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Abstract

Background: The thermophilic Campylobacter jejuni and Campylobacter coli are considered weakly clonal
populations where incongruences between genetic markers are assumed to be due to random horizontal transfer of
genomic DNA. In order to investigate the population genetics structure we extracted a set of 1180 core gene families
(CGF) from 27 sequenced genomes of C. jejuni and C. coli. We adopted a principal component analysis (PCA) on the
normalized evolutionary distances in order to reveal any patterns in the evolutionary signals contained within
the various CGFs.

Results: The analysis indicates that the conserved genes in Campylobacter show at least two, possibly five, distinct
patterns of evolutionary signals, seen as clusters in the score-space of our PCA. The dominant underlying factor
separating the core genes is the ability to distinguish C. jejuni from C. coli. The genes in the clusters outside the main
gene group have a strong tendency of being chromosomal neighbors, which is natural if they share a common
evolutionary history. Also, the most distinct cluster outside the main group is enriched with genes under positive
selection and displays larger than average recombination rates.

Conclusions: The Campylobacter genomes investigated here show that subsets of conserved genes differ from each
other in a more systematic way than expected by random horizontal transfer, and is consistent with differences in
selection pressure acting on different genes. These findings are indications of a population of bacteria characterized
by genomes with a mixture of evolutionary patterns.

Background
Bacterial populations are judged to be clonal based on the
degree of linkage disequilibrium that is observed in the
evolution of various loci on the genome. Population genet-
ics, which studies the flow of genes within and between
populations, has been applied to bacteria with the goal
of finding the genes that are either shared between vari-
ous subpopulations, or which distinguish between them.
Population genetics is best performed by the analysis of
discrete characters, for which DNA sequence data are
optimal. Sequencing of entire bacterial genomes is on the
horizon for being practical on a routine basis, but mean-
ingful analyses of the data is lagging. For this reason,
multilocus sequence typing (MLST), whichwas developed
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by determining the partial DNA sequence of each of a
selected number of housekeeping genes [1], will con-
tinue to guide the approach to analysis. Multiple gene
fragments at different positions of the chromosome are
selected to represent an entire genome. Ideally, the genes
that are selected should not be under selective pressures
that affect their migration. It turns out that in many
species of bacteria, including Campylobacter jejuni as a
prime example, the housekeeping genes are subject to
horizontal gene transfers (HGT), which are recognized
as recombination events [2]. Thus the flow of individual
genes may not be representative of the migration or evo-
lution of the bacterial lineage, if a lineage can be defined
at all.
C. jejuni is a leading bacterial cause of human diar-

rheal disease in most developed countries [3]. This
has motivated research on tracking the sources of this
zoonotic agent and its close cousin, Campylobacter coli.
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Consumption or handling of poultry products is rec-
ognized as the predominant risk factor for infection
with C. jejuni, with exposure to pets and water, or the
use of proton inhibitors, as additional significant con-
tributors [4]. The full transmission cycle of these two
pathogens is still unresolved and its identification is com-
plicated by the wide genetic diversity observed within
these species. Phenotypic and genotypic characterization
of C. jejuni and C. coli isolates from various sources has
not resulted in an unequivocal understanding of their
transmission routes.
When HGT is absent or rare, a lineage can be defined

by all, or the majority, of conserved genes in a genome.
When a limited set of genes are affected by HGT, the
population structure will show a mixture of evolutionary
patterns, which was defined as a meroclone by Milkman
[5], and the conserved portion of the genome was referred
to as the clonal frame [6]. On the other hand, when HGT
occurs at rates that are low enough so that recent clonal
associations can be observed, a weakly clonal population
structure can be recognized. A weakly clonal population
does not imply any grouping of genes involved in HGT,
but is characterized by the frequency of HGT, which must
occur frequently enough to be detected but not so fre-
quently that the genome is panmictic [7]. If the history
could be accurately put together for a long enough period,
every gene in aweakly clonal population should have some
evidence of recombination but with a random distribution
of how recently it occurred, with the possibility of multi-
ple hits in some genes [8]. By MLST, C. jejuni and C. coli
have been interpreted to have a weakly-clonal population
structures, with evidence for limited HGT between the
two species [9-11].
The distinction between a meroclonal and a weakly

clonal population structure can be determined more pre-
cisely by total genome analysis of a population. There
are now enough genome sequences of C. jejuni and C.
coli available to analyze all genes that are shared by
all sequenced isolates, instead of the selection of seven
genes typically used in MLST. Using 23 publicly avail-
able genome sequences and four additional unpublished
genomes, our objective was to determine whether C.
jejuni and C. coli adhere to the meroclonal or the weakly
clonal model of lineage development. The basis behind
this analysis is the assumption that fragments of DNA
that have evolved together will have congruent phyloge-
nies. In a weakly clonal population there should be one
major phylogeny, and all incongruences should be random
deviations from any pattern correlating with selection. In
a meroclonal population we expect to see a mixture of
several phylogenies, i.e. clusters of genes sharing some
common evolutionary pattern. We have searched for
congruent phylogenies by principal component analysis
(PCA) on all normalized pairwise evolutionary distances.

It was hypothesized that if the PCA analysis did segregate
loci with congruent phylogenies, other observable fac-
tors affecting evolution should correlate with the observed
clustering.

Results
Identifying core gene families
The complete genome sequences of 22 Campylobacter
jejuni and five C. coli were analyzed, see Table 1 for an
overview. A set of core gene families (CGFs) was defined,
based on BLASTP comparisons and hierarchical cluster-
ing using the distance metric as described in theMethods.
Each defined CGF contained one gene member from each
of the 27 genomes. In Figure 1 is shown how the choice of
BLAST distance cutoff (see Methods section) affects the
number of CGFs found. We decided to use the cutoff 0.8,
giving the largest number of CGFs (1180), increasing the
probability of observing interesting evolutionary patterns.
We assessed whether the seven housekeeping genes

most frequently used for MLST of Campylobacter jejuni
andC. coli (uncA, glnA, gltA, pgm, tkt, glyA and aspA) were
part of the CGFs, which indeed they were. Another much
used marker, PorA, was also found in one CGF, while a
second marker, fla, was not. The complete fla was not
found in all draft genomes, but will most likely be detected
once the genomes are completed.

Principal components
The normalized evolutionary distance matrix X was used
as a multivariate data set, as explained in the Methods
section. A principal component analysis was performed
on this data matrix. Figure 2 shows the cumulative sum
of explained variance over the first 10 components. The
first direction accounts for 40% of the variance in nor-
malized evolutionary distances, and including the three
first components we capture 60% of the variance. The
remaining components contribute with gradually decreas-
ing variance, and we assume this smaller variation is
mostly unimportant and proceed with the downstream
analysis in the three-dimensional space spanned by the
first three components.
Figure 3 shows how each CGF corresponds to a point

in the space spanned by the three first principal com-
ponents, shown as three pairwise scatterplots. Each dot
corresponds to a CGF, and those who are found close to
each other will have similar normalized evolutionary dis-
tances, as explained in the Methods section. The upper
panel is the most important, since this involves the two
first components. Five of the sevenMLST-genes are found
in the dense region where most CGFs are found, while
the markers tkt and especially aspA are found in differ-
ent regions in the upper panel. The marker PorA is also
very close to aspA in this space. The coloring is explained
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Table 1 Genomes used in this study

Genome Size Contigs Genes MLST Source

jejuni subsp. jejuni NCTC11168 1.64 1 1658 ST43 (CC-21) [12]

jejuni subsp. jejuni RM1221 1.78 1 1877 ST354 (CC-354) [13]

jejuni subsp. jejuni 81116 1.63 1 1617 ST267 (CC-283) [14]

jejuni subsp. jejuni 81-176 (TIGR) 1.70 1 1726 ST604 (CC-42) TIGR

jejuni subsp. jejuni 81-176 (Yale) 1.62 1 1730 ST604 (CC-42) Yale University

jejuni subsp. jejuni 84-25 1.67 5 1727 ST21 (CC-21) TIGR

jejuni subsp. jejuni 260.94 1.66 10 1696 ST362 (CC-362) TIGR

jejuni subsp. jejuni CG8486 1.60 19 1822 ST2943 (CC-574) NMRC

jejuni subsp. jejuni CG8421 1.61 20 1747 ST1919 (CC-52) NMRC

jejuni subsp. jejuni HB93-13 1.69 35 1727 ST22 (CC-22) TIGR

jejuni subsp. jejuni 11601MD 1.74 1 1846 New ST (-) NCSU

jejuni subsp. jejuni 1336 1.70 1 1755 ST841 (-) University of Liverpool

jejuni subsp. jejuni 414 1.71 1 1806 ST3704 (-) University of Liverpool

jejuni subsp. jejuni M1 1.62 1 1638 ST137 (CC-45) DTU

jejuni subsp. jejuni IA3902 1.64 1 1651 ST21 (CC-21) Iowa State University

jejuni subsp. jejuni CF93-6 1.68 14 1742 ST883 (CC-21) TIGR

jejuni subsp. jejuni 327 1.62 48 1776 ST230 (CC-45) UCPH

jejuni subsp. jejuni DFVF1099 1.73 71 1954 ST21 (CC-21) UCPH

jejuni subsp. jejuni 305 1.81 333 2260 - (-) UCPH

jejuni subsp. jejuni ICDCCJ07001 1.69 1 1802 ST986 (-) [15]

jejuni subsp. jejuni S3 1.71 1 1765 ST354 (CC-354) [16]

jejuni subsp. doylei 269.97 1.85 1 1982 ST1845 (-) TIGR

coli RM2228 1.68 1 1715 ST1063 (CC-828) TIGR

coli 6461 1.79 1 1885 - (CC-828) NCSU

coli 11601 1.96 1 2091 ST1149 (CC-282) NCSU

coli 6067 1.70 1 1786 ST1150 (CC-1150) NCSU

coli JV20 1.71 34 1742 ST860 (CC-828) Baylor college

Size of each Campylobacter genome (Mb) is followed by the number of contigs for each genome project, the number of predicted genes in our study, the MLST
sequence type, the clonal complex and the source of the genome. Abbreviations: TIGR: The Institute for Genomic Research / J.C. Venter Institute; NMRC: Naval Medical
Research Center; NCSU: North Carolina State University UCPH: University of Copenhagen; DTU: Danish Technical University.

below. In Figure 4 we show the corresponding loadings
for this PCA. The loadings indicate how the original 351
variables (pairwise distances) are related to the principal
components, and this plot is included to help understand
the components. From the upper panel of Figure 4 we
see that the first principal component (horizontal axis)
is spanned by within-species distances (darkgreen/orange
markers on the right) versus between-species distances
(magenta markers on the left). The big picture emerg-
ing from all core genes is the separation between jejuni
and coli. The second component (vertical axis in upper
panel or horizontal axis in lower right panel) seems to be
spanned by all distances to the strain coli 6067 (’+’ mark-
ers). Likewise, the third component (vertical axes in lower
panels) are mainly affected by the distances to the strains
coli 6461 and jejuni 414 (’x’ and ’*’ markers).

Clustering
In Figure 5 we show the gap-statistic results for partition-
ing the CGFs into K = 1, 2, ..., 10 clusters. After K = 5 we
have the first significant drop in the gap-statistic, indicat-
ing that the data supports a split of the CGFs into 5 differ-
ent clusters. The coloring of the dots in Figure 3 indicates
the clusters. In Figure 6 we present the consensus-trees
for each of the groups. Here we merged the blue and cyan
cluster from Figure 3 into one big blue group. Figure 3 and
6 are alternative illustrations of the same gene groups. The
big blue group has a tree where all 5 C. coli genomes are
separated from the C. jejuni genomes, and C. jejuni 414
which is part of the same branch. In the red group the C.
coli and C. jejuni genomes are not separated at all, in fact
the branching is completely different from that of the blue
tree. The green group is quite similar to the blue, but C.



Snipen et al. Microbial Informatics and Experimentation 2012, 2:8 Page 4 of 11
http://www.microbialinformaticsj.com/content/2/1/8

Figure 1Detection of core gene families. The number of computed
core gene families as a function of the BLAST distance cutoff.

coli 6067 is no longer in the C. coli-branch of the green
tree. The browngroup, consisting only of 22 CGFs, is quite
similar to the red tree, but with one branch similar to the
blue tree.

Gene features
Genes with a similar evolutionary history are often found
to be located close to each other on the genome. Our
analysis is not guided by this information, but in order to
verify the clusters found by PCA, we made a brief investi-
gation of positional distribution. In Table 2 we present the
clumping index, as described in the Methods section, for
each group. A value above 1.0 is an indication of clump-
ing of the genes along the chromosome. Especially the red,
green and brown clusters have indices much larger than
1.0.
Table 2 also shows that the red and the brown cluster is

highly enriched in genes under selection. In total 30 out
of the 1180 CGFs had a significantly negative Tajima’s D
statistic, and 28 of these 30 CGFs are found inside these
two groups (15 in the red cluster, 13 in the brown).
The box and whisker plot of Figure 7 shows how the

recombination rate γ for the different CGFs is distributed
in each of the clusters. Especially the red cluster has a sig-
nificantly elevated level of recombination rates. A simple
analysis of variance using the γ values as response and the
cluster membership as factor revealed that the red cluster
has a significantly higher recombination rate than the blue
cluster (p < 0.01, see Table 2 for details).

Discussion
This study is based on the identification of 1180 gene fam-
ilies present in 27 genomes of Campylobacter jejuni and
C. coli, identified using a cutoff of 0.8 BLASTP distance,

as defined in the Methods section. This cutoff is rela-
tively permissive, allowing proteins that only share 20%
amino acid similarity to appear in the same gene family.
As a result, more than half of an average Campylobacter
genome belongs to the core. However, other ways of com-
puting gene families also use cutoffs in the same range, e.g.
the 50-50 rule used by [17], corresponds roughly to a cut-
off of 0.75 in our approach. Both [17], and [18] produced
core size estimates for Campylobacter populations in a
similar range. As seen in Figure 1, any choice of BLAST
distance cutoff between 0.6 and 0.8 results in almost the
same number of core gene families (less than 1% differ-
ence). With a smaller cutoff some of the gene families will
have additional members from some genomes, but since
we only include the ortholog from each genome in the
downstream analysis, this will have no impact. The cutoff
0.8 maximizes the number of core gene families, which is
our reason for choosing it. A too small cutoff will result
in more gene families, but fewer core gene families since
at least one genome will be lacking in some of the fami-
lies obtained by cutoff 0.8. A too large cutoff will produce
fewer core gene families because it produces too few gene
families in the first place, by merging some of the gene
families obtained by smaller cutoffs. The cutoff 0.8 obtains
the balance between these two effects for this data set.

Principal components
The principal component analysis revealed that 60% of
the variation in normalized evolutionary distances can
be captured in three linear combinations (see Figure 2).
This figure also indicates a substantial incongruence in
the evolutionary distances for the various core gene fam-
ilies. If all genes displayed the same evolutionary signal,
we would have captured all variability in a single prin-
cipal component, i.e. 100% explained variance after the
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Figure 2 Principal component analysis. The cumulative explained
variance in the principal component analysis of the evolutionary
distance matrix. After three components more than 60% of the total
variance is captured. Only the first 10 out of 351 components are
shown.
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Figure 3 Evolutionary space. Every core gene of Campylobacter is represented as a dot in the space spanned by the three first principal
components in our analysis. Instead of a three-dimensional plot we have used three pairwise scatter-plots, the upper panel being the most
important (component 1 and 2). Explained variance is a measure of importance of the components, and is given by percentages of the total on
each axis. The seven MLST-genes as well as the marker PorA are indicated in the upper panel only. Genes that are close to each other in this space
show similar values for the 351 normalized pairwise evolutionary distances. Partitioning the CGFs into K = 5 clusters leaves us with the clustering
shown by the coloring of the dots. The blue and the cyan groups are both making up the central group of the CGFs, containing 935 of the 1180
Campylobacter core gene families. The red cluster, containing 120 CGFs, is separated from the blue along PC1. The green group (103 CGFs) is
separated along PC2 and the scattered brown group (22 CGFs) mainly along PC3.

first component in Figure 2. The fact that the explained
variance grows fairly slow means that the 1180 rows of
the data matrix X contain many different patterns. We
tried to build phylogenetic trees based on each CGF sepa-
rately, and computed consensus-trees that indeed verified
this (see Additional file 1: Figure S1). By considering only
the three-dimensional principal component space, we are
focusing our analysis on the major variability in the data.
Performing the analysis in this subspace means the results
are based only on the dominating evolutionary patterns,
and all the smaller differences will be downweighted. Our
use of PCA here will have an effect similar to the use of
bootstrapping on phylogenetic trees, in the sense that only
the dominating patterns in the data come to the surface.

It is clear from Figure 3 that most CGFs are found in
a dense region near the origin, where 5 of the 7 MLST
genes are also found. Apart from these, genes are mainly
scattered to the right (along PC 1) or upwards (along PC
2) in the upper panel, or downward (along PC 3) in the
lower panels. The loadings of Figure 4 indicate that the
major variation in this data is related to the separation
of C.coli from C. jejuni. Core genes with a small value
in the first component coordinate (left side of Figure 3,
upper panel) show a different separation of species than
those with a large coordinate value (right side of Figure 3,
upper panel). The remaining variation we have included
(component 2 and 3) is highly influenced by three dis-
tinct genomes, C. jejuni 414, C. coli 6461 and C. coli
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Figure 4 PCA loadings. The loadingplot for the three first principal components, corresponding to Figure 3. Each marker corresponds to an
evolutionary distance between two genomes (351markers). The upper panel legend indicates what the various markers and colors mean. Distances
close to each other in this space show similar values across all core genes.

6067, from which the distances to all other genomes
fluctuate severely.

Core gene clusters
The cluster analysis reveals some clusters of genes that are
distinctly separated from the majority. The gap-statistic
analysis clearly indicates that going from K = 1 to K = 2
gives a large increase, indicating that this is not a homo-
geneous set of genes, and at K = 5 we get the first peak,
indicating that a partition of the CGFs into 5 clusters is
optimal (see Figure 5).
These five clusters were further compared. The blue and

the cyan clusters are just two parts of the same central set
of CGFs. Merging these into one big group, it contains 935
of the 1180 Campylobacter core genes. Six of the seven
MLST markers are in this main group, and in Figure 6 we
can see that the consensus-tree for these genes separates
all C. coli from the C. jejuni strains, but with C. jejuni 414
as a ’coli-like’ strain of jejuni. The red cluster in Figure 3

is mainly separated from the rest along the first principal
component, which makes it the most distinct cluster out-
side the main group. The loading plot in Figure 4 suggests
that this principal component has to do with the separa-
tion of the two species, and the consensus-tree of the red
cluster in Figure 6 confirms this. Here C. coli strains are
not separated from the majority of the C. jejuni. Hence,
the 120 core genes in the red cluster tell a consistently
different story about how all these strains are related com-
pared to the blue cluster. Also, note that theMLSTmarker
aspA as well as the marker PorA are in this red group. The
green cluster in Figure 3 is located at the same position
along PC1 as the blue group, and is only separated along
the second component. The green consensus-tree is also
quite similar to the blue, but with the noticeable differ-
ence that for these 103 core genes C. coli 6067 is no longer
found in the C. coli-branch. This is in essence the effect
of the second principal component, as was also indicated
in Figure 4 (distances to coli 6067 are different). Finally,
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Figure 5 Clustering gap-statistic. The plot is a display of the
gap-statistic values (100 simulations for each K-value) for each choice
of number of clusters from K = 1 (all CGFs belong to the same
cluster) up to K = 10. The error bars under each circle is the standard
error for each value. The optimal number of clusters is where we see
the first significant drop in gap-statistic value, i.e. where the gap
statistic value G(K) is such that G(K) > G(K + 1) − SE(K + 1), where
SE(K + 1) is the standard error at K + 1.

the small brown cluster, which is only separated along the
third component, has a consensus-tree that is a mixture
of the red and the blue tree. The PC3-typical information,
which is related to the strains jejuni 414 and coli 6461 is
not strong enough to affect the consensus-tree in Figure 6.
Many tests for phylogenetic congruence are designed

to compare neighboring sequences on the chromosome
(sequence ’windows’) and breakpoints are identified that
may correspond to recombination events. Our search for
gene clusters is not using the positional information, but
as shown in Table 2, the clusters we find are still highly
enriched by neighboring genes. The fact that all groups
show a clumping index I larger than 1.0 indicates that
core genes are themselves not a random selection of genes
in the reference genome (C. jejuni 11168 was arbitrar-
ily chosen, see Methods). The three groups we identify
outside the main group (colored red, green and brown in
the figures) all have a very large clumping index. Thus, the
genes within these clusters are very often found next to
each other on the chromosome.
We also found that among those genes showing indi-

cation of being under selective pressure, 28 out of 30 are
in the red or brown cluster (Table 2). These two clusters
deviate from the other CGFs by their location along the
PC1 direction which, as can be seen from Figures 4 and 6,
represents the separation of species. A large score along
PC1 means less separation between jejuni and coli, and
this seems to coincide with selection pressure.

The computation of the population recombination rate
γ is another descriptor of the the CGFs. CGFs with a large
γ value are indications of loci with HGT contributing to
increased genetic variation. From Figure 7 and Table 2
we see that again the red cluster separates from the blue
main group by having on average an almost twice as large
recombination rate. Also the green cluster tends to have
slightly larger γ values, but this increase is just weakly
significant (p=0.02).
In [11] indications of convergence between the two sym-

patric sister species C. jejuni and C. coli were found, based
on analysis of a large number of MLST isolates. These
results have later been countered in a re-analysis by [19],
and in a pangenome study by [18] it was also concluded
there is no evidence of convergence between these two
species. Lefebure et al. found that a total of 80% of the
core genes were free of any between-species recombina-
tion, and even if we have made no attempt of tracing
the history of any recombination events, our results show
that 89% of the core genes maintain a good separation of
the two species (blue/cyan and green clusters). Also, our
interpretation of the first, and most important, principle
component as a species separation means our results sup-
port the conclusion in [18] with respect to convergence of
the species.

Conclusions
To be clonal is to have a single common ancestor unclut-
tered by horizontal gene transfer. In a clonal or weakly
clonal situation the only factor that should determine the
evolutionary distances between alleles is time. If this was
the case for Campylobacter, there should be only one
focal cloud in the score plot in Figures 3, with a com-
pletely stochastic variation around the center. Instead of
this, we observe clusters along the principal component
directions, and these groups seem to be far from random.
Especially the red cluster, which is separated from the rest
along the most important principal direction, is also char-
acterized bymany genes under selective pressure and with
high recombination rates. This is the expected finding of
a population with a mixture of evolutionary patterns, also
known as a mercoclone.
The creation of clusters in the PCA can have multiple

explanations for situations that may or may not involve
HGT. The key is that there is an apparent change in the
mutation rate that is uniform across some loci, creating a
distinct cluster in the score plot. Deviations from a ’nor-
mal’ rate can be caused by a strong selection for diversity.
The genes with the same selection forces should have
similar evolutionary patterns and therefore be in clusters,
each cluster reflective of the selective force. This seems
to be the case for the red, and possibly the brown, clus-
ter here. Clusters could also reflect transfer of alleles for



Snipen et al. Microbial Informatics and Experimentation 2012, 2:8 Page 8 of 11
http://www.microbialinformaticsj.com/content/2/1/8

coli 6461
coli RM2228

jejuni 81−176 (TIGR)
jejuni 260.94
jejuni CF93−6
jejuni HB93−13
jejuni 84−25
jejuni CG8486
jejuni 269.97
jejuni 81−176 (Yale)

jejuni 81116

coli 6067

jejuni CG8421
jejuni IA3902

coli 11601

jejuni RM1221
jejuni 1336

jejuni 414

jejuni M1

jejuni 11601MD
jejuni DFVF1099
jejuni 305

jejuni 327

jejuni S3
jejuni ICDCCJ07001

coli JV20

jejuni NCTC 11168

coli 6461
coli RM2228

jejuni 81−176 (TIGR)

jejuni 260.94
jejuni CF93−6
jejuni HB93−13
jejuni 84−25
jejuni CG8486
jejuni 269.97

jejuni 81−176 (Yale)

jejuni 81116
coli 6067
jejuni CG8421
jejuni IA3902
coli 11601

jejuni RM1221

jejuni 1336
jejuni 414
jejuni M1
jejuni 11601MD
jejuni DFVF1099
jejuni 305
jejuni 327

jejuni S3

jejuni ICDCCJ07001
coli JV20
jejuni NCTC 11168

coli 6461
coli RM2228

jejuni 81−176 (TIGR)
jejuni 260.94
jejuni CF93−6
jejuni HB93−13
jejuni 84−25
jejuni CG8486
jejuni 269.97
jejuni 81−176 (Yale)

jejuni 81116

coli 6067
jejuni CG8421
jejuni IA3902

coli 11601

jejuni RM1221
jejuni 1336

jejuni 414

jejuni M1

jejuni 11601MD
jejuni DFVF1099
jejuni 305

jejuni 327

jejuni S3
jejuni ICDCCJ07001

coli JV20

jejuni NCTC 11168

coli 6461
coli RM2228

jejuni 81−176 (TIGR)

jejuni 260.94
jejuni CF93−6
jejuni HB93−13
jejuni 84−25
jejuni CG8486
jejuni 269.97

jejuni 81−176 (Yale)

jejuni 81116

coli 6067
jejuni CG8421
jejuni IA3902
coli 11601

jejuni RM1221

jejuni 1336
jejuni 414

jejuni M1

jejuni 11601MD
jejuni DFVF1099
jejuni 305

jejuni 327

jejuni S3

jejuni ICDCCJ07001
coli JV20
jejuni NCTC 11168

Figure 6 Consensus trees. For each of the clusters in Figure 3 we computed the consensus-tree based on the evolutionary distances, using the
neighbor joining method. The groups colored in blue and cyan in Figure 3 have been merged into one big group here, and the blue tree in the
upper left panel is the corresponding result. The other colors of the dots in Figure 3 corresponds to the colors of the trees here.

different loci from similar sources at about the same time.
However, this effect should be stronger in the short term,
and expected to be diluted away over time if all the loci are
equally subject to HGT.
A phylogenic analysis is aimed at telling the story of the

ancestral derivation of modern clones. Different phyloge-
nies tell different stories and when there are incongruent
phylogenies for genes used in MLST analysis it is usu-
ally assumed that horizontal gene transfer has brought
together genes with different ancestries. The principal
component analysis that we have employed here clearly
indicates that the set of core genes in Campylobacter can-
not be seen as a single group of phylogenetic markers, but
contains at least two, possibly five, distinct groups of genes
carrying different signals on how Campylobacter strains
have evolved.

Methods
Genome sequences used in this analysis
A total of 27 sequenced Campylobacter genomes from
22 C. jejuni and five C. coli isolates were included for
analysis. Plasmid sequences were excluded. Nine of the
genomes were completed and accessible at NCBI whereas
14 were available in draft form at the time of analy-
sis (http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi). In
addition, four genomes were included that have not yet
been publicly released. Since available annotations had
been produced by various research groups using differ-
ent protocols, all genes in all 27 genomes were re-defined
using the software Prodigal v2.0 [20] for the sake of
completeness and standardization. Although it is not sug-
gested that this software is performing better than others,
standardized gene finding overcomes the introduction of
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Table 2 Results for the clusters identified

Cluster Number Clumping CGF under Recombination

of CGF index I selection rate γ̄ (p)

Blue+cyan 935 1.73 2 27.3 (-)

Red 120 4.76 15 49.7 (< 0.01)

Green 103 5.40 0 33.1 (0.02)

Brown 22 16.67 13 25.4 (0.70)

The clumping index I is described in Methods. CGFs under selection are the
number of genes having a significantly negative Tajima D statistic. The
recombination rate is the average for the cluster, and the associated p-value
listed in parenthesis is for the t-test of difference to the blue+cyan cluster.

differences introduced by different gene finders. More-
over, since this analysis concentrates on conserved core
genes only, re-annotation is not thought to cause inaccu-
racies.

Identification of core gene families (CGF)
In order to compute gene families and identify conserved
core genes, all predicted proteins in each genome were
compared by BLASTP to all other proteins and a BLAST
distance metric between every pair of sequences was com-
puted. Let S(a; b) be the largest BLAST alignment bitscore
for aligning sequence a against b, using a as the query.
Then the BLAST distance is defined as

B(a, b) = 1 − 1
2

(S(a; b)
S(a; a) + S(b; a)

S(b; b)

)
(1)

This distance, which is a simple approximation to an
evolutionary distance between two genes, ranges from
0 when perfect identity exists between a and b, to 1 in
case no BLAST hit could be identified. Using these dis-
tances, gene sequences were grouped by a single linkage
graph clustering algorithm, using the igraph package in
the R computing environment (http://www.r-project.org).
Every sequence was represented by a node in a graph, and
nodes were connected if their pairwise BLAST distance is
less than 1. All disconnected sub-graphs thus provided the
first approximate sequence clusters. Next, in each of these
clusters, genes were grouped by hierarchical clustering
using complete linkage [21]. Finally, sequences were clus-
tered from the resulting dendrogram by using a defined
BLAST distance cutoff. The choice of cutoff determines
the tightness of the gene families, and thereby also the
number of core gene families (CGF).
Some genomes may contribute multiple gene members

in a CGF and in such cases we only included the gene pro-
ducing the smallest sum of distances to all other group
members. This most likely corresponds to eliminating
paralogs from the gene families, resulting in exactly 27
members (most likely orthologs) in each CGF. Using the

protein sequences of these orthologs, amultiple alignment
was computed for each CGF using the software M-Coffee
[22]. This combines several multiple alignment tools, and
builds a final alignment as a weighted consensus, making
the result less dependent on the heuristics of any single
algorithm. Next, for every alignment sequences were de-
translated back to DNA using the TranslatorX software
[23], and this DNA-alignment was pruned by the Gblocks
software [24] to eliminate non-informative positions with
too many gaps.

Evolutionary distances
Based on the multiple alignments, an evolutionary dis-
tance table between matching CGFs was computed for
all the genomes. Multiple substitutions were corrected for
using the model of Tamura and Nei [25] with a gamma
correction. Other evolutionary models were also tried, all
of which produced essentially identical results in the final
analyses.
For each CGF a 27 × 27 distance table was produced.

Dividing the numbers in each distance table by its mean
value, we get a set of normalized evolutionary distances.
This normalization means we remove the absolute dis-
similarity between genomes, and only consider relative
differences. Two CGFs, one with large and one with small
differences between the genomes, will be considered sim-
ilar if the relative difference between the genomes is the
same. For CGF i all distances in the lower triangle of the
normalized evolutionary distance table were put into the

Figure 7 Recombination rates. For each CGF we computed the
recombination rate γ and the box and whisker plot shows its
distribution for each of the colored clusters in Figure 3, where the blue
and cyan group has been merged into a big blue cluster. For each
box the central line is the median, the box covers the interquartile
range of the data, the whiskers cover the most extreme data points
no more than 1.5 times the box width from the box edges and any
data points more extreme than this are shown as individual circles.
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row-vector xi in a fixed order. These row-vectors were
assembled into a matrix

X =
⎡
⎢⎣
x1,1 ... x1,351
... ...

...
xn,1 ... xn,351

⎤
⎥⎦ (2)

for n CGFs. With 27 genomes in our data set there are
27 ·26/2 = 351 unique distances for each CGF. Hence, the
matrix X is an n × 351 matrix, where n is the number of
CGFs used. Every CGF is a point in this 351-dimensional
space, and those who are close to each other in this
space describe the difference between the 27 genomes in
a similar way.

Principal components and partitioning
In order to reduce the dimensionality and remove unim-
portant variability in the evolutionary space we used a
principal components analysis. Thismeans we decompose
the n × 351 matrix X as

X = ZL + E (3)

where the Z is the n × q score matrix, L is the q × 351
loading matrix and E is the remaining variation in X. The
main idea behind PCA is to choose a small value for q,
e.g. q = 2, which means the 351 coordinates for each row
in X is instead approximated by the q coordinates of the
corresponding row in Z, and all remaining dimensions are
truncated under the assumption they contribute mainly
with noise. A score plot will show each row of Z as a point
in a q-dimensional space. A loading plot will show each of
the 351 columns of L, one for each of the original columns
of X, in a similar way.
Central to the meroclone-hypothesis is the presence or

absence of clusters of the core genes in the evolutionary
space. To investigate this we used the k-means cluster-
ing method together with the gap-statistic [26,27]. The
gap-statistic is a way of testing for the natural number of
groups in a data set. Using k-means we partitioned the
data into K = 1, 2, ..., 10 clusters, and for each value of
K we computed the gap-statistic. The optimal number of
clusters is the smallestK wherewe see a significant drop in
the gap-statistic. In a weakly clonal polpulation we expect
K = 1 to come out as optimal, i.e. all genes belong to the
same group.

Gene features
From the core gene sequences we also derived some addi-
tional gene features. In case the PCA indicates certain
groupings or patterns, it is always preferable to be inter-
pret these in the light of other characteristics of the genes.

Any type of grouping which is also meaningful from
another viewpoint is less likely to be an artifact.

Physical position
Using the reference genome jejuni NCTC 11168 we
ordered all predicted genes (also those not member of
a CGF) from 1 to 1658 (there are 1658 predicted genes
in jejuni NCTC 11168) beginning at the replication ini-
tiation. For any selection of a pool of genes of size m
we counted the number of neighbors on the chromo-
some within this group. The positional distribution of a
random selection of sizem can be approximated by a Pois-
son process, and the physical distance between the genes
as waiting times in this process. This follows an expo-
nential distribution and the probability of neighborhood
between two consecutive genes is ρ = 1− exp(−λ) where
λ = m/1658. For each grouping of genes of size m we
computed the ’clumping’ index I as

I = N
mρ

(4)

where N is the observed and mρ is the expected number
of neighbors in the group of size m. If I is (much) larger
than 1 it indicates the genes in the group are more often
neighbors than expected by random chance.

Selective pressure
Based on the multiple alignments for each core gene fam-
ily we computed the Tajima’s D statistic [28] which is
an indicator of the selective pressure acting on a gene.
Genes with Tajima’s D values significantly different from
zero (p = 0.05) were categorized as under selection. The
remaining genes have selectively neutral evolution, i.e.
genetic drift. For any group of genes we used the Fisher
exact test to test for enrichment of genes under selective
pressure within the group.

Recombination
From the multiple alignments we also computed the
parameter γ as an estimate of population recombination
rate [29] based on data for each CGF. A larger value of
γ indicates a larger production of genetic variation at the
corresponding locus.

Additional file

Additional file 1: Consensus trees for the core genes, using
increasing levels of consensus (50% to 90%). Legend: The four panels
show consensus trees for the 1180 core gene families. At 50% consensus
(upper left panel) the C. coli strains are separated from the C. jejuni, and C.
jejuni 414 is also found on the same branch. Three more C. jejuni strains are
also distinguished from the rest. A gradually stricter consensus level results
in fewer branches having the necessary support, and at 90% consensus
(lower right panel) no branching is left.
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