted, and 5-10 × 
106 cells were loaded with 1.5 IxM Indo-1/AM in Ca2+-containing medium 
(140 mM NaC1, 4 mM KC1, 10 mM glucose, 10 mM Hepes, 1 mM MgCl2, 
i mM CaCl2, pH 7.4) for 40 min at room temperature. To prevent precipi- 
tation of solid Indo-l/AM, 0.02% pluronic acid was included in the incu- 
bation medium. Next, cells were pelleted by centrifugation, rinsed with 
the same medium, and left for 40 min at room temperature for Indo-1/AM 
deestrification to occur. For cytoplasmic Ca 2+ concentration measure- 
ments, 106 cells were suspended in 1.5 ml of Ca2÷-containing medium in a 
1-cm cuvette at 37°C and allowed to equilibrate for 5 min with continuous 
stirring. To measure bFGF-induced Ca 2+ transients, recordings were per- 
formed 10 s after addition of 5 ng/ml of bFGF to the cuvette. The Indo-1 
fluorescence was monitored in a Hitachi F-2000 fluorescence spectropho- 
tometer with excitation and emission wavelengths of 355 and 410 nm, re- 
spectively. Calibration was performed on the same cells by adding 10 ixM 
ionomycin and 4 mM CaC12 to the cuvette to obtain the maximal fluores- 
cence value (Fraax), followed by 2 mM MnCI 2 to obtain the manganese- 
quenched fluorescence value (FMn). The cytosolic Ca 2+ concentration 
([Ca+]c) was determined using the equation [Ca2+]c = Kd[(F-Fmin)/(Fma x- 
F)] where F was the observed fluorescence, and the minimal fluorescence, 
Fmi,, was calculated from the equation Fmi n = [(Fmax-FMn)/12]+FM, 
(Grynkiewicz et al., 1985). 

SDS-PA GE and Western Blotting 
Cells were homogenized in lysis buffer (50 mM Tris-HC1, 120 mM NaCl, 
0.5% NP-40, pH 8.0) and frozen at -70°C. The amount of proteins in 
these extracts was determined by the method of Bradford (1976). Protein 
samples (10 Ixg per lane for extracts and 2 i~g per lane for molecular 
weight markers) were subjected to SDS-PAGE as described by Laemmli 
(1970). Subsequent transfer of proteins to nitrocellulose sheets and block- 
ing of nonspecific sites with skim milk powder were carded out as de- 
scribed by Towbin et al. (1979). Nitrocellulose sheets with bound proteins 
were incubated with primary antibodies for 1 h at room temperature fol- 
lowed by incubation with HRP-conjugated donkey anti-mouse IgG(H+L) di- 
luted 1:10,000 for 1 h at room temperature. The primary antibodies were 
used at the following dilutions in PBS: actin, 1:100; pp125 focal adhesion 
kinase, 1:200; cadherin, catenin, integrins, talin, 1:1,000; vinculin, 1:1,500. 
lmmunoreactive bands were detected with a chemiluminescence ECL 
Western blotting system. The protein bands in each blot were scanned two 
dimensionally using a densitometer (UltroScanXL; Pharmacia), and areas 
under the curves were calculated using Gel Scan XL software. 

RNA Isolation and Northern Blotting 
Total RNA was extracted from calreticulin overexpressers, calreticulin 
underexpressers, and control cells as described previously (Bums et al., 
1994). 30 p.g of RNA was separated on an agarose gel, transferred to a Hy- 
bond N nylon membrane, and hybridized as described (Burns et al., 1994). 
For vinculin mRNA, 572-bp EcorRI fragment of Vinc 1020 cDNA (gener- 
ously donated by Dr. Sue Craig, Johns Hopkins University, Baltimore, 

Opas et al. Calreticulin Regulates Vinculin and Cell Adhesion 1915 



A 
ug~a Under 

Over 
Ctrl 

300 ] 

100 p 

0 
Resting Level p FGF Transient 

B 
1.6 

1.2 

.8 

+N .4 

O 

.2 

.I • 
-2  

C 

350 

300 

250 1 

200 

150 

100 

Extrllcellular ICal - 1 mM 

S Over 

F 

Under 

,::TTTT  
• S I.0 1.5 2.0 2.5 3.0 3.5 4.0 
I I I I I I I I I 
0 4 2 6 8 10 12 14 16 

Time (sec x 1001 

O 

o 

e 
e 

I ALL as ICl} - I ~ i- 

O v e r + C a  l / / /  ~ / 
O v e r - C a  //~1// ~ "  I- 
Ctrl+Ca / /d/ . /  / 

• , Ctrl ~ [  

! 

0 100 200 300 400 500 

75 

6O 

4s z 

30 ~ 

15 

0 

Time in Cul ture  {hours) 

MD) was used as a probe (Coutu and Craig, 1988). The blots were nor- 
malized with a human glyceraldehyde 3-phosphate dehydrogenase cDNA 
probe. The relative abundance of mRNA was determined using a Fujiex 
BAS1000 Phosphorimager (Fuji Photo Film Co., Ltd., Tokyo, Japan). 

Results  

Changes in Levels of  Calreticulin Expression Affect 
Cellular Ca 2÷ Only in Adverse Ca 2+ 

Conditions. Cytosolic Ca 2+ concentration stayed the same 
irrespective of the level of calreticulin expression and was 
122 nM (_+ 74) for calreticulin underexpressers, 121 nM (_+ 
88) for calreticulin overexpressers, and 117 nM (+_ 25) for 
control cells. Furthermore, stimulation of cells with bFGF 
(5 ng/ml) induced a Ca 2÷ transient that was similar in all 
cell lines (Fig. 1 A). This is in agreement with previous re- 
ports (Bastianutto et al., 1995; Mery et al., 1996) and indi- 
cates that the level of calreticulin expression does not 
manifest itself as an altered [Ca2+]c under normal culture 
conditions. Effects of the differential calreticulin expres- 
sion were immediately evident, however, when [Ca2+]- 
buffering capability of cells was challenged by the ionomy- 
cin-induced Ca 2÷ influx. Stepwise addition of the Ca 2+ ion- 
ophore, ionomycin, caused stepwise influx of Ca 2÷ that 
was efficiently clamped down by calreticulin overexpress- 
ers but not by the underexpressers (Fig. 1 B). 

Sustained cell growth requires full intracellular Ca 2+ 
stores (Ghosh et al., 1991; Short et al., 1993); hence, we 
next examined if stable differential expression of calreticu- 
lin affects cell growth and viability. All the L cell lines grown 
in normal media containing 2 mM Ca 2+ showed similar 
proliferation kinetics (Fig. 1 C). When growth of the cell 
lines was examined under low ([Ca 2+] <20 nM) extracellu- 
lar Ca 2÷ concentrations, the differences in proliferative ca- 
pacities between calreticulin overexpressers and calreti- 
culin underexpressers became prominent. At low Ca 2+ 
concentration, calreticulin underexpressers barely grew, 

Figure 1. Overexpression of calreticulin does not affect normal 
cellular Ca 2÷ homeostasis but enhances its maintenance in ad- 
verse conditions. (A) Neither resting [Ca2+]c nor  bFGF-induced 
Ca 2+ transients are affected by the differential calreticulin ex- 
pression. The transient was measured 10 s after stimulation of 
cells with 5 ng/ml of bFGF. (B) Overexpression of calreticulin en- 
hances [Ca2+]-buffering capability of cells. Calreticulin overex- 
pressers are much more efficient in maintaining [Ca2+]c homeo- 
stasis in the face of ionomycin-induced Ca > influx than the 
underexpressers. Ca > influx was induced by stepwise addition of 
ionomycin in 0.5 ~M increments. The graph shows two typical 
traces, (C) Calreticulin overexpressers can grow at low [Ca 2+] in 
the medium. In contrast to the underexpressers, calreticulin over- 
expressers show the same growth rate in medium with either high 
or low [Ca2÷]. (Inset) Viability of the cells at day 20 of culture in 
either high (2 mM) or low (<20 nM) extracellular [Ca2÷]. There 
are no viability differences between the cell lines at high [Ca>l ;  
they are shown as a bar marked ALL. Each data point is the 
mean  of nine measurements.  Error  bars are hidden for the sake 
of clarity, as most of them are smaller than the symbols. Under, 
calreticulin underexpressers; Over, calreticulin overexpressers; 
Ctrl, control mock transfectants; +Ca, cells grown in standard 
medium containing 2 mM Ca 2+, -Ca, cells grown in Ca 2+- 
depleted medium containing no more than 20 nM Ca 2÷. 
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while growth of calreticulin overexpressers was almost un- 
impaired. When the viability of the cell lines was exam- 
ined, no differences were detected at normal extracellular 
Ca 2÷ concentration. At low extracellular Ca 2+ concentra- 
tion, however, ~90% of calreticulin overexpressers were 
viable in contrast with only 57% of calreticulin underex- 
pressers. Thus, the differential level of calreticulin expres- 
sion in our L cell lines manifests itself functionally as vary- 
ing cell ability to withstand adverse Ca 2÷ conditions. 

Calreticulin Overexpression Enhances Cell 
Attachment Efficacy 

Transient downregulation of calreticulin reduces attachment 
of cells to extracellular matrix substrata (Leung-Hagesteijn 
et al., 1994). Hence, we examined attachment efficacy in 
the stable L cell lines differentially expressing calreticulin. 
Calreticulin overexpressers attached much more avidly to 
fibronectin-coated substrata than either calreticulin under- 
expressers or the control, mock-transfected cells (Fig. 2). 
We observed no significant differences between the cal- 
reticulin underexpressers and the control cells throughout 
all of the attachment assays. The presence or absence of 
serum, as well as the presence or absence of cycloheximide 
(used to inhibit synthesis of endogenous extracellular ma- 
trix proteins that might have been deposited onto the sub- 
stratum), was without effect on the distribution of attach- 
ment efficacy between the cell lines. 

Changes in Levels of  Calreticulin Expression Affect 
Cell Shape, Motility, and the Cytoskeleton 

Morphometry showed that calreticulin overexpression 
caused L cells to be more spread and to have more cell pro- 
jections (e.g., filopodia) than the control cells (Fig. 3). Con- 
versely, calreticulin underexpression caused cells to be 
rounder and smoother than the control cells. This was mea- 
sured as a cell shape factor. The cell shape factor is a mea- 
sure of divergence of the cell shape from a circle (i.e., the 
shape factor of a circle = 1; the shape factor of a line = 0). 
It is quite clear that there is a straight relationship between 
calreticulin expression and the cell area, and an inverse re- 
lationship between calreticulin expression and the shape 
factor in the transfectants. Functionally, a time-lapse anal- 
ysis of moving cells showed that calreticulin underexpress- 
ers move with an average speed of 0.974 +- 0.116 IxM per 
min, which is almost twice as fast as calreticulin overex- 
pressers (0.498 _ 0.117 }xM per min). Control cells moved 
with an average speed of 0.751 _+ 0.129 IxM per min. 

Staining with an F-actin-specific probe, phalloidin re- 
vealed that the abundance of stress fibers and the number 
of filopodia increased in calreticulin overexpressers in 
comparison with either calreticulin underexpressers or 
control cells (Fig. 4). Collectively, differential level of ex- 
pression of calreticulin in our L cell lines is reflected in al- 
terations in cell adhesiveness and adhesion-mediated cell 
functions. 

2Optical sectioning along the optical axis of the microscope uses a stack of 
optical sections collected in a plane parallel to the substratum (called XY 
sections) to electronically reconstruct optical cross-sections (called XZ 
sections) of the same cells as if taken perpendicularly to the substratum. 
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Figure 2. Overexpression of calreticulin increases efficacy of cell 
attachment on fibronectin. Attachment Efficacy, number of cells 
attached to dishes 2.5 h after plating, expressed as percentage of 
the number of plated cells. Under, calreticulin underexpressers; 
Over, calreticulin overexpressers; Ctrl, control mock transfectants. 

Calreticulin Is Not Present in Focal Contacts or 
Integrin Clusters 

It has been postulated (Dedhar, 1994; Coppolino et al., 
1995) that adhesion-related effects of differential calreti- 
culin expression may be mediated by direct interaction, 
which was shown to occur in vitro between calreticulin and 
the GFFKR sequence (Rojiani et al., 1991). Hence, to 
functionally affect integrins by direct protein-protein in- 
teraction, calreticulin must be present in the focal con- 
tacts. 

Double immunolabeling of calreticulin and vinculin 
failed to demonstrate any calreticulin in association with 
focal contacts (Fig. 5). Next, we investigated if calreticulin 
colocalized with integrins after they became clustered by 
incubation of living cells with specific anti-integrin anti- 
bodies. Using antibodies against either subunit of the ma- 
jor extracellular matrix receptor in L fibroblasts, the ~t 5 
and I~1 integrins, we detected no colocalization of calreti- 
culin with integrin clusters. In an alternative approach, we 
used interference reflection microscopy to identify focal 
contacts in cells that overexpressed GFP-calreticulin. In- 
terference reflection microscopy is a form of incident light 
interferometry in which radiance of an image of an adher- 
ent cell is a derivative of the width of the gap separating 
the cell's undersurface from the substratum (Curtis, 1964; 
Gingell and Todd, 1979). Focal contacts appear as black 
streaks in interference reflection images (Izzard and Loch- 
net, 1976). Another common form of cell attachment is a 
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Figure 3. Overexpression of calreticulin enhances cell spreading 
and formation of cell protrusions. Morphometric measurements 
were taken 48 h after plating. The shape factor is a measure of the 
perimeter regularity (i.e., roundness) and, for a circle, shape fac- 
tor = 1. Under, calreticulin underexpressers; Over, calreticulin 
overexpressers; Ctrl, control mock transfectants. 

close contact appearing gray by interference reflection. By 
using vital technologies to both identify focal contacts and 
to detect endogenous fluorescent signal of GFP-calreticu- 
lin, we avoided problems commonly associated with dou- 
ble immunolabeling. Fig. 6 shows that GFP-calreticulin, 
while abundant in the ER, could not be detected in either 
the cytoplasm or focal contacts. 

Calreticulin Overexpression Causes Formation of  
Vinculin-rich Contacts by L Fibroblasts 

Stable overexpression of calreticulin induced a dramatic 
increase in the number and prominence of vinculin-con- 
taining adhesions (Fig. 7). Fig. 7 shows a comparison of 
vinculin distribution in calreticulin overexpressers with that 
in calreticulin underexpressers. The most obvious differ- 
ences were observed between densely populated long- 
term cultures. Calreticulin underexpressers did not attach 
well to each other and had only a few vinculin-positive fo- 
cal contacts and even fewer cell junctions (Fig. 7 A). Opti- 
cal sectioning along the optical axis of the microscope (XZ 
sectioning) 2 showed that calreticulin underexpressers had 
a tendency to multilayer. In contrast, calreticulin overex- 
pressers flattened out and, by developing abundant vincu- 
lin-rich zonulae adherens, formed a monolayer that closely 

resembled an epithelial cell sheet. In sparse cultures (Fig. 
7, C and D), calreticulin underexpressers had very few vin- 
culin-positive focal contacts and remained round (Fig. 7 C). 
Calreticulin overexpressers spread extensively, had abun- 
dant focal contacts, and developed many vinculin-rich 
cell-cell junctions (Fig. 7 D). Differences in vinculin distri- 
bution between calreticulin underexpressers and the con- 
trol cells were not as striking. 

Calreticulin Induces Changes in Vinculin Expression 

Next, using Western and Northern blotting, we tested 
the L cell lines differentially expressing calreticulin for the 
expression of vinculin protein and mRNA, respectively. 
Furthermore, we examined expression levels of several ad- 
hesion-related proteins in these cell lines. Results of densi- 
tometric analysis are shown in Fig. 8. No change in abun- 
dance of either actin, talin, a5 and 8 1  integrins, pp125 focal 
adhesion kinase, or a-catenin was detected by Western 
blotting. To detect a-catenin bands in the blots, however, 
the exposure time had to be increased 120 times. Amount 
of vinculin is dramatically elevated in calreticulin overex- 
pressers and somewhat reduced in calreticulin underex- 
pressers in comparison with control cells. These changes in 
vinculin protein level were further supported by Northern 
blotting analysis. Total RNA was isolated from the L cell 
lines and assayed for the vinculin mRNA abundance. Fig. 8 
shows that, comparatively, vinculin mRNA abundance in 
calreticulin overexpressers, underexpressers, and control 
cells follows a similar pattern to that of the protein (Fig. 8). 

Discussion 

In the present paper we show that the level of calreticulin 
expression affects cell adhesiveness via coordinate regulation 
of vinculin expression. Stable calreticulin overexpression 
increases cell-substratum attachment of L fibroblasts, while 
stable calreticulin underexpression suppresses it. L cells 
overexpressing calreticulin flatten out, develop strong cell- 
substratum adhesions, reorganize their actin into stress fi- 
bers and, most surprisingly, establish striking epithelial- 
looking, vinculin-rich, cell-cell junctions. We suspect that 
the lack of effect of calreticulin underexpression on the ef- 
ficacy of cell attachment is due to a rather small suppres- 

Figure 4. Overexpression of calreticulin is associated with the appearance of prominent stress fibers and numerous filopodia as revealed 
by staining with a fluorescent F-actin probe, phalloidin. (A) Calreticulin underexpressers. (B) Calreticulin overexpressers. (C) Control 
mock transfectants. Bar, 25 ~M. 
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Figure 5. Calreticulin is not detectable in calreticulin-overex- 
pressing cells in focal contacts by immunofluorescence after dou- 
ble labeling with antibodies against vinculin (A) and calreticulin 
(B and C). Confocal optical sectioning detects vinculin label in 
focal contacts at the substratum level (A). At the same optical 
plane, calreticulin label, although detectable, follows an entirely 
different pattern of distribution (B). C is a projectiort of six con- 
focal sections to show cellular calreticulin distribution in its en- 
tirety. Bar, 25 t~M. 

sion effect (~0.5-fold) that may be insufficient to attenu- 
ate a complex process such as adhesion. Nevertheless, 
effects of calreticulin underexpression are detected in ad- 
hesion-dependent phenomena  such as cell motility (which 
increases) and cell spreading (which decreases). Relatively 
modest  extents of enhancement  and suppression of calreti- 
culin expression have in fact been found advantageous 
(Mery et al., 1996) as (a) problems associated with severe 
over/under production of protein are avoided, and (b) lev- 

Figure 6. GFP-calreticulin is not detectable in focal contacts. 
Confocal microscopy of GFP-calreticulin fluorescence (A and B) 
shows that the label is confined to the ER irrespective of whether 
normal (A) or maximal gain (B) detection mode of photomulti- 
plier is used. C shows interference reflection image of the same 
cell with a variety of adhesix, e/motile organelles indicated by ar- 
rows. Bar, 25 I~M. 

els of calreticulin expression in our L cell lines are still 
within the range reported for a variety of tissues (Khanna 
and Waisman, 1986). 

H o w  Can Calreticulin A f f e c t  Cell  Adhes iveness?  

For the apparent multifunctional nature of calreticulin (Nash 
et al., 1994; Michalak, 1996) and complexity of cell adhe- 
sion, several scenarios have to be considered. 
Calreticulin in its Function o f  Ca 2÷ Store Controls [Ca2+]c 
and, Indirectly, Cell Adhesiveness. This is unlikely because 
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Figure 7. Calreticulin overexpression induces epithelial-like vinculin-rich cell-cell junctions in transformed fibroblasts. This figure 
shows immunolocalization of vinculin in crowded (A and B) and sparse (C and D) cu~lures of calreticulin underexpressers (A and C) 
and overexpressers (B and D). The bottom part of each panel shows two XZ sections taken along the line indicated by the arrows. The 
top XZ section (raw image) shows an unenhanced image, while the bottom XZ section (enhanced composite) is an enhancement of non- 
specific cytoplasmic background to show the cell height plus the exaggerated vinculin image. In crowded cultures, calreticulin underex- 
pressers (A) are round and can pile up. This is especially apparent in XZ sections taken perpendicularly to the substratum. Crowded cal- 
reticulin overexpressers (B) are much flatter and develop abundant vinculin-rich cell-cell junctions, thus assuming an epithelial cell 
sheet morphology. In sparse cultures, calreticulin underexpressers form vinculin-positive focal contacts but remain round. Sparse cal- 
reticulin overexpressers are well spread and have abundant vinculin-rich cell-cell junctions (D). Focal contacts of calreticulin overex- 
pressers are especially evident in a large cell shown at the left side of the photograph, and their cross-sections are discernible in the cor- 
responding part of the XZ section (a string of dots in the left part of the raw image). Bars: (horizontal) 25 I~M; (vertical) 10 IxM. 

neither we nor others detect any correlation between rest- 
ing [Ca2+]c and calreticulin abundance (Bastianutto et al., 
1995; Mery et al., 1996). Furthermore,  a single application 
of stimulant (bFGF) to the cell lines differentially express- 
ing calreticulin does not reveal differences in [Ca2+]c be- 
tween them. We also show that the level of  calreticulin ex- 
pression, while not affecting resting [Ca2+]c in normal 
conditions, will nevertheless have a profound effect on 
[Ca2+]c homeostasis in the face of high [Ca 2+] insult. A 
transient downregulation of calreticulin decreases viability 
of cells exposed to ionomycin (Liu et al., 1994). Here we 
show that effects of differential calreticulin expression 
manifest themselves as growth and viability enhancement 
only at adversely low extracellular Ca 2+ concentration. 
Collectively, these data imply that calreticulin acts as an 
emergency Ca 2+ store but it does not affect the resting 
[Ca2+]c under normal circumstances. 

Overexpression of Calreticulin Compromises its ER Re- 
tention Mechanisms and the Protein Finds Its Way to the 

Outer Aspect of the Cell Surface Where It Plays an Adhesive 
Role. The presence of cell surface-associated calreticulin 
has been reported (Gray et al., 1995; White et al., 1995). 
We, however, do not see calreticulin at the surface of L cells, 
and the presence of antibodies against calreticulin in the 
medium does not affect these cells in any measurable man- 
ner (Jass, G.K., and M. Opas, unpublished data). 

The Increase in Cell Adhesiveness Concomitant with Cal- 
reticulin Overexpression Is Related to a Chaperone Function 
of Calreticulin. This is unlikely as - -  of the adhesion-related 
proteins examined so f a r - -  not the cell surface integrins, 
but the cytoskeletal protein vinculin and its RNA,  are reg- 
ulated coordinately with calreticulin. 

Calreticulin Regulates Adhesion by Direct Binding to 
Integrins. For this to occur, there should be focal contact-  
associated (or at least cytoplasmic) calreticulin. However,  
to date, neither we nor others (Bastianutto et al., 1995) 
could detect any cytoplasmic or focal contact-associated 
calreticulin using immunolocalization with different anti- 
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Figure 8. Effect Of the differential expression of calreticulin on expression of adhesion-related proteins. The densitometric data are 
shown as the percentage of values obtained for the control cells. The insets show blots in which positions of lanes correspond to the 
graph bars. Only abundance of vinculin and its messenger RNA change coordinately with the level of calreticulin expression. As a result 
of extreme susceptibility of talin to proteolysis (Beckerle et al., 1986, 1987) its band appears as a doublet. 

bodies and in numerous cell types. We are unable to detect 
any colocalization of calreticulin and integrins when the 
latter are clustered by incubation of L cells with specific 
antibodies. Targeting of calreticulin to the cytoplasm ei- 
ther by microinjection (unpublished data) or by expres- 
sion of a leaderless calreticutin (Michalak et al., 1996) has 
no effect on cell morphology or cell adhesion. Finally, us- 
ing a combination of interference reflection microscopy to 
locate focal contacts and the detection of endogenous 
GFP-calreticulin fluorescence, we are still not  able to de- 
tect calreticulin in any cell compartment  other than the 
ER. Hence, we conclude that cytoplasmic calreticulin, if it 
exists, is both not detectable and nonfunctional in terms of 
regulating cell adhesion. 

Calreticulin Exerts Its Adhesion-related Effects via Regu- 
lation of Vinculin from the ER Lumen. This scenario de- 
rives indirect support from the fact that, in vivo, only the 
ER form of calreticulin inhibits steroid-mediated gene ex- 
pression, while its cytosolic variant is ineffective (Michalak 
et al., 1996). In the L cells differentially overexpressing the 
full-length E R  form of calreticulin, changed levels of  vin- 
culin expression are sufficient to account for all adhesion- 
related effects observed so far (Rodriguez Fern~indez et al., 
1992, 1993; Coil et al., 1995; Goldmann et al., 1995; Vol- 
berg et al., 1995). This does not exclude involvement of 
other proteins, although a few obvious candidates (actin, 

talin, a5 and 131 integrins, and pp125 focal adhesion kinase) 
have been eliminated by us. What  remains unclear is how 
calreticulin overexpression translates into the increased 
intercellular adhesiveness. Nevertheless, in light of our 
data, none of  the adhesion-related effects of differential 
calreticulin expression requires the protein to be present 
at the cytoplasmic face of  the plasma membrane.  There- 
fore, we conclude that calreticulin in vivo performs its ad- 
hesion-related functions from within the E R  lumen. 

We thank Drs. S. Craig and D. Critchley for vinculin DNA probes, Dr. M. 
Chalfie for pGFP10.1, Dr. M. Ginsberg for anti-13, integrin antibodies, 
and Dr. K. Burridge for anti-talin antibody. The generosity and patience 
of Dr. B. Chan in providing us with various antiintegrins is gratefully ac- 
knowledged. The excellent help of Ewa Dziak and Jody Busaan is also 
greatly appreciated. 

This work was supported by grants to M. Michalak and M. Opas from 
the Medical Research Council of Canada, the Alberta Heart and Stroke 
Foundation of Alberta, and the Ontario Heart and Stroke Foundation. M. 
Michalak is a Medical Research Council scientist and a scholar of the Al- 
berta Heritage Foundation for Medical Research. 

Received for publication 16 August 1996 and in revised form 19 Septem- 
ber 1996. 

References 

Ausubel, F.M., R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl. 
1989. Current Protocols in Molecular Biology. Wiley-Interscience, New York. 

Opas et al. Calreticulin Regulates Vinculin and Cell Adhesion 1921 



Baksh, S., and M. Michalak. 1991. Expression of calreticulin in Escherichia coli 
and identification of its Ca 2+ binding domains. J. Biol. Chem. 266:21458- 
21465. 

Bastianutto, C., E. Clementi, F. Codazzi, P. Podini, F. De Giorgi, R. Rizzuto, J. 
Meldolesi, and T. Pozzan. 1995. Overexpression of calreticulin increases the 
Ca z+ capacity of rapidly exchanging Ca 2+ stores and reveals aspects of their 
lumenal microenvironment and function. J. Cell Biol. 130:847--855, 

Beckerle, M.C., T. O'Halloran, and K. Burridge. 1986. Demonstration of a rela- 
tionship between talin and P235, a major substrate of the calcium-dependent 
protease in platelets. J. Cell. Biochem. 30:259-270. 

Beckerle, M.C., K. Burridge, G.N. DeMartino, and D.E. Croall. 1987. Colocal- 
ization of calcium- dependent protease II and one of its substrates at sites of 
cell adhesion. Cell. 51:569-577. 

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of mi- 
crogram quantities of protein utilizing the principle of protein-dye binding. 
Anal, Biochem. 72:248-254. 

Burns, K., B. Duggan, E.A. Atkinson, K,S. Famulski, M. Nemer, R.C. Bleack- 
Icy, and M. Michalak. 1994. Modulation of gene expression by calreticulin 
binding to the glucocorticoid receptor. Nature (Lond.). 367:476-480. 

Burridge, K., and K. Fath. 1989. Focal contacts: transmembrane links between 
the extracellular matrix and the cytoskeleton. Bioessays. 10:104-108. 

Burridge, K., K. Fath, T. Kelly, G. Nuckolls, and C. Turner. 1988. Focal adhe- 
sions: transmembrane junctions between the extracellular matrix and the cy- 
toskeleton. Annu. Rev. Cell Biol. 4:487-525. 

Camacho, P., and J.D. Lechleiter. 1995. Calreticuliu inhibits repetitive intracel- 
lular Ca 2÷ waves. Cell 82:765-771. 

Chalfie, M., Y. Tu, G. Euskirchen, W.W. Ward, and D.C. Prasher. 1994. Green 
fluorescent protein as a marker for gene expression. Science (Wash. DC). 
263:802-805. 

Coil. J.L., A. Ben-Ze'ev, R.M. Ezzelt. J.L.R. Fern~indez, H. Baribault, R.G. 
Oshima, and E.D. Adamson. 1995. Targeted disruption of vinculin genes in 
F9 and embryonic stem cells changes cell morphology, adhesion, and loco- 
motion. Proc. Natl. Acad. Sci. USA. 92:9161-9165. 

Coppolino, M., C. Leung-Hagesteijn, S. Dedhar, and J. Wilkins. 1995. Inducible 
interaction of integrin a2131 with calreticulin-dependence on the activation 
state of the integrin. J. Biol. Chem. 270:23132-23138. 

Coutu, M.D., and S.W. Craig. 1988. cDNA-derived sequence of chicken em- 
bryo vinculin. Proc. Natl. Acad. Sci. USA. 85:8535-8539. 

Curtis, A.S.G. 1964. The mechanism of adhesion of cells to glass. J. Cell BioL 
20:199-215. 

Dedhar, S. 1994. Novel functions for calreticulin: interaction with integrins and 
modulation of gene expression. Trends Biochem. Sci. 19:269-271. 

Dedhar, S., P.S. Rennie, M. Shago, C.-Y. Leung-Hagesteijn, H. Yang, J. Filmus, 
R.G. Hawley, N. Bruchovsky, H. Cheng, RJ .  Matusik et aL 1994. Inhibition 
of nuclear hormone receptor activity by calreticulin. Nature (Lond.). 367: 
480-483. 

Fliegel, L., K. Burns, D.H. MacLennan, R.A.F. Reithmeier, and M. Michalak. 
1989a. Molecular cloning of the high affinity calcium-binding protein (cal- 
reticulin) of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 264: 
21522-21528. 

Fliegel, L., K. Burns, M. Opas, and M. Michalak. 1989b. The high-affinity cal- 
cium binding protein of sarcoplasmic reticulum. Tissue distribution, and ho- 
mology with calregulin. Biochim. Biophys. Acta. 982:1-8. 

Franke, W.W., P. Cowin, C. Grund, C. Kuhn, and H.-P. Kapprell. 1988. The en- 
dothelial junction. The plaque and its components. In Endothelial Cell Biol- 
ogy in Health and Disease. N. Simionescu and M. Simionescu, editors. Ple- 
num Press, New York. 147-166_ 

Ghosh, T.K., J. Bian, A.D. Short, S.L. Rybak, and D.L. Gill. 1991. Persistent in- 
tracellular calcium pool depletion by thapsigargin and its influence on celt 
growth. J. Biol. Chem. 266:24690-24697. 

Gingell, D., and I. Todd. 1979. Interference reflection microscopy. A quantita- 
tive theory for image interpretation and its application to cell-substratum 
separation measurement. Biophys. J. 26:507-526, 

Goldmann, W.H., M. Schindl, T.J. Cardozo, and R.M. Ezzell. 1995. Motility of 
vinculin-deficient F9 embryonic carcinoma cells analyzed by video, laser 
confocal, and reflection interference contrast microscopy. Exp. Cell Res. 221: 
311-319. 

Gray, A.J., P.W. Park, T.J. Broekelmann, G.J. Laurent, J.T. Reeves, K.R. Sten- 
mark, and R.P. Mecham. 1995. The mitogenic effects of the BI3 chain of fi- 
brinogen are mediated through cell surface calreticulin. J. Biol. Chem. 270: 
26602-26606. 

Grynkiewicz, G., M. Poenie, and R.Y. Tsien. 1985. A new generation of Ca 2÷ 
indicators with greatly improved fluorescence properties. Z BioL Chem. 260: 
3440-3450. 

Hitt, A.L., and E.J. Luna. 1994. Membrane interactions with the actin cytoskel- 
eton. Curr. Opin. Cell Biol. 6:120-130. 

Hynes, R.O. 1992. Integrins: versatility, modulation, and signaling in cell adhe- 
sion. Cell. 69:11-25. 

Hynes, R.O., A.T. Destree, and D.D. Wagner. 1982, Relationships between mi- 
crofilaments, cell-substratum adhesion, and fibronectin. Cold Spring Harbor 
Symp. Quant. Biol. 46:659-670. 

Izzard, C.S., and L.R. Lochner. 1976. Cell-to-substrate contacts in living fibro- 
blasts: an interference reflexion study with an evaluation of the technique. J. 
Cell Sci. 21:129-159. 

Khanna, N.C., and D.M. Waisman. 1986. Development of a radioimmunoassay 

for quantitation of calregulin in bovine tissues. Biochemistry. 25:1078-1082. 
Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the 

head of bacteriophage T4. Nature (Lond.). 227:680-685. 
Laudet, V., C. Hanni, J. Coil, F. Catzeflis, and D. Stehelin. 1992. Evolution of 

the nuclear receptor gene superfamily. EMBO (Eur. MoL Biol. Organ.) Z 
11:1003-10013. 

Leung-Hagesteijn, C.-Y., K. Milankov, M. Michalak, J. Wilkins, and S. Dedhar. 
1994. Cell attachment to extracellular matrix substrates is inhibited upon 
downregulation of expression of calreticulin, an intracellular integrin a-sub- 
unit-binding protein. J. Cell Sci. 107:589--600. 

Liu, N., R.E. Fine, E. Simons, and R.J. Johnson. 1994. Decreasing calreticulin 
expression lowers the Ca 2+ response to bradykinin and increases sensitivity 
to ionomycin in NG-108-15 cells. J. Biol. Chem. 269:28635-28639. 

Luna, E.J., and A.L. Hitt. 1992. Cytoskeleton-plasma membrane interactions. 
Science (Wash. DC). 258:955-964. 

McNamee, H.P., D.E. Ingber, and M.A. Schwartz. 1993. Adhesion to fibronec- 
tin stimulates inositol lipid synthesis and enhances PDGF-induced inositol 
lipid breakdown. J. Cell Biol. 121:673-678. 

Mery, L., N. Mesaeli, M. Michalak, M. Opas, D.P. Lew, and K.-H. Krause. 1996. 
Overexpression of calreticulin increases intracellular Ca2+-storage and de- 
creases store-operated Ca 2+ influx. J. Biol. Chem. 271:9332-9339. 

Michalak, M. 1996. Calreticulin. R.G. Landes, Georgetown. 207 pp. 
Michalak, M., and D.H. MacLennan. 1980. Assembly of sarcoplasmic reticu- 

lum. Biosynthesis of the high affinity calcium binding protein in rat skeletal 
muscle cultures. 3". Biol. Chem. 255:1327-1334. 

Michalak, M., R.E. Milner, K. Burns, and M. Opas. 1992. Calreticulin. Bio- 
chem. J. 285:681-692. 

Michalak, M., K. Burns, N. Mesaeli, C, Andrin, J.L. Busaan, G.K. Jass, and M. 
Opas. 1996. Endoplasmic reticulum form of calreticulin modulates glucocor- 
ticoid-sensitive gene expression. Z BioL Chem. In press. 

Nash, P.D., M. Opas, and M. Michalak. 1994. Calreticulin: not just another cal- 
cium-binding protein. MoL Cell. Biochem. 135:71-78. 

Nauseef, W.M., S.J. McCormick, and R.A. Clark. 1995. Calreticulin functions 
as a molecular chaperone in the biosynthesis of myeloperoxidase. J. Biol. 
Chem. 270:4741-4747. 

Nigam, S.K., A.L. Goldberg, S. Ho, M.F. Rhode, K.T. Bush, and M.Y. Sher- 
man. 1994. A set of endoplasmic reticulum proteins possessing properties of 
molecular chaperones includes CaZ+-binding proteins and members of the 
thioredoxin superfamily. J. Biol. Chem. 269:1744-1749. 

O'Toole, T.E., Y. Katagiri, R.J. Faull, K. Peter, R. Tamura, V. Quaranta, J.C. 
Loftus, S.J. Shattil, and M.H. Ginsberg. 1994. Integrin cytoplasmic domains 
mediate inside-out signal transduction. J. Cell Blot, 124:1047-1059. 

Opas, M., E. Dziak, L. Fliegel, and M. Michalak. 1991. Regulation of expression 
and intraeellular distribution of calreticulin, a major calcium binding protein 
of nonmuscle cells. J. Cell. Physiol. 149:160-171. 

Ostwald, T.J., and D.H. MacLennan. 1974. Isolation of a high affinity calcium 
binding protein from sarcoplasmic reticulum. J. Biol. Chem. 249:974-979. 

Otteken, A., and B. Moss. 1996. Calreticulin interacts with newly synthesized 
human immunodeflciency virus type 1 envelope glycoprotein, suggesting a 
chaperone function similar to that of calnexin. J. Biol. Chem. 271:97-103, 

Otto, J.J. 1990. Vinculin. Cell Motil. Cytoskeleton. 16:1-6. 
Pelham, H.R.B. 1989. Control of protein exit from the endoplasmic reticulum. 

Annu. Rev. Cell Biol. 5:1-23. 
Peterson, J.R., A. Ora, P.N. Van, and A. Helenius. 1995. Transient, lectin-like 

association of calreticulin with folding intermediates of cellular and viral gly- 
coproteins. Mol. Biol. Cell. 6:1173-1184. 

Pozzan, T., R. Rizzuto, P. Volpe, and J. Meldolesi. 1994. Molecular and cellular 
physiology of intracellular calcium stores. Physiol. Rev. 74:595-636. 

Rodrfguez Fern¢indez, J.L., B. Geiger, D. Salomon, H. Sabanay, M. ZNler, and 
A. Ben-Ze'evl 1992. Suppression of tumorigenicity in transformed cells after 
transfection with vinculin cDNA. J. Cell Biol. 119:427-438. 

Rodrfguez Fern~lndez, J.L., B. Geiger, D. Salomon, and A. Ben-Ze'ev. 1993. 
Suppression of vinculin expression by antisense transfection confers changes 
in cell morphology, motility, and anchorage-dependent growth of 3T3 cells. 
J. Cell Biol. 122:1285-1294. 

Rojiani, M.V., B.B. Finlay, V. Gray, and S. Dedhar. 1991. In vitro interaction of 
a polypeptide homologous to human Ro/SS-A antigen (calreticulin) with a 
highly conserved amino acid sequence in the cytoplasmic domain of integrin 
asubunits. Biochemistry. 30:9859-9866. 

Ruoslahti, E. 1991. Integrins. J. Clinl Invest. 87:1-5. 
Schwartz, M.A., C. Lechene, and D.E. Ingber. 1991. Insoluble fibronectin acti- 

vates the Na/H antiporter by clustering and immobilizing integrin c¢,s1~1, inde- 
pendent of cell shape. Proc. Natl. Acad. Sci. USA. 88:7849-7853. 

Short, A.D., J. Bian, T.K. Ghosh, R.T. Waldron, S.L Rybak, and D.L Gill. 
1993. Intracellular Ca 2÷ pool content is linked to control of cell growth. 
Proc. Natl. Acad. Sci. USA. 90:4986-4990. 

Singer, l.I. 1979. The fibronexus: a transmembrane association of fibronectin- 
containing fibers and bundles of 5-nm microfilaments in hamster and human 
fibroblasts. Cell. 16:675~585. 

Singer, I.I., D.W. Kawka, M. Kazazis, and R.A.F. Clark. 1984. In vivo co-distri- 
bution of fibronectin and actin fibers in granulation tissue: immunofluores- 
cence and electron microscope studies of the fibronexus at the myofibroblast 
surface. J. Cell Biol. 98:2091-2106. 

St-Arnaud, R., J. Prud'homme, C. Leung-Hagesteijn, and S. Dedhar. 1995. 
Constitutive expression of calreticulin in osteoblasts inhibits mineralization. 

The Journal of Cell Biology, Volume 135, 1996 1922 



Z Cell Biol. 13l:1351-1359. 
Takeichi, M., T. Atsumi, C. Yoshida, K. Uno, and T.S. Okada. 1981. Selective 

adhesion of embryonal carcinoma cells and differentiated cells by Ca 2+- 
dependent sites. Dev. Biol. 87:340-350. 

Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of pro- 
teins from polyacrylamide gels to nitrocellulose sheets: procedure and some 
applications. Proc. Natl. Acad. Sci. USA. 76:4350--4354. 

Treves, S., M. De Mattei, M. Landfredi, A. Villa, N.M. Green, D.H. MacLen- 
nan, J. Meldolesi, and T. Pozzan, 1990. Calreticulin is a candidate for a calse- 
questrin-like function in Ca2+-storage compartments (calciosomes) of liver 
and brain. Biochem. J. 271:473-480. 

Volberg, T., B. Geiger, Z. Kam, R. Pankov, I. Simcha, H. Sabanay, J.-L. Coil, E. 
Adamson, and A. Ben-Ze'ev. 1995. Focal adhesion formation by F9 embryo- 
nal carcinoma cells after vinculin gene disruption. J. Cell Sci. 108:2253-2260. 

Wada, I., S. Imai, M. Kai, F. Sakane, and H. Kanoh. 1995. Chaperone function 
of calreticulin when expressed in the endoplasmic reticulum as the mere- 

brahe-anchored and soluble forms. Z Biol. Chern. 270:20298-20304. 
Wheeler, D.G., J. Horsford, M. Michalak, J.H. White. and G.N. Hendy. 1995. 

Calreticulin inhibits vitamin D 3 signal transduction. Nucleic Acids Res. 23: 
3268-3274. 

White, T.K., Q. Zhu, and M.L. Tanzer. 1995. Cell surface calreticulin is a puta- 
tive mannoside lectin which triggers mouse melanoma cell spreading. J. Biol. 
Chem. 270:15926--15929. 

Williams, M.J., P.E. Hughes, T.E. O'Toole, and M.H. Ginsberg. 1994. The inner 
world of cell adhesion: integrin cytoplasmic domains. Trends Cell Biol. 4: 
10%112. 

Yamada, K.M., and S. Miyamoto. 1995. Integrin transmembrane signaling and 
cytoskeletal control. Curr. Opin. Cell Biol. 7:681-689. 

Yl~inne, J., Y. Chen, T.E. O'Toole, J.C. Loftus, Y. Takada, and M.H. Ginsberg. 
1993. Distinct functions of integrin a and 13 subunit cytoplasmic domains in 
cell spreading and formation of focal adhesions. Z Cell Biol. 122:223-233. 

Opas et al. Calreticulin Regulates Vinculin and Cell Adhesion 1923 


