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Abstract

Biological dosimetry, that is the estimation of the dose of an exposure to ionizing

radiation by a biological parameter, is a very important tool in cases of radiation

accidents. The score of dicentric chromosomes, considered to be the most

accurate method for biological dosimetry, for low LET radiation and up to 5 Gy, fits

very well to a linear-quadratic model of dose-effect curve assuming the Poisson

distribution. The accuracy of this estimation raises difficulties for doses over 5 Gy,

the highest dose of the majority of dose-effect curves used in biological dosimetry.

At doses over 5 Gy most cells show difficulties in reaching mitosis and cannot be

used to score dicentric chromosomes. In the present study with the treatment of

lymphocyte cultures with caffeine and the standardization of the culture time,

metaphases for doses up to 25 Gy have been analyzed. Here we present a new

model for biological dosimetry, which includes a Gompertz-type function as the

dose response, and also takes into account the underdispersion of aberration-

among-cell distribution. The new model allows the estimation of doses of exposures

to ionizing radiation of up to 25 Gy. Moreover, the model is more effective in

estimating whole and partial body exposures than the classical method based on

linear and linear-quadratic functions, suggesting their effectiveness and great

potential to be used after high dose exposures of radiation.

Introduction

In cases of accidental exposures to ionizing radiation (IR), it is very important to

estimate the dose received to guide medical decisions. When physical

measurements are not available or it is suspected that dosimeters have not been
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used correctly, biodosimetric methods become necessary to obtain a precise

knowledge of the received dose for a clear evaluation of the case. Within the

biodosimetric methods, the score of dicentric chromosomes in metaphases of

peripheral blood lymphocytes, cultured around 48 h, is widely considered as the

‘‘gold standard’’ method that accurately estimates doses in cases of acute and

recent exposures [1]. This is due to the very low background frequency of

dicentrics and to the strong relationship between the frequency of dicentrics and

the dose. Currently, the majority of dose-effect curves for dicentric chromosomes

include doses from 0 to 5 Gy. For this dose range and for low LET radiation types,

such as X and gamma rays, the dose-effect relationship fits well to a linear-

quadratic model. Additionally after whole body exposure from 0 to 5 Gy the

distribution of dicentrics among cells agrees with the Poisson distribution,

allowing the detection of partial body exposures when deviations of the Poisson

are detected [2, 3, 4].

Some accidents have demonstrated the need to evaluate exposures to high doses

and if they are whole or partial body exposures [5, 6, 7]. Nevertheless, the dicentric

based biodosimetry becomes less suitable for doses of IR higher than 5 Gy,

because the number of cells able to reach metaphase decreases dramatically when

the dose increases. After a high dose exposure heavily damaged cells, which

usually bear incomplete chromosome aberrations, show a delay or even the

impossibility of progressing through the G2/M cell cycle checkpoint to reach

mitosis [1, 8]. To obtain enough metaphases at doses over 5 Gy, some authors

have increased the culture time allowing delayed cells to reach mitosis, but in

some cases the adjustment to linear-quadratic dose-effect curves showed clear

deviations from the aberration frequencies observed [9, 10]. In other studies, a

better fit to the linear-quadratic model has been obtained but with negative a and/

or b coefficients [6, 11]. To achieve a better adjustment for very high doses a

multiparametric model based on modifications on the linear-quadratic model was

proposed by Sasaki [9].

A preliminary study using caffeine to evaluate its suitability for the analysis of

dicentric chromosomes after high doses of IR showed that the mitotic index in

caffeine treated cultures was good enough for dose assessment [12]. In fact,

caffeine treatment abrogates the G2/M checkpoint, and increases the number of

damaged cells that progress until metaphase [13, 14, 15]. In the present study we

have standardized the optimal culture time and caffeine treatment for the analysis

of dicentrics irradiating at doses from 0 to 25 Gy. We propose a new integrated

model for dose-effect calibration, based on a specific weighted Poisson

distribution of dicentrics and adjusting the observed values to a Gompertz-type

function. Finally, and to test the model, simulated whole and partial body

irradiations have been assessed.
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Materials and Methods

Irradiation conditions

Two donors, a 24-year-old female and a 53-year-old male with no history of

exposure to clastogenic agents, signed an informed consent following the ethical

guidelines for good practice of the Universitat Autònoma de Barcelona before

blood extraction. Moreover, the Ethics Committee on Animal and Human

Research of the Universitat Autònoma de Barcelona informed that the present

research project ‘‘does not require an approval by the ethics committee’’.

Irradiations for three different purposes were performed: One, to standardize the

caffeine treatment; second, to elaborate the dose-effect curve; and a third, to

simulate whole and partial body irradiations. In all cases blood samples were

obtained by venipuncture and collected in heparinized tubes less than one hour

before irradiation. To standardize the treatment with caffeine, peripheral blood

samples from the 24-year-old female were irradiated at 10 Gy (dose rate of

5.25 Gy.min-1) using a 137Cs source (IBL437C, CIS Biointernational, GIF Yvette,

France) located at the Unitat Tècnica de Protecció Radiològica of the Universitat

Autònoma de Barcelona. During irradiations, IAEA recommendations were

followed (IAEA 2011). For the dose-effect curve elaboration, blood samples from

the same donor were irradiated, in the same conditions described above, at 0, 0.1,

0.5, 1, 3, 5, 7, 10, 15, 20 and 25 Gy. To simulate whole and partial body

irradiations peripheral blood samples from the 53-year-old male were obtained

and irradiated at 2, 6, 12 and 17 Gy in the same conditions. To simulate partial

body exposures, irradiated blood at 6 and 12 Gy was mixed with non-irradiated to

obtain fractions of 30% and 70% of irradiated blood.

Culture conditions and harvesting

Lymphocytes were cultured in Roswell Park Memorial Institute (RPMI) 1640

medium (GIBCO, Life Technologies, Madrid, Spain) supplemented with 15%

fetal calf serum (GIBCO), 1% of L-glutamine 200 mM (GIBCO), antibiotics

(100 IU?mL21 penicillin, 100 mg?mL-1 streptomycin) (GIBCO), 1:1000 of heparin

(ROVI, ROVI S.A., Madrid, Spain), and 4% of phytohemagglutinin (PHA)

(GIBCO). For all cultures, 0.1 mg?mL21 Colcemid (GIBCO) was added 24 h after

the culture set up to analyze only first division cells. Caffeine (Sigma-Aldrich

Quı́mica, Madrid, Spain) was added at 46 h of incubation at a final concentration

0.3 mg?mL21. To standardize the optimal treatment with caffeine, samples

irradiated at 10 Gy were cultured up to 48, 51, 54, 57, 60, 63 and 72 hours. For the

elaboration of the dose-effect curve and the simulations of whole and partial body

exposures the cultures were harvested at optimal culture time of 57 h. All cultures

were harvested using the standard treatment with hypotonic and Carnoy’s

fixative. Slides were stained with Leishman stain (Leishman eosin methylene blue

solution modified, Merck, Madrid, Spain).
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Microscope analysis

Chromosome analyses were carried out exclusively in metaphases containing 46

centromeres. In the standardization of the caffeine treatment, 150 metaphases

were analyzed at each culture time. For the elaboration of the dose-effect curve,

2000 metaphases were scored at doses of 0, 0.1 and 0.5 Gy, 1000 at 1 Gy, 500 at

3 Gy, 150 at 5, 7 and 10 Gy and 100 at 15, 20 and 25 Gy. For the whole and partial

body exposure simulations, a minimum of 100 dicentrics or 100 cells were scored

in blind samples. Multicentric chromosomes (di-, tri-, tetra-…) were only

recorded when the corresponding number of acentric fragments was present.

Polycentrics were converted into the equivalent number of dicentrics as (n –1),

where n is a number of centromeres. All cells with doubts or with dicentrics were

analyzed by two scorers. In the standardization of the caffeine treatment the

mitotic index (MI) was determined as the ratio of the number of metaphases in

500 stimulated nuclei [1].

Statistics

To evaluate if the distribution of dicentrics among cells followed a Poisson, the u-

test was used [16]. U values out of the interval ¡1.96 indicate that the dicentric

cell distribution does not follow a Poisson with a 5% level of significance. As will

be described in the results, our data presented a significant underdispersion.

Therefore, a new count probability function has been considered to model our

underdispersed count data, having the form,

P k; b,lð Þ~ 1zbk2

1zb lzl2ð Þ
lke
k!

{l
,k~0,1,2,::: ð1Þ

This is a specific weighted Poisson distribution [17] with a weight equal to

v(k)~1zbk2, representing the sighting mechanism. This increasing function of k

gives more weight to the large values than to the small ones. This two-parameter

distribution is very similar to the PL2 distribution described in [18] but, for our

data set, the performance of (1) is better.

The domain of the parameters is b§0,lw0 and for b~0 this is just the Poisson

probability function. Direct calculations show that the expectation (population

mean) and variance have the form,

m(b,l)~l 1z b(2lz1)

1zb(lzl2)

� �
ð2Þ

s2 b,lð Þ~l 1zb 1z4lzbl2

1zblzbl2ð Þ2
� �
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Changing the values of the parameters b,l, the dispersion index

s2 b,lð Þ=m b,lð Þð Þ can take values slightly greater than 1 (around to 1.1) and values

lower than 1. Therefore, the probability distribution described in (1) is useful to

model count data presenting underdispersion, such as that observed in the

empirical dicentrics distributions for the establishment of the dose-effect curve

shown in results section. It is important to remark that this is an empirical

solution, not an explanation of why the underdispersion occurs. To construct the

dose-effect curve, we have considered parameter l to be dependent of the dose d,

following a Gompertz curve of the form,

l dð Þ~b0e{b1e{b2d

This is a flexible curve that allows sigmoid patterns to be fitted. Moreover,

parameter b has also been considered depending on the dose in a simple linear

form b dð Þ~b3d. Replacing l(d) and b(d) in the expression of the population

mean (2), we obtain the profile of the curve which describes the frequency of

dicentrics as a function of the dose, that will be denoted as Y(d; b0,b1,b2,b3). This

is a sigmoid curve with a profile very similar to that of the Gompertz curve, which

from now on will be indicated as GT (from Gompertz-type). Therefore, in order

to estimate the dose-effect GT-curve, four parameters have to be estimated. This

has been done by means of the maximum likelihood method, with a program

made in R using the procedure nlm (supporting information S1). The parameter

estimates will be denoted as b
^

i, and the estimated dose-effect GT-curve as

Y(d; b
^

0, b
^

1, b
^

2, b
^

3) or in a short form Y
^

(d). The 95% confidence limits of the

curve have the form Y
^

(d)+R:s
Y
^ (d), where s

Y
^ (d) is the estimated standard error

of a prediction for a dose equal to d, specifically calculated for our model using

the delta-method. The constant R is the square root of the 0.95 quantile of a chi-

square distribution with four degrees of freedom (the number of parameters).

Given a blood sample with a frequency of dicentrics Y0 (this is the observed yield),

a point estimation of the received dose d0 is obtained solving numerically the

equation Y
^

(d0)~Y0. The confidence limits of the estimated dose (dL,dU) are

calculated using a version of the inverse regression Merkle’s approach proposed

into IAEA manual [1], which consists of solving numerically the equations

Y0{1:96(Y0)~ Y
^

(dL)zR:s
Y
^ (dL) and Y0z1:96(Y0)~ Y

^
(dU ){R:s

Y
^ (dU ), where

SE(Y0) is the standard error of the observed yield.

Partial body irradiation produces distributions of dicentrics that are zero-

inflated and this also increases the dispersion index of the distribution. However,

because our distributions are underdispersed, for high fraction volumes of

irradiated blood this increment could be insufficient to generate overdispersion.

Consequently, the u-test has to be used with caution. To estimate the received

dose in partial body irradiation scenarios, the empirical distribution of dicentrics

Integrated Biodosimetry for Low and High Doses
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of the blood sample has been fitted by maximum likelihood to a zero-truncated

version of the probability function shown in (1), that is,

PT(k; b,l)~ P(k;b,l)
1{P(0;b,l)

,k~1,2,:::, obtaining b
^

and l
^

. The estimated yield is

calculated as m( b
^

, l
^

), using expression (2), and its standard error is obtained

using the delta-method. The estimated dose and its confidence limits are

calculated using again the version of the Merkle’s approach described above, but

taking the estimated yield m( b
^

, l
^

) and its standard error.

In order to compare our method with the classical ones, the linear and linear-

quadratic dose-effect models were also fitted by maximum likelihood, using the

usual Poisson distribution assumption for dose assessment. After whole body

exposure simulations the inverse regression Merkle’s approach was used [1] and

for partial body exposure simulations the Dolphin method [1] was used to

calculate the expected yield in the irradiated fraction. In both cases 95%

confidence interval was calculated using the Merkle’s approach [1] as in GT.

Results

Standardization of caffeine treatment

As can be seen in Figure 1 and Table 1, after 10 Gy irradiation and for 48, 51 and

54 hours of culture, the frequency of dicentrics remained constant around 7

dicentrics per cell. Then, the frequency started to decrease, 6 at 57 h of culture and

4 at 72 h. Inversely the MI increased during the first four culture times, from 2

(48 h) to 14 (57 h) metaphases per hundred cells, remaining relatively constant at

longer culture times (14 and 17 metaphases per hundred cells at 57 and 72 hours

of culture). As can also be seen, at all culture times the distribution of cells with

dicentrics showed a significant underdispersion (U value lower than 21.96).

Establishment of the dose-effect curve

The results used for the elaboration of the dose-effect curve are shown in Table 2.

As expected a clear increase in the frequency of dicentrics was observed as the dose

increased, being more accused at the low doses. For example the frequency of

dicentrics per cell increased by more than twice between 5 and 10 Gy, from 2.5 to

6.1, whereas between 10 and 20 Gy the frequency only increased from 6.1 to 9.6

dicentrics per cell. The compliance of dicentrics cell distribution with Poisson

distribution was not rejected for six of the 10 doses evaluated. However, in all

cases U values were negative and for 3, 5, 7 and 10 Gy U values indicated a

significant underdispersion. The expected cell distribution of dicentrics, assuming

a Poisson and considering the sample mean observed, is shown in brackets in

Table 2. As can be seen, a clear tendency to detect fewer cells without or with

fewer dicentrics than expected under the Poisson assumption was observed as the

dose increased. At 5 Gy the number of cells without dicentrics was lower than

Integrated Biodosimetry for Low and High Doses
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expected. At 7 Gy no cells without dicentrics were observed and the number of

cells with 1 dicentric was lower than expected. At 10 Gy, no cells without

dicentrics were observed and fewer cells than expected had 3 or 4 dicentrics. At 20

and 25 Gy no cells with 3, 4 dicentrics were observed. This behavior has been

conveniently modeled using the weighted Poisson distribution described in (1)

(Figure 2). When the higher classes are evaluated it seems that the number of cells

with many dicentrics was also underrepresented. This was clear at 5, 7 and 10 Gy.

However at 20 and 25 Gy this effect was not clearly observed.

In Table 3 are shown the coefficients of the fitting to the linear, linear quadratic

and GT models. Details of the ‘‘dose_response_curve.txt’’ program output for the

GT model fitting can be seen in Figures S1 and S2 in File S1. In the case of the

linear and linear-quadratic models, the basal frequency coefficient (C) was

negative and for this reason the fitting was carried out exclusively for the linear

and linear-quadratic coefficients. Additionally and to explain the underdispersion

and the saturation in the frequency of dicentrics observed at the highest doses, the

frequencies of dicentrics were adjusted to a GT model, based on the weighted

Poisson distribution defined in (1), where fewer differences between the observed

dicentric distribution and the expected one for the model were achieved for cells

with no or few dicentrics (Figure 2). The fitting of the observed frequencies to the

three models can be seen in Figure 3. The x2–statistic was used to compare the

different adjustments (Table 3), indicating a better adjustment for the GT model.

Details of the ‘‘wholebody_dose.txt’’ and ‘‘partialbody_dose.txt’’ programs

outputs for whole and partial body dose estimations respectively, can be seen in

Figures S3 and S4 in File S1.

Figure 1. Frequency of dicentrics and mitotic index after irradiation at 10 Gy and at different culture
times with caffeine treatment. Error bars indicate the SEM.

doi:10.1371/journal.pone.0114137.g001
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Figure 2. Observed distribution of dicentrics among cells. The expected cell distribution was calculated using the GT model and the weighted Poisson.

doi:10.1371/journal.pone.0114137.g002
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Dose estimates of simulated whole and partial body exposures

Table 4 shows the distribution of cells with dicentrics in the simulation of whole

body (2, 6, 12 and 17 Gy) and partial body exposures (30% and 70% of irradiated

Table 3. Dose-response coefficients obtained for the different adjustments to the models and their goodness-of-fit x2 statistics.

Models Goodness-of-fit

COEFFICIENTS (SE) x2 df

Linear-quadratic

Y(D;C;a;b) C520.0181 (0.0009) a50.2480 (0.0081) b50.0130 (0.0006) 746.37 6

Y(D;a;b) __ a50.2431 (0.0080) b50.0133 (0.0006) 742.19 7

Linear

Y(D;C;a) C520.0143 (0.0025) a50.4125 (0.0059) __ 438.44 7

Y(D;a) __ a50.4034 (0.0056) __ 875.31 8

GT

Y(D; b0, b1, b2, b3) b058.4716 (0.2097) b156.8462 (0.1204) b250.2318 (0.0051) b351.062-
3

(0.1764) 70.14 6

doi:10.1371/journal.pone.0114137.t003

Figure 3. Frequencies of dicentrics (Y obs) and their fit to the linear (L), linear quadratic (LQ) and
Gompertz-type (GT) models. Error bars indicate the SEM.

doi:10.1371/journal.pone.0114137.g003
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blood at 6 and 12 Gy). As can be seen, underdispersion was observed for the

whole body exposure simulations and a highly significant overdispersion, which

increases as the percentage of irradiated blood decreases, was observed for partial

body exposure simulations. In the simulation of whole body exposures, the

estimated doses using the three mathematical models were in general close to the

real dose (Table 5). With the linear and linear quadratic models, the doses were

slightly overestimated, whereas with the GT model the doses were slightly

underestimated. The dose estimates by the GT model were in three of the four

doses more accurate than with the classical linear and linear quadratic ones.

Moreover, in the simulation of partial exposures, the GT model also showed a

better adjustment between the real dose and the estimated dose for the irradiated

fraction.

Discussion

Standardization of the new method

The dicentric chromosome analysis has been used since the mid-1960s to estimate

the dose of an exposure to ionizing radiation. The mathematical models

developed have allowed the dose to be estimated taking into account different

scenarios such as the type of ionizing radiation, the length of the exposure, the

uniformity or not of the exposure and the time since the exposure [1]. However,

the dicentric analysis usefulness has limitations for doses over 5 Gy because it is

difficult to obtain enough metaphases to carry out confident dose estimation. For

this reason the majority of dose-effect curves have been elaborated with doses up

to 5 Gy. To avoid this limitation, some approaches have been suggested. Methods

to analyze interphase cells by premature chromosome condensation

[19, 20, 21, 22, 23] allows the chromosome analysis of heavily damaged cells that

would remain blocked in the check-point G2/M. However, by this methodology

the morphology of the chromosomes does not allow the observation of dicentrics

by uniform stain, and for this reason the score of ring chromosomes and acentric

Table 5. Dose estimates and confidence intervals obtained by the three mathematical models.

% of irradiated Dose estimation in Gy (confidence interval)

Model

Dose blood Linear (L) Linear-quadratic (LQ) Gompertz-type (GT)

2 Gy 100% 0.77 (0.64–0.93) 1.2 (0.96–1.51) 1.91 (1.67–2.16)

6 Gy 30% 8.43 (6.70–10.08) 9.28 (7.79–10.59) 6.57 (5.67–7.54)

70% 6.94 (6.05–7.80) 8.01 (7.20–8.75) 5.86 (5.29–6.48)

100% 7.02 (6.18–8.00) 8.08 (7.10–9.21) 5.66 (5.15–6.23)

12 Gy 30% 14.98 (12.05–17.89) 14.1 (12.05–15.88) 9.91 (8.20–11.99)

70% 14.84 (12.48–17.17) 14 (12.35–15.45) 9.83 (8.37–11.54)

100% 14.36 (13.00–15.89) 13.64 (12.37–15.10) 9.54 (8.72–10.45)

17 Gy 100% 22.66 (20.54–25.03) 18.62 (16.97–20.53) 16.37 (13.87–26.48)

doi:10.1371/journal.pone.0114137.t005
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chromosomes is proposed [20, 24, 25, 26]. Ring chromosomes are induced at a

much lower frequency than dicentrics, making dose estimates less accurate. The

increase of culture time is another approach to increase the number of analyzable

cells. Different culture lengths have been used in different studies, 52 h [6, 11, 10],

56 h [27], 68 h [11],72 h [6, 27] and 96 h [6]. The frequencies of dicentrics and

rings at different culture times were compared by some authors [6, 10, 11, 27]

detecting no significant differences. Another approach to increase the number of

analyzable cells at high doses is the use of caffeine to abrogate the G2/M

checkpoint [12]. In the present study, performed with caffeine treated cultures,

the frequency of dicentrics showed a progressive decrease from 54 h to 72 h

(Figure 1). This was also observed in a previous study with caffeine where after a

15 Gy irradiation the frequency of dicentrics observed at 60 h of culture was

significantly lower than one observed at 48 h [12]. It has been described that cells

bearing dicentric chromosomes are preferentially eliminated in interphase by

apoptosis [28]. For this reason, in caffeine treated cultures it is very important to

obtain enough analyzable cells without compromising the frequency of dicentrics.

To perform the culture standardization, the dose of 10 Gy was selected because

it is in the medium dose range that spans the projected dose-effect curve. It is

known that irradiated cells show a delay in the cell cycle progression of

approximately one hour per Gy of radiation received [29]. Therefore, in cultures

irradiated at 10 Gy it is expected that the first wave of metaphases would be found

at around 58 h of culture. We obtained the best relationship between MI and

dicentric frequency with the 57 h cultures, and for this reason this culture time

was chosen to elaborate the dose-effect curve.

Underdispersion in the spotlight

A factor influencing the dose-effect curve fitting is the distribution of dicentrics

among cells. In classical dose-effect curves for low LET radiation, this distribution

fitted to a Poisson. However, at high doses of IR underdispersion in the dicentric

distribution has been described by several authors [6, 10, 12, 30]. In the present

study the underdispersion was observed at all doses, but with statistical

significance at 3, 5, 7 and 10 Gy. To analyze this phenomenon, the observed cell

distribution of dicentrics and the expected one assuming a Poisson distribution

were calculated (Table 2), showing a clear tendency to detect fewer cells without

or with fewer dicentrics than expected at doses higher than 5 Gy, where the

number of cells without aberrations was lower than expected. A possible

explanation could be related to the repair of double strand breaks (DSBs). It has

been described that the probability for correct or incorrect DSBs rejoining

depends on the spatial and temporal proximity of other DSBs [31, 32, 33], and

consequently the increased probability of misrejoining at high doses could explain

that the observed number of cells without or with few dicentrics was lower than

expected for all doses from 5 to 25 Gy. On the other hand, at the highest doses,

from 10 to 25 Gy, we observed fewer cells with elevated numbers of dicentrics

than expected, probably due to a saturation of the dicentrics yield at very high

Integrated Biodosimetry for Low and High Doses
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doses [5, 6, 9, 10, 34]. This saturation in the formation of aberrations with

centromere at very high doses is intrinsically limited by the number of

centromeres available, which in a human cell is 46 [9, 35]. Both aspects the fewer

cells than expected with low numbers of dicentrics and the saturation effect

contributes to the underdispersion observed. It must be pointed out that a higher

underdispersion at the medium doses (5–15 Gy) has also been observed by other

authors [6, 9]. The tendency of the dicentrics frequency to saturate at the highest

doses leads to a poor fitting with the linear and linear-quadratic models

(Figure 3), where differences between the observed and expected values were

observed in the entire dose range (Table 6). A similar poor fitting with the linear

quadratic model had been previously described when high doses are analyzed

[6, 10, 11].

Establishment of a new dose-effect relationship

Taking into account the saturation of the dicentric frequencies for doses higher

than 15 Gy, an empirical adjustment to a GT model was performed (Figure 3),

and a better adjustment was obtained. For this model, the lower doses, up to 3 Gy

were those accounting for the higher values in the chi-square statistic (Table 6).

Sasaki [9] proposed a semi-empirical multiparametric model based on a mixed

Poisson distribution. However, from a mathematical point of view mixed Poisson

distributions always are overdispersed [36] and consequently they do not allow to

describe underdispersed scenarios. Parameters of Sasaki’s model were calculated

in two steps: A first approximation to the classic linear-quadratic model to

calculate the C, a and b coefficients using values obtained in the dose range 0.01–

3 Gy; and then, keeping the obtained coefficients and using the whole dose range

(up to 50 Gy) estimating 4 more parameters. One of them, a saturation constant

parameter, was manually determined. In that multiparametric approach a slight

deviation from the linear quadratic model was observed at low doses, leading to a

Table 6. x2 values for each dose for the number of dicentrics observed and expected for the three fitted models.

Dose (Gy) Linear-quadratic Linear Gompertz-type

0 – – 16.1

0.1 29.4 60.2 6.5

0.5 118.1 262.6 6.2

1 72.6 199.2 22.8

3 2.3 74.5 10.5

5 96.6 20.8 2.3

7 178.4 76.7 1.2

10 100.3 63.9 0

15 43.6 86.4 1.7

20 3.7 27.8 0.6

25 97.2 3.1 2.1

Total 742.2 875.3 70.1

doi:10.1371/journal.pone.0114137.t006
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possible underestimation in cases of dose assessment. In practice for dose

assessment the author proposed the use of the classical linear-quadratic model for

doses below 3 Gy, and the new multiparametric model for higher doses. It is

worth mentioning that the model proposed here assumes a lesser number of

coefficients (4), which are calculated in a single step. And although some

deviations are observed in the low dose range, these are not always in the same

sense. For example after 0.1 and 3 Gy the number of dicentrics observed was

lower than expected (11 and 393 observed vs 23 and 463 expected respectively),

but at 0.5 and 1 Gy the number of dicentrics observed was higher than expected

(78 and 120 observed vs 59 and 78 expected respectively). As indicated below the

obtained GT model accurately estimates the simulated 2 Gy irradiation.

The present GT model efficiency for dose estimations was tested in cases of

simulated exposures. For whole body simulations, the dose estimate was clearly

better with the GT model for three (2, 6, and 17 Gy) of the four doses when

compared with the linear and linear-quadratic models. At 12 Gy a better fit was

achieved with the linear-quadratic model but no model includes the real dose in

its confidence interval. However, biological dosimetry in cases of suspected very

high doses should be mainly used to dose estimation after partial or non-uniform

exposures, because the majority of accidents involve non-uniform exposures

[37, 38, 39], where the analyzed lymphocytes population contains a mixture of

exposed and non-exposed cells. In conventional colcemid treated cultures it is

widely accepted that dicentrics follow a Poisson distribution [30] and the mixture

with non-irradiated cells causes overdispersion. In the present study, with caffeine

and colcemid treatment, the dicentric distribution is underdispersed and

overdispersion cannot be the single observation indicative of a partial body

irradiation. Probably, irradiation to medium doses and to high fractions of the

body will conform to Poisson distribution [3]. For this reason, the decision to

apply the truncated weighted Poisson method should be taken not only

considering the U-test, but also with information about the accident

circumstances or from clinical symptoms that could appear, such as localized

erythema. In the present study, when irradiated blood at 6 and 12 Gy was mixed

with non-irradiated blood to simulate partial body irradiation of 30% and 70%, a

clear overdispersion was observed, and the estimated doses in the partial body

simulations were very close to the real dose.

In conclusion, the present study reveals that when caffeine is added to the

cultures enough metaphases can be obtained to perform cytogenetic analyses for

doses up to 25 Gy. With this treatment underdispersion is observed for all

dicentric cell distributions. The calibration curve was adjusted to a GT weighted

Poisson model to achieve a better fit in relation to the tendency to a saturation of

dicentric frequency at high doses and the observed underdispersion. The results

obtained for dose estimations of simulated whole and partial body exposures

reaffirm the effectiveness of the achieved GT model and its usefulness for

biological dosimetry.
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Supporting Information

File S1. Figures S1–S4. Figure S1. Outputs of the program ‘‘dose_response_-

curve.txt’’. Figure S2. Plot of the dose-effect curve obtained using the R-program

‘‘dose_response_curve.txt’’. Empty dots represent the observed frequencies of

dicentrics and red line the obtained Gompertz function. Figure S3. Outputs of the

program ‘‘wholebody_dose.txt’’. The estimated dose is 5.66, and the 95%

confidence interval is (5.15 26.23). Figure S4. Outputs of the program

‘‘partialbody_dose.txt’’. The estimated dose is 5.86, and the 95% confidence

interval is (5.29 26.48).

doi:10.1371/journal.pone.0114137.s001 (PDF)
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3. Barquinero JF, Barrios L, Caballı́n MR, Miró R, Ribas M, et al. (1997) Biological dosimetry in
simulated in vitro partial irradiations. Int J Radiat Biol. 71: 435–440.

4. Duran A, Barquinero JF, Caballı́n MR, Ribas M, Puig P, et al. (2002) Suitability of FISH Painting
Techniques for the Detection of Partial-Body Irradiations for Biological Dosimetry. Radiat Res. 157: 461–
468.

5. Hayata I, Kanda R, Minamihisamatsu M, Furukawa M, Sasaki MS (2001) Cytogenetical dose
estimation for 3 severely exposed patients in the JCO criticality accident in Tokai-mura. J Radiat Res 42
Suppl: S149–55.

6. Yao B, Jiang BR, Ai HS, Li YF, Liu GX, et al. (2010) Biological dose estimation for two severely
exposed patients in a radiation accident in Shandong Jining, China, in 2004. Int J Radiat Biol. 86: 800–
808.

7. Yao B, Li Y, Liu G, Guo M, Bai J, et al. (2013) Estimation of the biological dose received by five victims
of a radiation accident using three different cytogenetic tools. Mutat Res. 751: 66–72.

8. Rodrı́guez P, Barquinero JF, Duran A, Caballı́n MR, Ribas M, et al. (2009) Cells bearing chromosome
aberrations lacking one telomere are selectively blocked at the G2/M checkpoint. Mutat Res. 670: 53–58.

9. Sasaki MS (2003) Chromosomal biodosimetry by unfolding a mixed Poisson distribution: a generalized
model. Int J Radiat Biol. 79: 83–97.

10. Vinnikov VA, Maznyk NA (2013) Cytogenetic dose-response in vitro for biological dosimetry after
exposure to high doses of gamma-rays. Radiat Prot Dosimetry. 154: 186–197.

11. Chen Y, Yan XK, Du J, Wang ZD, Zhang XQ, et al. (2011) Biological dose estimation for accidental
supra-high dose gamma-ray exposure. Radiat Meas. 46: 837–841.

12. Pujol M, Puig R, Caballı́n MR, Barrios L, Barquinero J-F (2012) The use of caffeine to assess high
dose exposures to ionising radiation by dicentric analysis. Radiat Prot Dosimetry. 149: 392–398.

13. Rowley R, Zorch M Leeper DB (1984) Effect of caffeine on radiation-induced mitotic delay: delayed
expression of G2 arrest. Radiat Res. 97: 178–185.

Integrated Biodosimetry for Low and High Doses

PLOS ONE | DOI:10.1371/journal.pone.0114137 December 2, 2014 17 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0114137.s001


14. Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, et al. (1999) Inhibition of ATM and ATR Kinase
Activities by the Radiosensitizing Agent, Caffeine. Cancer Research. 59: 4375–4382.

15. Terzoudi GI, Hatzi VI, Barszczewska K, Manola KN, Stavropoulou C, et al. (2009) G2-checkpoint
abrogation in irradiated lymphocytes: A new cytogenetic approach to assess individual radiosensitivity
and predisposition to cancer. International J Oncol. 35: 1223–1230.

16. Rao CR, Chakravarti IM (1956) Some small sample tests of significance for a Poisson distribution.
Biometrics. 12: 264–282.

17. Rao CR (1965) Distributions arising out of methods of ascertainment. Sankhyā Series A, 2: 331–324.
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