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Abstract

The discovery of de novo emerged genes, originating from previously noncoding DNA regions, challenges traditional views of 
species evolution. Indeed, the hypothesis of neutrally evolving sequences giving rise to functional proteins is highly unlikely. 
This conundrum has sparked numerous studies to quantify and characterize these genes, aiming to understand their func
tional roles and contributions to genome evolution. Yet, no fully automated pipeline for their identification is available. 
Therefore, we introduce DENSE (DE Novo emerged gene SEarch), an automated Nextflow pipeline based on two distinct 
steps: detection of taxonomically restricted genes (TRGs) through phylostratigraphy, and filtering of TRGs for de novo 
emerged genes via genome comparisons and synteny search. DENSE is available as a user-friendly command-line tool, while 
the second step is accessible through a web server upon providing a list of TRGs. Highly flexible, DENSE provides various strat
egy and parameter combinations, enabling users to adapt to specific configurations or define their own strategy through a 
rational framework, facilitating protocol communication, and study interoperability. We apply DENSE to seven model organ
isms, exploring the impact of its strategies and parameters on de novo gene predictions. This thorough analysis across species 
with different evolutionary rates reveals useful metrics for users to define input datasets, identify favorable/unfavorable con
ditions for de novo gene detection, and control potential biases in genome annotations. Additionally, predictions made for 
the seven model organisms are compiled into a requestable database, which we hope will serve as a reference for de novo 
emerged gene lists generated with specific criteria combinations.
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Significance
The identification and classification of de novo genes, which originate from noncoding regions of DNA, remain an ongoing 
challenge in genomic research. While various approaches have been employed for their identification, the lack of a stan
dardized protocol has resulted in varying lists of de novo genes across studies. This study introduces a novel tool: DENSE (DE 
Novo emerged gene SEarch), that formalizes the common practices used in the field into a comprehensive and automated 
pipeline. DENSE streamlines the identification of taxonomically restricted genes, homology searches, and synteny analysis. 
This standardized methodology aims to enhance the accuracy and reliability of de novo gene identification, fostering a dee
per understanding of the evolutionary mechanisms that drive gene birth and shape the genetic diversity of organisms.
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Introduction
Comparative genomics has unveiled the existence of what 
we call de novo emerged genes—genes that arose from a 
DNA region that was ancestrally noncoding. Initially 

considered unlikely (Jacob 1977), the accumulation of se
quencing data revealed that they were, in fact, widespread, 
being detected in various eukaryotic species and numerous, 
with several dozens of examples reported for different 
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organisms (Levine et al. 2006; Cai et al. 2008; Schlötterer 
2015; Van Oss and Carvunis 2019). The discovery of these 
genes has highlighted that the passage from the noncoding 
world to the world of functional products and regulated 
processes was much more frequent than previously 
thought, challenging previous assumptions and raising an 
intriguing question: How can a noncoding neutrally evolv
ing DNA sequence give rise to a functional product able 
to take part in the well-established biological networks 
and contribute to the organism’s fitness? Indeed, non
coding regions are associated with different nucleotide 
compositions and combinations from coding regions and 
are consequently expected to result in nonfunctional com
binations of amino acids if translated. The newly attributed 
role of noncoding regions and the unexpected permeability 
observed between these two worlds have thus captured 
the attention of researchers in recent years. Notably, nu
merous studies have been undertaken on different species, 
including several model organisms, to characterize de novo 
emerged genes (Bungard et al. 2017; Schmitz et al. 2018; 
Vakirlis et al. 2018; Lange et al. 2021; Papadopoulos 
et al. 2021; Peng and Zhao 2024). This effort not only 
aims to elucidate their properties and functions but also 
to enhance our understanding of the transition between 
the noncoding and the coding worlds, as well as their evo
lutionary relationship. The strategy employed to detect de 
novo emerged genes is likely to influence the resulting in
terpretations; therefore, it is important to design rational 
and reproducible methods.

So far, most model organisms have been associated with 
multiple lists of de novo emerged genes, as illustrated in 
Table 1 of the review by Van Oss and Carvunis (2019). 
These lists result from diverse protocols that generally rely 
on transcriptomics and/or comparative genomics. 
Nonetheless, despite this diversity, all these methods, for 
classifying genes as de novo emerged, impose that genes 
be novel or identified only in closely related species. 
Transcriptomics-based protocols either search for novel 
transcripts or require the transcription of de novo gene can
didates, usually detected with an initial step of comparative 
genomics (Zhang et al. 2019; Blevins et al. 2021; 
Grandchamp et al. 2023). Moreover, ribosome profiling 
and proteomics can provide additional evidence for the 
ability of these novel transcripts to be translated into pro
teins (Carvunis et al. 2012; Zhang et al. 2019; Blevins 
et al. 2021; Prensner et al. 2023). However, all these newly 
expressed candidates, especially those arising from perva
sive expression, are not necessarily expected to be function
al. A significant fraction of them is likely to be short lived in 
evolutionary history and can instead be considered gene 
precursors (Grandchamp et al. 2023; Wacholder et al. 
2023). As discussed in previous reports, transcription may 
predate gene emergence and, therefore, cannot be consid
ered a sufficient criterion for a novel transcript to be 

classified as a gene (Cai et al. 2008; Carvunis et al. 2012; 
Reinhardt et al. 2013; Schlötterer 2015; Chen et al. 2020; 
Papadopoulos et al. 2023). Furthermore, young de novo 
emerged genes are typically associated with stress response 
or adaptation and are expected to be expressed under spe
cific conditions (Colbourne et al. 2011; Donoghue et al. 
2011; Carvunis et al. 2012; Schlötterer 2015; Van Oss 
and Carvunis 2019). Thus, demonstrating the expression 
of such genes involves finding the conditions under which 
they are expressed, which is not trivial. Consequently, re
quiring de novo gene candidates to be transcribed may 
be accompanied by high ratios of false negatives.

On the other hand, comparative genomics appears as an 
appealing solution since it can be applied once the complete 
genome of the species of interest (i.e. the focal species) and 
those of close neighboring species are available. Although 
these methods may involve more or less stringent criteria, 
all of them focus on genes that have emerged recently, 
and first rely on the detection of taxonomically restricted 
genes (TRGs; Vakirlis et al. 2018; Vakirlis and McLysaght 
2019; Weisman 2022; Peng and Zhao 2024). The latter cor
respond to genes found in a single species (i.e. orphan 
genes) or closely related species, a prerequisite for finding 
young de novo emerged genes. The detection of TRGs gen
erally relies on phylostratigraphy, which estimates the age of 
a gene of interest from the detection of its homologs across 
a phylogeny (Domazet-Loso et al. 2007; Arendsee, Li, Singh, 
Seetharam, et al. 2019; Barrera-Redondo et al. 2023). In 
practice, the idea is to screen each gene of the focal genome 
against a large sequence database (typically, nr or uniprot) 
with BLAST or an equivalent tool (Altschul et al. 1990; 
Buchfink et al. 2021). The genes are then assigned an evo
lutionary age corresponding to the common ancestor of 
all the lineages in which they have been detected, i.e. the 
most distant node in the phylogeny where BLAST has de
tected a homolog of the considered gene. As such, it be
comes evident that the criteria used for the homology 
search are critical and deserve to be defined with caution 
(Moyers and Zhang 2015; Domazet-Lošo et al. 2017). 
Indeed, homology detection failure would be accompanied 
by an underestimation of gene age, thereby wrongly anno
tating old genes as TRGs (McLysaght and Hurst 2016; 
Vakirlis et al. 2020; Weisman et al. 2020). However, thor
ough analyses that aimed to assess the impact of BLAST cri
teria on gene age estimation have demonstrated that the 
trends deduced from phylostratigraphy-based approaches 
remain robust in the face of BLAST’s lack of sensitivity, 
with some studies reporting optimal E-value thresholds in 
the context of TRG detection (Domazet-Loso et al. 2007; 
Domazet-Lošo et al. 2017; Vakirlis et al. 2020).

Finally, TRGs consist of a heterogeneous population and 
encompass genes with different origins, including genes re
sulting from duplication or horizontal transfer followed by 
high divergence or gene families that have undergone 
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multiple loss events. Ideally, one would aim to reconstruct 
the ancestral noncoding sequence to retrace the evolution
ary stages that led to de novo gene birth. Since it is not al
ways possible (it requires the detection of an outgroup 
noncoding sequence with respect to the ancestor to be pre
dicted), different approaches have been described in the lit
erature to discriminate de novo emerged genes from the 
other TRGs (Vakirlis and McLysaght 2019; Van Oss and 
Carvunis 2019; Weisman 2022; Peng and Zhao 2024). 
Specifically, inferring that the locus of the gene candidate 
was noncoding in the ancestor through the analysis of 
the sister lineages offers an attractive alternative, since it 
provides solid support for de novo gene birth. Methods, 
therefore, require identifying homology traces of the 
gene of interest within the noncoding regions of a species 
where the gene is absent. Some approaches even impose 
additional constraints to strengthen the evidence that the 
corresponding locus was noncoding in the ancestor. 
Typically, these homology traces may be imposed to be 
found in a noncoding region of what we refer to as out
group species (Zhang et al. 2019; Weisman 2022; Peng 
and Zhao 2024). The latter are defined as those for which 
the gene is absent and that branch in the tree after the 
last species where the gene is present. In addition, to fur
ther assert the ancestor’s noncoding status, synteny-based 
approaches may be employed to guarantee the correct 
identification of the orthologous noncoding region. The 
latter, therefore, search for the syntenic region in the out
group species and verify the noncoding status of the hom
ologous region (Knowles and McLysaght 2009; Tautz and 
Domazet-Lošo 2011; McLysaght and Hurst 2016; Van Oss 
and Carvunis 2019). Various strategies have been under
taken for the identification of syntenic regions (Arendsee, 
Li, Singh, Bhandary, et al. 2019; Armstrong et al. 2020; 
Elghraoui et al. 2023). If synteny blocks can be readily de
tected within very closely related species with high-quality 
genome assemblies, this task becomes difficult as the evo
lutionary distance between species increases when study
ing genomes associated with high rates of chromosomal 
rearrangements, or simply when dealing with multiple con
tig genome assemblies (Ranz et al. 2001; Liu et al. 2018). 
Microsynteny, which searches for local gene order, never
theless, offers a good compromise (Vakirlis and 
McLysaght 2019). Beyond the fact that we have no prior 
knowledge of the recombination rates in the regions that 
constitute hotbeds for de novo gene birth, the use of micro
synteny enables one to handle genome assemblies of inter
mediate quality, therefore extending the applicability of 
such methods to wider genomic contexts.

Although a methodological consensus in comparative 
genomics-based approaches for de novo gene prediction 
seems to have emerged in recent years, to the best of our 
knowledge, the scientific community still lacks a fully auto
mated pipeline. Moreover, different combinations of 

criteria and parameters are still reported, and no definitive 
protocol has yet been established. This hinders reproduci
bility and fair comparisons between studies, yet is essential 
to decipher and eventually reconcile contradictory trends. 
Therefore, we propose DE Novo emerged gene SEarch 
(DENSE), an automated pipeline that handles the entire 
process of de novo emerged gene detection, from identify
ing TRGs to filtering for those likely to have emerged de 
novo (https://github.com/i2bc/dense). Since protocols may 
continue to evolve, but also due to the heterogeneity in 
the quality of genome assemblies and/or annotations 
among species, DENSE has been designed to be highly flex
ible and offers various combinations of filters and para
meters embedded in a unified Nextflow framework (Di 
Tommaso et al. 2017). In this manuscript, we introduce 
DENSE and investigate the impact of its different imple
mented strategies, as well as the influence of input data, 
on the prediction of de novo emerged genes. Finally, we 
present several metrics that can help users define their in
put dataset, identify favorable/unfavorable conditions for 
the detection of de novo emerged genes, and control for 
potential bias in genome annotations.

Results

Principle of DENSE

DENSE consists of two main independent steps: (i) search 
for TRGs among the annotated genes of a focal genome 
and (ii) identification, through a cascade of filters, of TRFs 
that have homology traces in the orthologous region of a 
species where the gene is absent (Fig. 1). Specifically, 
DENSE starts with the genomes of the focal species and 
those of its neighboring species, along with their corre
sponding phylogenetic tree. Then, based on the phylostra
tigraphy calculated by GenEra (Barrera-Redondo et al. 
2023), it predicts the date of emergence of all annotated 
coding sequences (CDSs) of the focal genome with the as
sumption that horizontal transfers are rare in eukaryotic 
species. To do so, GenEra screens each CDS against the 
nr database and the annotated CDSs of the neighboring 
genomes with DIAMONDv2 (Buchfink et al. 2021; 
Fig. 1a). Alternatively, users have the option to screen other 
databases, such as UniProt, SwissProt, or a custom data
base. It is worth noting that computing phylostratigraphy 
with nr can be highly time-consuming for large genomes 
(e.g. ∼23 and ∼35 h on 40 CPUs for Mus musculus and 
Homo sapiens, respectively). However, for genomes of 
small or intermediate sizes, the computational time is 
much more acceptable (e.g. ∼3, ∼8, and ∼11 h on 40 
CPUs for Saccharomyces cerevisiae, Drosophila melanoga
ster, and Oryza sativa, respectively). In any case, we recom
mend using nr for a more accurate age estimation. Each 
CDS is then assigned an evolutionary age, corresponding 
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to the most distant node in the NCBI phylogeny where 
DIAMONDv2 has detected the CDS. In cases where a 
gene has multiple isoforms, the age of the oldest one is as
signed to all isoforms. DENSE provides the user with all 
CDSs associated with their predicted evolutionary age 
and the list of the TRGs of the focal species (Fig. 1b). One 
should note that, by default, the phylostratum level used 
to define TRGs is set to the genus level, but depending on 
the studied species and the aims of the user, DENSE offers 
the possibility to modify it to younger or older phylostrata. 
To limit the number of false positives in TRG detection, 
DIAMONDv2 is called the sensitive mode with a threshold 

E-value of 10−5 that has been shown to be optimal 
for the identification of orphan genes in S. cerevisiae, 
D. melanogaster, and H. sapiens (Vakirlis et al. 2020).

During the second step, DENSE focuses on the focal gen
ome and the neighboring genomes provided by the user to 
apply a combination of filters in order to distinguish de 
novo emerged genes from the TRGs identified by GenEra 
in the initial step. Users can choose from several strategies, 
each associated with specific filter and parameter combina
tions (Fig. 2a). Here, we present one of the most stringent 
strategies, Strategy 1, which mandates at least one out
group noncoding hit combined with a search of synteny. 

(a) (b)

(c) (d)

Fig. 1. DENSE workflow. a) DENSE, through GenEra (Barrera-Redondo et al. 2023), screens all the focal genome’s (FGs) annotated CDSs against the nr data
base and the genomes of the focal’s neighbors. Depending on the chosen strategy (mandatory for Strategies 1 and 3), the tree of the FG and its neighbors 
(local tree) must be provided. Then, DENSE outputs the estimated ages of each CDS of the FG and extracts its TRGs, including orphans, according to the 
phylostratum threshold indicated by the user (genus level by default). b) Example of the conservation of a focal TRG across the local tree. If no local tree 
has been provided, only the presence/absence across the neighbors is considered. c) Here, we assume that Strategy 1 has been called. DENSE screens the 
noncoding regions of the outgroup species (only applicable for the focal’s neighbors) with tblastn. In this example, three genomes are associated with a tblastn 
hit in a noncoding region (dashed lines surrounded by purple borders). d) We assume that the user requires the noncoding hits to be found in synteny with the 
de novo emerged gene candidate. Therefore, DENSE verifies that at least one of the noncoding hits of the outgroup species is effectively detected in a region 
that is syntenic to that of the candidate. If so, the corresponding locus of their associated Most Recent Common Ancestor (MRCA) is considered as noncoding 
while that of the MRCA of the lineages where the candidate has been detected is considered as coding.
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This involves employing tblastn for each TRG to search for 
sequence homology within the noncoding regions of the 
outgroup species. These outgroup species represent those 
branching after the last common ancestor node in the 
phylogenetic tree where the TRG’s homologs were de
tected (Figs. 1c and d, 2b; Gertz et al. 2006). Then, using 

microsynteny, DENSE checks whether the noncoding 
hit(s) detected in the outgroup species are located in syn
teny with the focal de novo gene candidate (Figs. 1d and 
2c). Therefore, DENSE defines two gene windows of a spe
cific size (set to four genes by default), flanking the focal 
gene (focal windows) and its homologous noncoding hit 

(a)

(c)

(b)

Fig. 2. DENSE strategies and definitions. a) Strategies proposed by DENSE. Strategy 1 requires a noncoding hit in at least one outgroup species. The number of 
outgroup species in which noncoding hits have been observed can be modified by the user. Strategy 2 only asks the candidate to have a noncoding hit, ir
respective of the location of the corresponding species in the tree. Strategy 3 is the most stringent one since it requires candidates retained by Strategy 1 to be 
orphans with a noncoding hit. Here, the absence/presence of coding and noncoding hits of four fictive genes is represented. The table indicates for each of 
them whether it would be predicted as de novo emerged according to the employed strategy. Note that all strategies can be combined to the additional 
requirement of synteny conservation. b) Definition of what is referred to as an outgroup species in DENSE for a given gene. Same tree, as (a), with the focal 
species represented in red (large branch at the bottom of the tree). The absence/presence of coding and noncoding hits of the gene is represented on the right 
of the tree following the same scheme as in (a). The dark green node corresponds to the MRCA of the lineages where the gene is present, and all species that 
branch after this node are considered outgroup species according to this gene. c) Examples of synteny conservation checking for a de novo gene candidate (in 
black) of a focal genome (FG) and its homologous noncoding hit (in white, dashed borders) in an outgroup genome (OG). DENSE defines two windows of the 
same size located upstream and downstream of the focal gene (focal window) and its noncoding counterpart (target window). In all examples, at least one 
gene from each focal window must be detected in the target windows, with one gene located in the upstream and the other in the downstream target win
dow (i.e. number of anchor pairs set to one). In the first example, one of the two genes of the upstream focal window is retrieved in the upstream target 
window (purple orthologous pair forming the upstream anchor), while the two genes of the downstream focal window are retrieved in the downstream target 
window (orthologous pairs in pink and blue forming the downstream anchors). The synteny is then considered conserved since each window is associated with 
at least one anchor gene. In the second example, no anchor is found within the upstream window (i.e. the purple ortholog is located outside the target win
dow), thus the conservation of synteny is not validated. In the last example, the window size is extended to four genes, enabling the purple ortholog in the 
outgroup species to be retrieved. The two focal windows are associated with an anchor, thus the conservation of synteny is validated.
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(target windows). It then requires at least one upstream 
gene and one downstream gene from the focal windows 
(number of anchor pairs set to one) to be present in the tar
get windows. To do so, DENSE employs the Reciprocal Best 
Hit method (E-value = 10−3, and query coverage = 70%) to 
search for the orthologs of the focal windows within the 
outgroup neighbors. It then verifies the presence of at least 
two of these orthologs in the target windows, with one in 
the upstream window and the other in the downstream 
one (Fig. 2c). One should notice that the number of anchor 
gene pairs and the size of the windows are parameterizable 
and that synteny search can be combined with any of the 
three strategies available in DENSE. Finally, all the TRGs 
that fulfill these criteria (i.e. one hit in a syntenic noncoding 
region of at least one outgroup species) are considered 
genes that have recently emerged de novo (i.e. de novo 
gene candidates). Nevertheless, DENSE is very flexible, 
and users can provide their own list of TRGs and enter 
the pipeline directly at the filtering step (Fig. 1c) or define 
their own criteria. Notably, users can deactivate the verifica
tion of microsynteny and/or focus on candidates with hits in 
the noncoding regions of the neighboring species regard
less of the fact that the species are outgroups. If removing 
filters may be expected to be accompanied by increases in 
false positive rates, this can nevertheless be useful when 
the phylogeny of the considered species is unknown or in
complete or when the outgroup species are too far to de
tect homology traces in their noncoding regions.

Application of DENSE to Seven Model Organisms

To illustrate the usage of DENSE, we applied it to seven 
model organisms that are well annotated and for which 
at least four neighboring species were sequenced and an
notated (see list in Table 1 and complete list of neighbors 
in supplementary table S1, Supplementary Material online). 
We used the default parameters, which require genes to 
have a tblastn hit in a syntenic noncoding region of an out
group species in order to be predicted as de novo emerged 
(Strategy 1 with synteny, using a window of four genes 
with one anchor pair). With the exception of O. sativa, 
we detected several dozen to a few hundred de novo 

gene candidates in all model organisms (Table 1 for the 
number of candidates detected at each step). The majority 
of detected de novo gene candidates, irrespective of the fo
cal species, are orphans (68%; Fig. 3) or identified in the 
closest neighbors, illustrating the difficulty of detecting 
events of de novo gene emergence older than several mil
lion years ago. Interestingly, DENSE predicted ∼2,500 de 
novo emerged genes for O. sativa. Most of them (77%) 
are also very young, exclusively detected within O. sativa, 
despite the close proximity of its nearest neighbors, which 
are <1.5 million years distant (Fig. 3). In fact, this result 
must be interpreted with caution as it does not necessarily 
imply a higher propensity for de novo gene birth in O. sativa 
compared with the other species, and may result from 
methodological reasons. To classify a gene as de novo 
emerged, DENSE needs to detect, for each de novo gene 
candidate, a noncoding hit in the syntenic noncoding re
gion of an outgroup species (Fig. 1d). This becomes more 
challenging, as the distance between the focal and the out
group species increases. Indeed, noncoding regions evolve 
fast, and the detection of homology relationships with such 
fast-evolving sequences is expected to decrease rapidly 
with the evolutionary distance separating the focal and 
the screened neighbors. Consequently, our ability to confi
dently support a TRG as a de novo emerged gene is 
bounded by our capacity to detect its orthologous non
coding hit(s) in the outgroup species, which, in turn, is dir
ectly limited by the distance of the latter. Precisely, O. sativa 
has 7 neighbors with <1.5 million years of divergence, 
which probably facilitates the detection of outgroup non
coding hits. In contrast, the closest neighbors of the other 
focal species (except Arabidopsis thaliana) are >4 million 
years distant, according to TimeTree (Kumar et al. 2022). 
However, it is noteworthy that geological time is not well 
suited for fair comparisons between such diverse species. 
Each species is characterized by different generation times 
and may evolve at distinct evolutionary rates.

Accordingly, we sought to compare, for each focal spe
cies, our ability to detect the homology traces of its non
coding ORFs across its neighbors by establishing what we 
call a noncoding segments’ detectability profile. We, there
fore, randomly selected subsets of 1,000 noncoding 

Table 1 DENSE predictions for the seven studied species: for each species, the number of genes, the phylostratum threshold used for TRG detection, the 
number of predicted TRGs, and the number of de novo emerged genes predicted with Strategy 2, Strategy 1, or Strategy combined with synteny criterion 
are indicated

Organism # Genes TRG node # TRGs # De novo strat 2 # De novo strat 1 # De novo strat 1 + synteny

S. cerevisiae 5,997 Saccharomyces 406 296 269 230
H. sapiens 23,140 Hominidae 287 184 176 89
M. musculus 22,122 Murinae 285 145 128 84
D. melanogaster 13,900 Drosophila 966 516 117 92
O. sativa 34,177 Oryza 5,104 4,298 3,640 2,455
A. thaliana 27,499 Arabidopsis 953 601 511 289
C. elegans 19,984 Caenorhabditis 5,811 927 135 54
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segments from each focal genome and screened them with 
tblastn against the noncoding regions of the neighbors. We 
then calculated the fraction of these segments with a signifi
cant tblastn hit within the neighbors (Fig. 3). This served as a 
proxy to estimate the speed at which the homology signal 
within neutrally evolving regions disappears among related 
species, providing us with a detectability profile that reflects 
the progression of noncoding regions’ detectability across 
the tree. The latter that is calculated between noncoding re
gions gives a lower bounded estimation of the homology 
signal that can be expected between de novo emerged 
genes (i.e. under selection) and their orthologous non
coding regions (i.e. neutral evolution). For S. cerevisiae, 
Caenorhabditis elegans, D. melanogaster, and A. thaliana, 
the conservation of the predicted de novo emerged genes 
across the neighbors overall correlates with the detectability 

profiles of noncoding segments, suggesting that their de
tection is bounded by the detectability of the noncoding 
hits within the outgroup species (see supplementary table 
S2, Supplementary Material online for the corresponding 
Spearman’s correlation coefficients). This opens the ques
tion of whether additional young de novo emerged genes 
are missed in these four species due to the high phylogenet
ic distance separating the focal and its closest neighbors. In 
contrast, in the case of O. sativa, as many as 76% of the ran
domly selected noncoding segments still exhibit significant 
hits to Ornithoptera meridionalis, which may explain the 
higher count of de novo gene candidates predicted for 
this species (Fig. 3, supplementary fig. S1, Supplementary 
Material online). To assess the influence of the neighboring 
species proximity on the detection of de novo emerged 
genes, we iteratively designated each O. sativa’s 

Fig. 3. Conservation profiles of predicted de novo emerged genes and noncoding segments across the focal species’s neighbors. The trees are represented for 
the seven studied species and their neighbors (see supplementary fig. S1, Supplementary Material online for the trees with the names of species). Each tree is 
associated with two heat maps. The left one (gradient of grays) represents the conservation levels of all the focal de novo emerged genes predicted by DENSE. 
The color of a given species in the tree represents the fraction of the focal de novo emerged genes that were detected until this species, with dark colors 
corresponding to species for which an important fraction of the focal de novo genes has been detected in it. The right heat map (gradient of purple) represents 
the conservation level of a subset of 1,000 noncoding segments selected randomly as calculated for the left heat map.
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neighboring species as its new closest neighbor by system
atically excluding neighbors that were phylogenetically clo
ser than the newly assigned nearest neighbor (Fig. 4a). By 
doing so, we effectively demonstrated that the prediction 
of de novo emerged genes in O. sativa is significantly im
pacted by the choice of the closest neighbor. The number 
of predicted de novo emerged genes diminishes rapidly 
with the distance to the closest considered neighbor. 
Notably, a sharp decrease in the number of predicted de 
novo emerged genes is observed when Oryza punctata is 
considered the nearest neighbor, aligning precisely with 
the lineage associated with a noticeable decline in the de
tectability of noncoding ORFs. This trend holds throughout 

the tree, as shown by the strong correlation between the 
number of predicted de novo emerged genes and the 
distance with the closest neighbor (Spearman’s correlation 
coefficient: Rho = −1, P = 1.7 ×10−61). This result further 
strengthens the importance of the proximity of the neighbors 
considered in the prediction of de novo emerged genes, 
again supporting the hypothesis that other young de novo 
gene candidates may be missed for species whose neighbors 
are too distant. This also supports the utility of noncoding 
segments’ detectability profiles as a valuable proxy for esti
mating our ability to identify de novo emerged genes.

Surprisingly, in the cases of M. musculus and H. sapiens, 
the number of predicted de novo emerged genes is very 

(a)

(c)

(b)

Fig. 4. Analysis of the de novo emerged gene candidates of O. sativa. a) Number of de novo emerged genes that are predicted by DENSE (Strategy 1 with 
synteny criterion) with respect to the phylogenetic distance between the focal species and the nearest considered neighbor. The phylogenetic distance was 
calculated by OrthoFinder (Emms and Kelly 2019). b) Distribution of the intactness of 1,000 non-TRGs (orange), 1,000 noncoding ORFs (purple), and the or
phan de novo emerged genes (gray) of O. sativa across its neighboring species. The intactness represents the percentage of a noncoding ORF or coding se
quence exon that is aligned with a homologous sequence detected in the neighbors (i.e. alignment coverage). c) Several properties calculated for 1,000 
noncoding ORFs and 1,000 non-TRGs (purple and orange, respectively), and all the de novo genes of O. sativa separated in orphans and nonorphans. 
From left to right: ORF length (in amino acids), fraction of negatively charged residues, distance to the closest neighboring gene (in nucleotides), and fraction 
of residues undergoing negative selection. P-values were computed with the Mann–Whitney U test (one-sided). Asterisks denote level of significance: *, **, 
*** for P < 1 × 10−1, 1 × 10−2, 1 × 10−3, respectively.
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low, despite the high noncoding segments’ detectability 
across their neighbors. In fact, the number of predicted 
de novo emerged genes is also limited by the count of de
tected TRGs, which is quite low for these two species com
pared with the others (see Table 1). However, whether this 
low number results from biological factors or from the phy
lostratum threshold chosen for these species (e.g. too 
young) remains unknown. Furthermore, in O. sativa and 
the two mammals, most of their de novo gene candidates 
(O. sativa: 77%, M. musculus 87%, H. sapiens 87%) are or
phans, though, according to their noncoding segments’ 
detectability profiles, one might anticipate higher levels of 
de novo genes being shared by their closest neighbors. 
Yet, the fractions of de novo emerged genes conserved be
yond the focal species remain very low (23%, 13%, and 
13% for O. sativa, M. musculus, and H. sapiens, respective
ly). We can hypothesize that these genes emerged earlier 
and were subsequently lost in the sister lineages, recalling 
the high turnover of novel ORFs reported by Grandchamp 
et al. (2023); alternatively, they may reflect very young 
genes that have emerged recently in the lineage of the focal 
species, or they may simply result from annotation bias. 
Model organisms may have been overannotated with re
spect to their neighbors, as is the case, for example, with 
the manual annotation of yeast available in the 
Saccharomyces Genome Database (Cherry et al. 2012). If 
so, the young genes detected in the focal species may 
also be present in the neighbors while not annotated as 
coding. However, one should note that for these three spe
cies, the genomes of the focal and the neighbors were an
notated using the same pipeline (Ensembl 53 for O. sativa 
and NCBI for M. musculus and H. sapiens), indicating that 
the annotation bias, if any, is likely to be the same for all 
the compared genomes. In the following section, we chose 
to focus on the case of O. sativa, which harbors a significant 
number of de novo emerged genes for meaningful statistic
al analyses. To explore the possibility that the high number 
of de novo gene candidates specific to O. sativa could be at
tributed to potential overannotation, we investigated 
whether their corresponding exons were intact in the 
neighboring species by calculating the proportion of each 
exon that was aligned with its homologous hits (i.e. exon 
coverage). A high level of exon intactness would suggest 
the presence of older genes that might have been over
looked when annotating the neighboring genomes. As a 
control, we repeated the experiment for a subset of 
1,000 non-TRGs (i.e. old CDSs) and 1,000 noncoding 
ORFs randomly extracted from O. sativa. These subsets en
abled us to estimate the conservation levels expected for es
tablished CDSs and noncoding ORFs, respectively, over this 
timescale. Firstly, it is worth noting that the exons of 
non-TRGs, on average, are retrieved in 85% of the 
screened Oryza species, while the noncoding ORFs and 
the exons of the orphan de novo emerged genes are less 

conserved, being detected in 70% of the genomes. 
Figure 4b represents the distribution of the alignment 
coverage of O. sativa’s noncoding ORFs and that of the 
exons of its non-TRGs and de novo genes when aligned 
with their homologs detected in the sister lineages (i.e. in
tactness). We show that the distribution of the intactness 
of de novo orphan exons lies between those of the non
coding ORFs and the non-TRG exons. On average, the 
coverage between the aligned homologous exons is signifi
cantly lower for de novo emerged genes than for older 
CDSs (Mann–Whitney U test [one-sided], P = 1.6 × 10−29), 
supporting the hypothesis that these young genes do not 
overall correspond to older genes missed by the annotation 
pipeline of O. sativa’s neighbors. As an additional control, 
we used DENSE to search for the de novo genes of the three 
closest neighbors of O. sativa, which share the same topo
logical position within the tree. By doing so, we detected 
comparable, albeit lower, numbers of de novo emerged 
genes (1,451, 1,762, and 2,021 for Oryza indica, Oryza ni
vara, and Oryza rufipogon, respectively), indicating that 
Oryza species, overall, exhibit higher numbers of de novo 
emerged genes. However, it remains difficult to disentangle 
the effective contribution of the close proximity of Oryza 
species from that of potential biological factors that could 
lead to high levels of de novo emerged genes. As observed 
for O. sativa, the majority of the de novo emerged genes of 
O. indica are orphans (59%; supplementary fig. S2, 
Supplementary Material online). Oryza nivara and O. rufi
pogon, which are very close (about 700K years, according 
to TimeTree [Kumar et al. 2022]), share on average 44% 
of their de novo emerged genes and are respectively asso
ciated with 38% and 36% of orphan de novo genes. These 
results highlight that despite the close proximity of these 
species, the latter are nevertheless associated with high le
vels of de novo emerged genes specific to closely related 
lineages. Although the evolutionary fate of these genes is 
unpredictable, their remarkably low conservation levels 
suggest that a significant fraction of them may be short 
lived in evolutionary history.

This prompted us to ask whether these ORFs are indeed 
coding and do not indicate segregating protogenes or non
coding ORFs erroneously annotated as coding. Indeed, it is 
worth noting that DENSE relies on genome annotation, as
suming all genomic elements annotated as CDS as coding. 
However, depending on the annotation criteria, annotated 
CDSs may include young de novo emerged genes that 
might be short lived in evolutionary history but also non
functional protogenes that might never reach fixation. 
Discriminating between these two categories is complex, 
as it involves discretizing a population that is, in fact, con
tinuous. Notably, it involves a twilight zone where ORFs 
are neither coding nor silent, providing an entry point 
into the coding world. One may simply divide the non
coding and coding worlds from a functional perspective 
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as “to be functional or not functional.” However, this ap
pealing dichotomy is not that simple, as it implies a clear 
definition of the concept of function and the ability to reli
ably assess whether an ORF is functional (Doolittle et al. 
2014; Doolittle 2018; Keeling et al. 2019). Nevertheless, 
the scientific community has identified a set of features 
that are typical hallmarks of functional sequences and 
that turned out to be efficient in characterizing young 
ORFs (Carvunis et al. 2012; McLysaght and Hurst 2016; 
Couso and Patraquim 2017; Papadopoulos et al. 2021; 
Peng and Zhao 2024). Figure 4c represents for O. sativa, 
several of these properties calculated for a subset of 
1,000 noncoding ORFs, 1,000 non-TRGs, and all predicted 
de novo emerged genes classified as orphans or nonor
phans. The ORF length has long been recognized as a key 
feature for detecting coding ORFs, with annotated CDSs 
being longer than noncoding ORFs regardless of the con
sidered species. In O. sativa, genes predicted as de novo 
emerged, irrespective of being orphan or not, generally ex
hibit intermediate sizes between noncoding ORFs and old 
CDSs. It is important to note, however, that the ORF size 
is a feature that is explicitly taken into account in classical 
annotation pipelines, potentially introducing bias in the 
size of these young ORFs, since smaller ones may have 
been automatically excluded during the annotation pro
cess. Previously, we and others have demonstrated that 
CDSs in yeast and fly were enriched in negatively charged 
residues compared with noncoding ORFs, likely contribut
ing to translation efficiency and/or preventing promiscuous 
interactions with the highly abundant and negatively 
charged ribosomes (Couso and Patraquim 2017; 
Papadopoulos et al. 2021). This feature, therefore, offers 
a good proxy to interrogate the codability of subsets of can
didates. Precisely, Fig. 4c shows that the de novo gene can
didates, including the orphan ones, display distributions of 
negatively charged residue fractions that lie between those 
of noncoding ORFs and old CDSs. This observation under
scores that these candidates do not resemble noncoding 
ORFs and provides support for their classification as young, 
recently de novo emerged genes. While not applicable to 
the orphan de novo gene candidates, the calculation of 
the dn/ds ratio for the nonorphan ones further substanti
ates this hypothesis with older de novo gene candidates ex
hibiting >62% of their residues under negative selection, a 
fraction comparable with that observed for older CDSs (see 
the Materials and methods section for more details). 
Orphan candidates display significantly closer proximity to 
their surrounding genes than older de novo emerged genes 
and canonical CDSs. The genomic environment of nearby 
genes may contribute to their expression through transcrip
tion read-through, bidirectional promoter activity, or perva
sive expression of regions of open chromatin (Gotea et al. 
2013; Wu and Sharp 2013; McLysaght and Hurst 2016). 
Finally, while we cannot exclude that the orphan de novo 

emerged genes may include nonfunctional segregating 
protogenes, their similarity to their nonorphan counter
parts suggests a homogeneous population of young genes 
whose future trajectory remains uncertain.

All these findings highlight the importance of having 
close neighbors in the detection of de novo emerged genes. 
Additionally, our analysis suggests that using very close spe
cies (i.e. associated with high noncoding segments’ detect
ability) may unveil populations of very young ORFs specific 
to the lineage of the focal species. Although the young 
ORFs specific to O. sativa overall resemble the older de 
novo gene candidates, the fact that most of them are not 
retrieved in the neighboring species (see supplementary 
fig. S2, Supplementary Material online) suggests a rapid 
turnover of de novo emerged ORFs, at least in Oryza spe
cies, whose majority may be short lived in evolutionary his
tory, though the fate of each individual ORFs remains 
currently unpredictable.

Application of DENSE to Short Timescales

In this section, we illustrate an application of DENSE to short 
timescales, which can be very useful when one aims to in
vestigate the distribution and/or conservation of de novo 
emerged ORFs in a population. DENSE can handle genomes 
of different strains or lines, thereby enabling the character
ization of the emergence of novel ORFs during very short 
timescales. Here, we sought to assess the conservation of 
the de novo gene candidates identified in the reference 
line of D. melanogaster, in six other lines sequenced and an
notated in Grandchamp et al. (2023). Therefore, we started 
from the TRGs of the reference line detected previously 
with the default parameters of DENSE (see Table 1), and dir
ectly entered the DENSE pipeline at the filtering step 
(Fig. 1c). In this configuration, the focal is the reference 
line, and the neighbors consist of seven genomes of the 
Drosophila genus and those of the other six D. melanoga
ster lines (see the list of fly lines in supplementary table 
S3, Supplementary Material online). As in the previous sec
tion, genes are considered as de novo emerged according 
to Strategy 1 combined with the synteny criterion. 
Figure 5a shows that all the de novo emerged genes pre
dicted for the reference line are present in the other six 
fly lines. This result contrasts with the observation made 
by Grandchamp et al. (2023), where most newly expressed 
ORFs (i.e. neORFs that consist of not-yet fixed precursors of 
de novo genes) are generally observed in a single line, sup
porting a high birth-death rate (Fig. 5b). Figure 5c to e re
presents the size, the fraction of negatively charged 
residues, and the genomic distance to the closest gene of 
these two ORF categories, along with those of a subset of 
1,000 noncoding ORFs. The neORFs and the de novo 
gene candidates display comparable size, being significant
ly longer than noncoding ORFs (Mann–Whitney U test 
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[one-sided], both P < 5.5 × 10−11). However, the fraction of 
negatively charged residues of the neORFs is similar to that 
of noncoding ORFs and lower than that of the de novo 
emerged genes. This suggests two distinct populations: 
an older population of ORFs conserved across 
D. melanogaster lines and whose amino acid content is 
undergoing optimization, and a younger population of 
potential gene precursors characterized by high turnover. 
Furthermore, the fact that young de novo genes are gener
ally located closer to old genes than neORFs suggests that 
the ORFs present in the gene vicinity may benefit from a fa
vorable genomic environment, which could facilitate their 
“fixation,” at least across D. melanogaster lines.

Impact of Parameters

We then investigated the impact of the different filters that 
can be applied to TRGs to classify them as de novo 
emerged. Unfortunately, no benchmark for de novo 
emerged genes is available, hampering the systematic study 
of parameter effects on the predictions. Furthermore, as de 
novo emerged genes get older, they become more 

challenging to detect since the criteria to classify them as 
de novo emerged (e.g. microsynteny, hit in noncoding re
gions of outgroup species) become more difficult to satisfy. 
As a result, older de novo emerged genes are likely to no 
longer conform to the constraints imposed by classical de 
novo gene detection protocols, and assessing whether indi
vidual candidates are true or false positives becomes a non
trivial task. Therefore, we deliberately removed some of the 
filters proposed by DENSE and analyzed the aforemen
tioned properties of the resulting candidates, in order to 
see whether the latter are associated with properties similar 
to those of confidently identified candidates, i.e. with the 
complete set of filters as shown with the protocol pre
sented in Fig. 1 (Strategy 1 with synteny criterion).

Removing the synteny filter adds, on average, 67% of de 
novo emerged candidates for each focal species (see 
Table 1). Generally, the candidates identified without syn
teny validation exhibit properties similar to those with a 
noncoding hit found in synteny, especially considering their 
fractions of negatively charged residues or positions under
going negative selection (Fig. 6). In several species, they are, 
however, associated with longer size, higher distance to the 

(a)

(c) (d) (e)

(b)

Fig. 5. Conservation and properties of de novo emerged genes and neORFs of D. melanogaster. a) Distribution of the conservation levels of the de novo 
emerged genes predicted for D. melanogaster with DENSE (Strategy 1 with synteny) across the seven fly lines. b) Same as (a) for the neORFs of D. melanogaster 
detected in Grandchamp et al. 2023. c) ORF length for 1,000 randomly selected noncoding ORFs of D. melanogaster, its neORFs, and de novo emerged genes. 
d) Same as (c) for the distributions of negatively charged residue fractions. e) Same as (c) for the distance to the closest gene. Asterisks denote level of sig
nificance: *, **, *** for P < 1 × 10−1, 1 × 10−2, 1 × 10−3, respectively.
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closest gene, and higher phylogenetic distance. We may 
hypothesize that some of these candidates correspond to 
de novo emerged genes, whose synteny with their ortholo
gous noncoding region has been lost over time. In fact, al
though their phylogenetic distance with their farthest 
homolog is not significantly higher in four of the seven 
studied species, their conservation profiles reveal higher 

proportions of conserved de novo genes (supplementary 
fig. S1, Supplementary Material online). This observation 
further supports the hypothesis of a population including 
slightly older de novo emerged genes whose genomic re
gions are no longer in synteny.

We then evaluated the impact of the number of out
groups in which a noncoding hit is required to validate a 

Fig. 6. Properties of candidates detected with different combinations of criteria for each species. For all properties except Phylogenetic distance, from left to 
right: (1) de novo emerged gene predicted with at least one syntenic noncoding hit in at least one outgroup (Strategy 1 with synteny); (2) de novo emerged 
gene candidates added when removing the synteny filter (Strategy 1 without synteny); (3) de novo emerged gene candidates added when removing the 
requirement of the noncoding hit to be in an outgroup species (Strategy 2 without synteny); (4) remaining TRGs; (5) and non-TRGs. Non-TRGs are absent 
from the Phylogenetic distance property. From top to bottom: length of the corresponding CDSs (in amino acids). Fraction of negatively charged residues. 
Distance to the closest neighboring gene (in base pairs). Fraction of positions under negative selection. Phylogenetic distance calculated with OrthoFinder be
tween the focal species and the farthest species where the gene has been detected. P-values were computed with the Mann–Whitney U test (one-sided). 
Asterisks denote level of significance: *, **, *** for P < 1 × 10−1, 1 × 10−2, 1 × 10−3, respectively.
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de novo gene candidate. Figure 7a shows that increasing 
this number significantly reduces the number of de novo 
candidates in A. thaliana and C. elegans. It is worth noting 
that the phylogenetic tree of A. thaliana includes a max
imum of three potential outgroups, which rapidly limits 
the detection of de novo genes when the number of re
quired outgroups with noncoding hits increases. In con
trast, C. elegans has many potential outgroups but 
exhibits a very low detectability profile, challenging the 
identification of noncoding hits in multiple outgroups. 
Interestingly, the effect is significantly less pronounced for 
H. sapiens, M. musculus, and O. sativa, where over 75% 
of the de novo genes detected when requiring only one 
outgroup with a noncoding hit, are still identified when re
quiring noncoding hits in two outgroups. These species are 
characterized by high detectability profiles, which likely 

facilitate the detection of noncoding hits across the phylo
genetic tree. Overall, the de novo candidates detected 
using different outgroup thresholds are comparable yet dis
tinguishable from canonical CDSs, revealing a relatively 
homogeneous population (supplementary fig. S3, 
Supplementary Material online). This result suggests that, 
while requiring higher numbers of outgroups with non
coding hits can enhance confidence in the noncoding sta
tus of the ancestor and, ultimately, in de novo gene 
detection, it might also be too restrictive, particularly for 
species associated with low detectability profiles.

Candidates identified using Strategy 2 (i.e. whose non
coding hit(s) are not required to be in an outgroup species, 
Fig. 2a) without synteny display a more distinct separation 
from those identified with Strategy 1. They generally exhibit 
wider distributions than the de novo genes predicted with 

(a)

(b) (c)

Fig. 7. Impact of the number of outgroups with noncoding hits, the window size, and the number of anchors used for the synteny search on the number of 
predicted de novo CDSs. a) Fraction of predicted de novo CDSs with respect to the number of outgroups with a noncoding hit(s). The fraction is calculated 
relative to the number of de novo CDSs predicted when requiring only one outgroup with a noncoding hit. b) Fraction of predicted de novo CDSs with respect 
to the size of the window (i.e. number of considered genes on each side of the focal de novo gene candidate). The fraction is calculated according to the 
number of de novo CDSs predicted with a size window of 10. The number of anchor pairs (i.e. number of anchors per window) has been set to one. c) 
Fraction of predicted de novo CDSs with respect to the number of required anchor pairs. The size of the window has been set to six. The fraction is calculated 
relative to the number of de novo CDSs predicted with a number of anchors set to one.
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high confidence, unveiling a heterogeneous population of 
genes with various ages and probably different origins 
(Fig. 6). These genes may include fast-evolving genes 
whose orthologs would have been lost in some neighbor
ing species, explaining the detection of a noncoding hit in 
the noncoding regions of some neighbors. However, we 
do not exclude that it also comprises genes that emerged 
de novo million years ago, and for which homology in the 
noncoding orthologous regions of the outgroup species is 
no longer detectable. Finally, as expected, TRGs consist of 
a highly heterogeneous population of genes with wider dis
tributions for all considered features, reinforcing the idea 
that TRGs encompass genes with various origins and 
ages. It is interesting to note, that as filters are removed, 
the phylogenetic distance of the detected candidates in
creases, probably reflecting false positives with different 
ages, but also older de novo emerged genes that no longer 
satisfy the filter criteria.

Ultimately, we studied the influence of two parameters 
of the synteny filter on the number of validated de novo 
gene candidates: (i) the size of the window of genes consid
ered on each side of the focal de novo gene candidate and 
of the noncoding hit in the outgroup species, and (ii) the 
number of anchor pairs required in the vicinity of the non
coding hit (Fig. 2c). In Fig. 7b, a candidate is classified as de 
novo emerged, if at least one anchor pair is found in the 
vicinity of its homologous noncoding hit in an outgroup 
species. This vicinity is defined by a window size that varies 
from one to ten genes (see Fig. 2c for more details). For all 
focal species, a window of four genes enables the detection 
of >84% of the candidates detected with the largest win
dow. This proportion significantly drops with smaller win
dows, reaching only 35% of the candidates detected 
with a window of one. Conversely, beyond four genes, 
the proportion of validated candidates increases gradually 
with the size of the window, suggesting that a window 
of four genes offers a suitable compromise. Figure 7c illus
trates the impact of the number of anchor pairs, using a 
window of six, on the number of validated candidates. As 
expected, this number sharply diminishes with the number 
of anchor pairs, regardless of the focal species, reflecting 
the high speed at which the synteny is altered in related 
genomes.

DENSE Online

The filtering part of the DENSE workflow, including all cri
teria combinations (Fig. 1c and d) is available through a 
web server once users provide their own list of TRGs 
(https://bioi2.i2bc.paris-saclay.fr/django/denovodb/dense- 
run/). Since calculating the phylostratigraphy can be highly 
time-consuming, and as many studies involve the same 
model organisms, we also provide the DENSE calculations 
for the seven model organisms of the present study 

through a public database (https://bioi2.i2bc.paris-saclay. 
fr/django/denovodb/). These calculations include the phy
lostratigraphy calculated from the nr database (down
loaded on 2022 March 23) and the predictions obtained 
from most of the DENSE available combinations of criteria.

Discussion
In this study, we investigated the influence of different 
parameters in de novo emerged gene detection. Notably, 
we demonstrated the significant impact of the phylogenet
ic distance separating the focal species and its closest 
neighbors on the ability to detect de novo emerged genes, 
with the homology signal in noncoding regions decreasing 
rapidly as this distance increases. The decrease in the num
ber of predicted candidates in O. sativa from 2,455 to 
1,515, upon removing neighboring species with <1.5 mil
lion years of divergence, raises questions about the exist
ence of a population of young candidates being missed in 
the other focal species. Additionally, we showed that the 
distance between the focal species and its nearest neigh
bors impacts the nature of the detected candidates. 
Indeed, using very close neighbors enables the detection 
of very young de novo emerged genes, such as the 1,881 
candidates specific to O. sativa. The latter, while displaying 
similar properties to the older de novo emerged genes, may 
not share the same fate. In particular, an important fraction 
of them might have a limited lifespan in evolutionary his
tory, as suggested by the low amounts of de novo emerged 
genes shared across closely related neighbors. 
Furthermore, we found that removing the synteny filter 
leads to a significant increase in the number of predicted 
de novo emerged genes. These candidates, overall, resem
ble those detected with a high degree of confidence. It can 
be, therefore, hypothesized that the latter include a popu
lation of de novo emerged genes whose synteny has been 
lost over time, being subsequently excluded with the strict
est combination of criteria. Finally, omitting the require
ment of a noncoding hit in an outgroup species led to a 
heterogeneous population of candidates with properties 
slightly different from those of candidates detected with 
high confidence. This population may encompass de novo 
emerged genes but also TRGs with other origins, underlin
ing the difficulty of finding the set of parameters that mini
mizes the number of false positives and false negatives in 
the context of de novo emerged gene prediction.

In fact, for each species, there is a specific window of 
time during which de novo emerged gene candidates can 
be identified confidently and beyond which, the signals 
used for reliable prediction are no longer detectable. As 
de novo emerged genes get older, their genetic environ
ment is likely to have evolved, and homology traces within 
orthologous noncoding regions are no longer detectable. 
Determining whether their ancestor was noncoding, 
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hence, becomes challenging, and classifying them as de 
novo emerged rapidly becomes impossible. Although these 
older de novo genes are challenging to detect, they remain 
too young to resemble old, canonical CDSs, and overall ex
hibit intermediate properties between recently emerged de 
novo genes and canonical CDSs. These properties could 
have been helpful in identifying them. However, it would 
require being able to discriminate them from pseudogeniz
ing genes or fast-evolving duplicated genes, which, unfor
tunately, are also expected to exhibit intermediate 
properties (Vakirlis et al. 2020; Montañés et al. 2023). 
Determining the noncoding status of the ancestor is, 
therefore, a key and methods based on ancestral sequence 
reconstruction appear as a promising approach to distin
guish emerging genes from those undergoing free-fall evo
lution (Vakirlis et al. 2024). While requiring noncoding hits 
in multiple outgroup species may increase confidence in the 
noncoding status of the ancestor, young de novo genes are 
expected to be associated with high turnover, and pseudo
genes may be resurrected. These potential back-and-forth 
events reveal a complex and intertwined evolutionary land
scape, further complicating the detection of de novo 
emerged genes, and again underscoring the challenges of 
identifying them beyond a specific time window. The 
time window for the efficient detection of de novo 
emerged genes is not universal, and determining the right 
one is not trivial. Species evolution is not linear, and species 
are associated with different generation times. In other 
words, species have their own evolutionary time. In this 
work, we showed that characterizing the conservation pro
files or intactness of both CDSs and noncoding segments 
across the tree offers a valuable route to delineating the 
boundaries of the evolutionary signal resulting from either 
selection (i.e. CDSs under selective pressure) or neutral evo
lution (i.e. noncoding segments). These profiles provide 
useful landmarks to estimate the upper and lower bounds 
of intact ORFs or detectable evolutionary traces expected 
in neighboring species associated with different divergence 
times, regardless of the knowledge of the generation time 
and evolutionary history of the considered species. 
Consequently, they can assist the user in adjusting the list 
of neighboring species or in identifying configurations 
where the nearest neighbors are too divergent for the ac
curate detection of de novo emerged genes.

It should be noted that the number of de novo emerged 
genes that can be detected is also bounded by the number 
of TRGs, since, by definition, the number of predicted de 
novo emerged genes cannot exceed the count of TRGs. 
This number is, in turn, directly affected by the taxonomic 
sampling around the focal species, the phylostratum used 
to define the TRGs, the heterogeneity in genome annota
tions across neighbors, and the sensitivity of the homology 
search when dating a species’ genome. Undersampling is 
likely to underestimate gene age by lacking the evolutionary 

relays that could connect them to their homologs in remote 
species, thus potentially leading to the misclassification of 
old genes as TRGs. In addition, the sensitivity of the hom
ology search during the phylostratigraphy stage may impact 
the number of detected TRGs, as a lack of sensitivity can lead 
to underestimating gene age (Domazet-Lošo et al. 2017). 
On the other hand, heterogeneity in genome annotation 
among the compared species is also expected to lead to 
gene age underestimation by incorrectly categorizing genes 
that have been overlooked in other genomes as orphans. 
However, we showed that the characterization of the intact
ness of gene ORFs constitutes an efficient proxy to control 
this potential bias. It is also important to mention that gen
ome annotations for the same species may exhibit signifi
cant disparities, especially for young genes, which are 
difficult to annotate. Notably, supplementary fig. S4, 
Supplementary Material online shows the number of O. sa
tiva CDSs from the Ensembl Genomes 53 annotation 
(Cunningham et al. 2022) that are also present in the anno
tation published by Stein et al. (2018). While most CDSs are 
shared between the two annotated proteomes, the majority 
of those belonging to the youngest phylostrata are not, like
ly contributing to variations in de novo gene lists across dif
ferent studies. Finally, choosing a phylostratum for the 
definition of TRGs that is too young inherently results in re
duced lists of TRGs, causing users to miss the genes whose 
emergence predates this phylostratum. If the genus level ap
pears to be an effective phylostratum for most species in this 
study, the phylostratum threshold for H. sapiens, and M. 
musculus had to be adjusted to Hominidae and Murinae, re
spectively, to get sufficient numbers of outgroup species. 
Again, the conservation profiles of a subset of noncoding 
segments across the species associated with a given phylos
tratum can help users define the appropriate threshold. In 
any case, although defining the right phylostratum seems 
nontrivial in theory and directly depends on the species un
der consideration, in practice, false positives in TRG detec
tion should be eliminated through the requirement of 
homology traces in the orthologous syntenic noncoding re
gion of outgroup species. This strict combination of criteria 
strongly supports the noncoding status of the ancestor. 
However, we do not exclude the possibility that a small frac
tion of genes that meet these criteria may consist of 
fast-evolving genes, which would have been recently lost 
in the sister lineages, thereby explaining the homology 
trace(s) detected in these species.

Finally, the main difficulty may stem from the term “de 
novo” genes itself, which, in fact, refers to the mechanism 
by which these genes have emerged. This semantic confu
sion, conflating the process with the product, may inaccur
ately impart that de novo emerged genes are uniformly 
young and constitute a single and cohesive gene category, 
whereas, in reality, the population of de novo emerged 
genes is continuous and heterogeneous. It encompasses 
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recently emerged genes but also, genes that appeared very 
early during evolution and whose origin is now unpredict
able. This continuum implies a wide diversity of properties, 
functions, and trajectories, with recently emerged genes 
probably associated with uncertain fates, as suggested by 
the numerous young genes detected in O. sativa. In con
trast, older de novo emerged genes have diversified over 
time, forging their unique trajectory during evolution. 
Consequently, all these genes, in all their diversity, share 
no more in common than their mechanism of emergence, 
and ultimately, their origin. Thus, which de novo emerged 
genes are we looking for? If the question is “How do we 
pass from the noncoding to the coding world,” part of 
the answer lies in the transition between these two worlds; 
specifically, in the study of genes that still bear the foot
prints of this transition. Precisely, the combination of cri
teria offered by DENSE is tailored for the identification of 
these young genes that have recently emerged de novo.

Conclusion
We introduced DENSE, a user-friendly Nextflow pipeline de
signed to seamlessly execute the entire protocol required 
for detecting de novo emerged genes from genomic 
data. This process encompasses the identification of TRGs 
through phylostratigraphy, along with their filtering ac
cording to various combinations of criteria. For higher spe
cificity, we recommend employing the strictest protocol 
that relies on the filtering of candidates that exhibit hom
ology traces in a syntenic noncoding region of an outgroup 
species. The latter, applicable genome-wide, stands out as 
the most promising for confirming the noncoding status of 
the ancestor using genomic data. It is important to note, 
however, that DENSE offers different combinations of strat
egies and parameters, empowering users to adapt to spe
cific situations or explore new combinations.

The filtering step of DENSE is accessible to the scientific 
community through a web server, should users provide 
their own list of TRGs. Furthermore, as most studies focus 
on a limited set of model organisms, we have precalculated 
phylostratigraphies and executed the different DENSE strat
egies for the seven model organisms studied in this work. 
The associated results are available through a requestable 
database, that is to the best of our knowledge, the first 
public database of predicted de novo emerged genes. 
This unique dataset, encompassing seven model organisms 
and calculated with a consistent protocol, provides the sci
entific community with a valuable resource for cross- 
species analyses and large-scale studies. We plan to extend 
this database to other organisms and hope that it will serve 
as a reference for de novo emerged gene lists generated 
with specific combinations of criteria. The integration of 
DENSE into a fully automated pipeline and the modularity 
of its framework embedding different strategies and 

parameters should enable users to establish rational proto
cols for de novo emerged gene detection. This, in turn, 
should promote enhanced protocol communication, ef
fective interoperability, and improved reproducibility across 
studies. While we anticipate that protocols will continue to 
evolve, we hope that this work, along with the rationality 
and interoperability facilitated by DENSE, will stimulate 
fruitful discussions and lead to further enhancements of 
protocols. Precisely, implemented through a Nextflow pipe
line, DENSE is perfectly suited to these collaborative goals.

Materials and Methods

Identification of the De Novo Emerged Genes in the 
Seven Studied Organisms

All de novo emerged genes were predicted using the full 
pipeline of DENSE with default parameters (Strategy 1 
with synteny, a noncoding hit in at least one outgroup, 
one anchor pair, and a window size of 4). For TRG detection, 
we used the nr database downloaded on 2022 March 23. 
The phylostratum threshold used for TRG detection was 
set to the genus level, except for M. musculus and H. sapi
ens. For these two latter, to ensure a sufficient number of 
outgroup species, the threshold was extended to Murinae 
and Hominidae, respectively. It is worth noting that the 
neighboring genomes used for detecting coding and non
coding hits during the TRG filtering process (Fig. 1c and d) 
may not correspond to all genomes included in the phylos
tratum selected for TRG detection. Notably, only species be
longing to the D. melanogaster subgroup were considered 
for the filtering step. The list of all genomes used in this 
study, along with the links to their sequence and annotation 
files, are available in supplementary table S1, 
Supplementary Material online. For each focal species, the 
associated local trees (focal and neighboring species) were 
generated using OrthoFinder (Emms and Kelly 2019) with 
default parameters, except for the “msa” method that 
was used for gene tree inference (“-M” option).

ORF Properties

Except for the calculation of distance to the closest neigh
boring gene, all studied properties were computed from 
the CDSs of the genes, including the de novo genes, orphan 
de novo genes, nonorphan de novo genes, TRGs, and 
non-TRGs. In cases where genes were associated with mul
tiple isoforms, the evaluated properties were calculated on 
all their corresponding CDSs. The phylogenetic distance 
was directly extracted from the tree computed by 
OrthoFinder (Emms and Kelly 2019). The fraction of residues 
under negative selection was calculated with codeml (Yang 
2007). Therefore, for each considered gene in the focal spe
cies, we searched for its orthologs within the neighboring 
species using the Reciprocal Best Hits method (E-value: 
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10−3, coverage: 70%). The corresponding CDSs were 
aligned with MAFFT (Katoh and Standley 2013) and pro
vided to codeml. We employed the model assuming a fixed 
Ω value along the branches and three states per site (nega
tive, neutral, and positive). The distance to the closest neigh
boring gene was calculated using BedTools (Quinlan and 
Hall 2010).

Homology Detection

The conservation of the de novo genes across the neighbor
ing species (Fig. 3) and the intactness of the three ORF cat
egories (Fig. 4b) were assessed using blastp (E-value: 10−3, 
coverage: 50%). The detectability profiles were calculated 
for each focal species based on a similarity search of 1,000 
randomly selected intergenic segments of 300 nucleotides 
across its neighboring species. The similarity search was con
ducted using tblastn (E-value: 10−3, coverage: 50%).

Statistical Analyses

All statistical tests were performed in R (4.3.2) (R Core Team 
2021). When samples were >500 individuals, tests were 
performed 100 times on random subsets of 500 individuals 
chosen from the initial sample, and the averaged P-value 
was subsequently calculated.

Supplementary Material
Supplementary material is available at Genome Biology and 
Evolution online.
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