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Disentangling the genetic basis of rhizosphere
microbiome assembly in tomato
Ben O. Oyserman 1,2✉, Stalin Sarango Flores1,3, Thom Griffioen 1, Xinya Pan1, Elmar van der Wijk 2,

Lotte Pronk 2, Wouter Lokhorst 1, Azkia Nurfikari 1, Joseph N. Paulson 4, Mercedeh Movassagh5,6,

Nejc Stopnisek 1, Anne Kupczok 2, Viviane Cordovez1, Víctor J. Carrión 1,3, Wilco Ligterink 7,

Basten L. Snoek 8, Marnix H. Medema 2,3 & Jos M. Raaijmakers 1,3✉

Microbiomes play a pivotal role in plant growth and health, but the genetic factors involved in

microbiome assembly remain largely elusive. Here, we map the molecular features of the

rhizosphere microbiome as quantitative traits of a diverse hybrid population of wild and

domesticated tomato. Gene content analysis of prioritized tomato quantitative trait loci

suggests a genetic basis for differential recruitment of various rhizobacterial lineages,

including a Streptomyces-associated 6.31 Mbp region harboring tomato domestication sweeps

and encoding, among others, the iron regulator FIT and the water channel aquaporin SlTIP2.3.

Within metagenome-assembled genomes of root-associated Streptomyces and Cellvibrio, we

identify bacterial genes involved in metabolism of plant polysaccharides, iron, sulfur, treha-

lose, and vitamins, whose genetic variation associates with specific tomato QTLs. By inte-

grating ‘microbiomics’ and quantitative plant genetics, we pinpoint putative plant and

reciprocal rhizobacterial traits underlying microbiome assembly, thereby providing a first step

towards plant-microbiome breeding programs.
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Root and shoot microbiomes are fundamental to plant
growth and plant tolerance to (a)biotic stress factors. The
outcome of these beneficial interactions is the emergence of

specific microbiome-associated phenotypes (MAPs)1, such as
drought resilience2, disease resistance3, development4, and het-
erosis (i.e., hybrid vigor)5. The microbes inhabiting the surface or
internal tissues of plant roots are selectively nurtured by diverse
plant-derived compounds in the form of primary and secondary
metabolites6,7. Microbes reciprocate by supporting plant growth
and producing metabolites that mediate processes such as
nutrient acquisition and pathogen suppression8,9. Developing a
blueprint of the genetic architecture for this ‘chemical dialog’ and
how these interactions lead to specific MAPs is one of the key
focal points in current plant microbiome research. The promise is
that these genomic and chemical blueprints can be integrated into
crop breeding programs for a new generation of ‘microbiome-
assisted’ crops that can rely, at least in part, on specific members
of the microbiome for stress protection, enhanced growth, and
higher yields10.

Selective breeding for yield-related traits has left a considerable
impact on the taxonomic and functional composition of modern
crop microbiomes11,12. Wild plant relatives represent a ‘living
library’ of diverse genetic traits that may have been lost during
domestication13. For example, recombinant inbred lines (RILs) of
crosses between wild tomato relatives and modern tomato culti-
vars have been used to identify genetic loci controlling important
agronomic traits, including tolerance to abiotic14 and biotic
stress15, as well as nutritional quality and flavor profiles16. To
date, microbiome traits are not yet considered for breeding
purposes, except for specific quantitative MAPs such as the
number of nodules in legume-rhizobia symbioses17. However,
technological advances in sequencing now make it feasible to
treat microbiomes as quantitative traits for selection. Quantitative
approaches to map the microbiome as a phenotype have been
adopted to investigate the phyllosphere microbiome and, recently,
for the Arabidopsis and sorghum rhizosphere microbiomes18,19.
However, actualizing microbiome features into breeding pro-
grams at a scale for crop improvement has not yet been realized.
In fact, for most plant species, investigations leveraging diverse
plant populations to map microbiome-associated quantitative
trait loci (QTL) are still in their infancy18–20. In these recent
studies, the microbiomes were characterized by amplicon
sequencing to detect loci involved in alpha and beta diversity as
well as individual OTU abundances21. These studies provide
strong evidence that microbiome recruitment has a genetic
component, but the functional nature of the corresponding
plant–microbe interactions cannot be reliably elucidated from
amplicon data. Hence, functional genomic features of the
microbiome, as well as intraspecific diversity within microbial
species, have not yet been taken into account in QTL analyses22.

Here, we use both amplicon and shotgun metagenome
sequencing to generate taxonomic as well as functional micro-
biome features as quantitative traits. Using an extensive RIL
population of a cross between modern Solanum lycopersicum var.
Moneymaker and wild Solanum pimpinellifolium23, we identify
reciprocal associations between specific plant and microbiome
traits and infer putative mechanisms for rhizosphere microbiome
assembly. Using the modern allele as a reference, we find QTLs
for numerous taxonomic and metagenomic features of the
microbiome with both positive and negative effects. We observe
more positive effects related to increases in microbiome feature
abundance for the modern reference allele compared to the wild
reference allele, suggesting that domestication has had a sig-
nificant impact on rhizosphere microbiome assembly. We iden-
tify plant traits related to growth, stress, amino acid metabolism,
iron and water acquisition, hormonal responses, and terpene

biosynthesis, whereas the microbial traits we identify are related
to the metabolism of plant cell wall polysaccharides, vitamins,
sulfur, and iron. Furthermore, we show that amplicon-based
approaches allow detection of QTLs for rarer microbial taxa,
whereas shotgun metagenomics allowed mapping to smaller and
thus more defined plant genomic regions. Together, these results
demonstrate the power of an integrated approach to disentangle
and prioritize specific genomic regions and genes in both plants
and microbes associated with microbiome assembly.

Results
Baseline analyses of the tomato recombinant inbred line
population. Prior to detailed metagenome analyses of the
microbiome of the tomato RIL population, we first investigated
whether QTLs previously identified in the same RIL population
under sterile in vitro conditions could be replicated in our
experiment conducted under greenhouse conditions with a
commercial tomato greenhouse soil (Fig. 1a, b and Supplemen-
tary Data 1)24. We identified QTLs for shoot dry weight (SDW)
coinciding with a QTL identified previously on chromosome 924.
Similarly, we identified QTLs for rhizosphere mass (RM), defined
here as a the total mass of the roots with tightly adhering soil,
which coincides with root trait QTLs previously identified for
lateral root number, fresh and dry shoot weight, lateral root
density per branched zone and total root size (Fig. 1b)24. An
analysis of variance (ANOVA) yielded significant variation in
SDW based on the additivity of alleles linked to SDW (zero, one,
or two alleles) (F(2, 186) = 16.02, p= 3.76 e–07) (Fig. 1c, d). A
post hoc Tukey test further demonstrated significant differences
between all pairwise comparisons (p < 0.05). For RM, an ANOVA
yielded a significant difference (F(2, 186) = 16.02, p= 3.76 e–07);
a post hoc Tukey test demonstrated a statistically significant
difference only between the presence of either one or two alleles
(p < 0.05), but did not support additivity (p= 0.15) (Fig. 1e, f).
Collectively, our results confirm and extend earlier work con-
ducted on the same tomato RIL population in vitro24, providing a
solid basis for QTL mapping of taxonomic and genomic features
of the rhizosphere microbiome

Taxonomic microbiome features as quantitative traits. To
investigate molecular features of the microbiome as quantitative
traits, we conducted 16S rRNA gene amplicon sequencing of 225
rhizosphere samples, including unplanted bulk soil, parental
tomato genotypes, and all 96 RIL accessions in duplicate (Bio-
Project ID PRJNA787039). We observed separation between the
microbiomes of rhizosphere and bulk soil, between the micro-
biomes of the two parental tomato genotypes, and the RIL
accession microbiomes (Fig. 2a). To limit multiple testing and to
focus on common microbiome features with sufficient coverage
across all accessions, we prioritized the rhizosphere-enriched
amplicon sequence variants (ASVs) to those present in 50% or
more of the RIL accessions (Fig. 2b). A QTL analysis with these
prioritized ASVs was run with R/qtl225 using a high-density
tomato genotype map26, harvest date, post-harvest total bulk soil
mass, RM, number of leaves at harvest, and SDW as covariates.

We identified 48 QTL peaks, across 45 distinct loci,
significantly associated with 33 ASVs (Supplementary Data 6).
Our logarithm of the odds (LOD) thresholds for significance had
been determined by pooled permutations from all ASVs to attain
a genome-wide threshold of P 0.05 (LOD 3.35) and P 0.2 (LOD
2.64). The modern allele was set at reference, such that negative
effects were relatively more associated with the wild allele and
positive effects with the modern allele. Of the significant QTLs, 16
were microbiome features less abundant compared to the
reference allele, whereas 32 were microbiome features more
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abundant in presence of the modern reference allele. The QTLs
on chromosomes 11, 10, 8, and 2 were associated with increases
in abundance in presence of the modern reference allele. In
contrast, the sole QTL on chromosome 7 was negative relative to
the reference. All other chromosomes contained a mix of QTLs
with positive and negative effects on ASV abundance relative to
the reference allele (Fig. 3a). While many rhizobacterial lineages
were linked to a single QTL (14 out of 25 unique taxonomies),
others were linked to two or more QTLs (7 and 4 taxa,
respectively) (Fig. 3b). Of the lineages with multiple QTLs, most
were positive relative to the reference allele. One salient exception
was Methylophilaceae, with a total of 9 QTLs that were both
positive and negative relative to the reference and distributed
across chromosomes 3 (positive, x2), 4 (positive), 7 (negative), 11
(positive x2), and 12 (negative x3) (Fig. 3c). Another salient
feature of the QTL analysis was the hotspot for microbiome

assembly identified on chromosome 11, including a significant
linkage with ASVs from Adhaeribacter, Caulobacter, Devosia,
Rhizobiaceae, Massilia, and Methylophilaceae (Fig. 3c).

In addition to individual ASVs, we investigated diversity
metrics as quantitative traits using Shannon index and principal
coordinate analysis (PCoA) with Bray–Curtis dissimilarity. For
each approach, we calculated diversity statistics first using all
ASVs with a relative abundance greater than the effective samples
size27, and second using the rhizosphere-enriched ASVs present
in 50% or more of the RIL accessions. For the Shannon index,
LOD thresholds for significance were determined by permuta-
tions to attain a genome-wide threshold of P 0.05 (LOD 3.27) and
P 0.2 (LOD 2.63). Two QTLs were identified on chromosomes 1
and 3 (Supplementary Figs. 1 and 2) using all, and prioritized,
ASVs to calculate Shannon Diversity respectively. Of note, the
QTL on chromosome 1 overlaps with the confidence interval of
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Fig. 1 Replication of shoot dry weight and rhizosphere mass QTLs from previous studies. a QTLs identified for SDW on chromosome 9 position
63.63719184 and chromosome 2 position 42.7291229, coinciding with a QTL identified previously (chromosome 9 position 62.897108) by Khan et al 2012.
b QTL of RM on chromosome 5 position 62.00574891, and chromosome 9 position 62.71397636, which coincide with root trait QTLs previously identified
for lateral root number chromosome 5 position 53.4–86.1, and several on chromosome 9, including fresh and dry shoot weight, (chromosome 9 position
81.3–95.3), lateral root density per branched zone (chromosome 9 position 33.8–88.7), and total root size (chromosome 9 position 39.4–75.1) from Khan
et al 2021. c Scatter plots showing the distribution of SDW measurements on chromosome 2 position 42.7291229 and chromosome 9 position
63.63719184 for both modern (AA) and wild (BB) alleles. For the QTL on Chromosome 2, n= 76 and 112 biologically independent samples for AA and BB
respectively. For the QTL on Chromosome 9, n= 106 and 82 biologically independent samples for AA and BB respectively. In addition to the scatter plot,
data are presented as mean values +/− two times the SEM. d Significant additivity of alleles for SDW (p < 0.05); n of 42, 80, and 70 for biologically
independent plants containing neither allele (AA/BB), either BB allele on chromosome 2, or AA on chromosome 9 (AA/AA or BB/BB), or both AA and BB
alleles (BB/AA) respectively. In addition to the scatter plot, data are presented with boxplots representing the median value, the interquartile range, and
whiskers representing the minimal and maximal values excluding points greater than 1.5 times the interquartile range. e Scatter plots showing the
distribution of RM measurements on chromosome 5 (pos 62.00574891), and chromosome 9 (pos 62.71397636) for both modern (AA) and wild (BB)
alleles. For the QTL on Chromosome 5, n= 92 and 98 biologically independent samples for AA and BB respectively. For the QTL on Chromosome 9, n= 92
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are provided as a Source Data file.
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the Cellvibrio QTL highlighted later in the results section. For the
PCoA, the first two components were mapped as quantitative
traits. A LOD threshold for significance was determined by
permutations to attain a genome-wide threshold of P 0.05 (LOD
3.41) and P 0.2 (LOD 2.71). A single QTL was identified on
chromosome 6 in the same position as the QTL identified
previously for Streptomyces ASV 5 (Supplementary Fig. 3). Of
further interest is that all diversity metric QTLs were negative
relative to the reference. Thus, while genetic changes during
domestication may have made some ASVs more or less abundant,
these genetic changes also impacted overall diversity. Given the
non-independence of sequencing-based microbiome features, we
suggest caution in interpreting the results of using diversity
metrics as microbiome features.

Effect size is an important factor when mapping the genetic
architecture of quantitative traits. While some QTLs have large
effect sizes, many small effect QTLs may explain a large
proportion of trait variation28. To date, there is little under-
standing of the distribution of the effect sizes of QTLs for
microbiome features. Here we show that the absolute values of
the effect sizes of the 48 QTLs on ASV relative abundance ranged
from 1.3 to 17%, with an average effect size of approximately 5%,
comparable to the effects seen for SDW and RM (Fig. 1c, e). The
largest QTL effects were positive for an ASV in the genus
Qipengyuania (17%), and an ASV in Edaphobaculum (10%).
However, no statistical difference was found between the absolute
value of positive and negative effect sizes (p= 0.78, two-tailed t-
test). Furthermore, for those lineages with sufficient representa-
tion at the class level (Bacteroidia, Alphaproteobacteria, and
Gammaproteobacteria), there was no statistically significant
difference between effect size (F(3, 16) = 0.072, p= 0.974).
However, an ANOVA on the positive effect size at genus level
demonstrated significant differences between lineages (F(3,
16)= 12.94, p= 1.15 e−04). A post hoc Tukey test demonstrated
QTLs for Massilia with a larger positive effect size than other
lineages with sufficient sample size for comparison (Fig. 3d).
Collectively, our amplicon analysis provided a broad picture,

suggesting that the assembly of bacteria in the tomato rhizosphere
is a complex trait governed by a combination of multiple loci,
some being ASV specific, some being pleiotropic for different
ASVs, and with heterogenous effect sizes on ASV abundance
(Fig. 3d). While QTLs were identified with both positive and
negative effects relative to the reference modern allele, the large
number of positive effects suggests domestication impacted
rhizosphere microbiome assembly.

Functional microbiome features as quantitative traits. To
understand the functional traits associated with rhizosphere
microbiome assembly, we generated shotgun metagenomes for
the rhizosphere microbiome of each accession in the tomato RIL
population (96 total), as well as six samples of the modern tomato
parent, five samples of the wild tomato parent and seven bulk soil
samples (BioProject ID PRJNA789467). After pre-processing, a
co-assembly strategy using all metagenomes was implemented
(see Supplementary Methods section 4.2.2 for more detail).
Subsequently, bin and contig abundances were determined by
read depth using CSS normalization, a computational method to
adjust for compositional bias27. QTL mapping was conducted for
the rhizosphere-enriched contig and bin abundances. A PCoA
analysis of the contigs demonstrated separation between the bulk
soil and RIL rhizosphere microbiomes (Supplementary Fig. 9).
Binning was done using Metabat2 (version 2:2.15)29 and genomic
quality of the output was evaluated by CheckM30 (Supplementary
Data 7). The bins and assembled contigs larger than 10 kb are
publicly available (https://doi.org/10.5281/zenodo.6561541). All
contigs of 10 kb and larger were taxonomically assigned using
Kraken31 (Supplementary Data 8). With nearly 40 million contigs
being assembled, the effects of multiple testing were reduced by
prioritizing rhizosphere-enriched contigs (relative to the bulk
soil) which were larger than 10 kb and with an enrichment greater
than 4-fold. After these stringent prioritization steps, 1249 contigs
were remaining. The functional potential of these rhizosphere-
enriched contigs represented 8.3% of protein clusters identified in
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all contigs greater than 10 kb by MMseqs2 using a 50% protein
identity threshold32. Approximately 25% of all proteins were
contained within these clusters, suggesting that a considerable
fraction of functional diversity was maintained during the
prioritization. Only bins with greater than 90% completion and
less than 5% contamination were mapped (33 out of 588 bins). As
with the ASVs, harvest date, bulk soil mass, RM, number of leaves
at harvest, and SDW were used as covariates in QTL mapping.

We identified 7 significant bin QTLs (LOD > 3.40, P < 0.05)
(Supplementary Data 9) including Streptomyces bin 72 with a

positive effect on tomato chromosomes 6 and 11. For the contigs,
a total of 717 QTLs at 26 unique positions on tomato
chromosomes 1, 4, 5, 6, 9, and 11 were identified (Supplementary
Data 10), corresponding to 476 metagenomic contigs from 10
different genera (LOD > 3.47, P < 0.05). The largest number of
contig QTLs were linked to the Streptomyces, Cellvibrio, and
Sphingopyxis lineages (Fig. 4a). The Streptomyces contigs mapped
to QTLs on tomato chromosomes 4 (46 contigs, negative), 6 (190
contigs, positive), and 11 (257 contigs, positive), with a subset of
contigs mapping to two or all three of these positions (Fig. 4b).
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These findings corroborate and expand upon the Streptomyces
QTL identified on chromosome 6 using our 16S rRNA gene
amplicon data, as well as that of the bin QTLs identified on
chromosomes 6 and 11. The Cellvibrio contigs mapped to
chromosome 1 (42 contigs, negative) and chromosome 9 (94
contigs, negative), again corroborating the findings from our 16S
rRNA gene amplicon analysis described above. In contrast, the
Sphingopyxis QTLs identified on chromosome 5 (24 contigs,
negative) and 9 (49 contigs, positive) did not correspond to the
QTLs identified on chromosomes 8 and 3 in the 16S rRNA gene
amplicon analysis. Four contigs for Devosia also corroborated the
results of the 16S QTL analysis. The effect sizes ranged from 9 to
21% and were significantly different (F(14, 702) = 530.9 p < 2e

−16) between QTL and lineages (Fig. 4c). As with the 16S rRNA
amplicon analysis, some of the highest LOD scores were for
Devosia. Also, the effect size of the Sphingopyxis contigs was large
(±20% on average), above 15% for Cellvibrio, and approximately
10% for Streptomyces. The average QTL region was 51.59 Mbps
for the 16S rRNA gene amplicon sequences and 26.64 Mbps for
the metagenomic contigs (two-sided t-test, p= 3.32E−09)
(Fig. 4e). A more striking contrast was observed in the difference
between the median size of amplicon and contig QTL regions
which were 58.56 Mbp and only 6.47 Mbp, respectively. In
summary, while many more taxa were identified in the amplicon-
based QTL analysis, the metagenome-based QTL analysis
provided QTLs with much smaller confidence intervals (Fig. 4e).
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Fig. 4 The contig QTLs. a A color coded summary of the number of contig QTLs identified per chromosome to wild and modern alleles. b A summary of
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d A hierarchically structured network depicting the contig rRNA QTLs identified in this study. From the top to bottom rows are the tomato chromosomes,
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points greater than 1.5 times the interquartile range. Source data are provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30849-9

6 NATURE COMMUNICATIONS |         (2022) 13:3228 | https://doi.org/10.1038/s41467-022-30849-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Amplicon-based bulk segregant analysis of Streptomyces and
Cellvibrio abundance. The two most abundant rhizosphere taxa
with replicated patterns for amplicon and metagenome-based
QTLs were Streptomyces and Cellvibrio. Therefore, we sought to
provide additional independent support for these QTLs using a
bulk segregant analysis of an independent population of parental
and RIL genotypes (Supplementary Data 11). In particular, we
tested the previously identified amplicon-based QTLs associated
with higher Cellvibrio abundance at markers 464 and 3142 on
chromosomes 1 and 9, respectively with higher Streptomyces
abundance at marker 2274 on chromosome 6 (Fig. 5). In each
case, ANOVA showed a statistical difference between genotypes
and bulk soil, respectively (F(4, 396) = 21.56, p= 4.16 e−16),
(F(4, 396) = 18.43, p= 6.68 e−14), (F(4, 396) = 8.423, p= 1.57
e−06). A post hoc Tukey HSD test supported the conclusion that
wild allele at markers 464 and 3142 on chromosomes 1 and 9,
respectively, are indeed associated with increased abundance
Cellvibrio (p= 3.913 e−04, and p= 0.08, respectively), while the
modern allele at markers 2274 on chromosome 6 was sig-
nificantly associated with increased abundance of Streptomyces
(p= 1.152 e−04).

Host genetics and rhizosphere microbiome assembly. A subset
of 5 regions consistent across both the amplicon and
metagenome-based analyses were prioritized with an average size
of 2.68 Mbps (Supplementary Data 12). These included positions
on chromosome 1 (positions 87.36–90.49 Mbps), chromosome 9
(pos 62.03–63.32 Mbps), chromosome 5 (pos 61.54–63.38),
chromosome 6 (pos 33.99–40.3 Mbps), and chromosome 11 (pos
53.06–53.89 Mbps). In total, 1359 genes were identified in these
regions. Potential candidate genes with root-specific transcrip-
tional patterns, defined as a 4 fold increase in the roots compared
to leaf samples, were further prioritized using a publicly available

RNA-seq dataset33. Based on this analysis, a subset of 192 root
specific plant genes were identified (Supplementary Data 13). A
total of 98 root specific plant genes were linked to Streptomyces
on chromosome 6 (84 genes) and 11 (14 genes) (Fig. 6). Intri-
guingly, 61 of these genes were found in regions previously
identified to be subjected to selective sweeps, regions of fixed low
genetic diversity, related to tomato domestication as well as to
subsequent sweeps related to improvements in fruit quality34

(Supplementary Fig. 4). While it remains unclear whether the
relationship between selective sweeps and changes in microbial
feature abundance is causal or coincidental; here we reveal a
genomic signature that the domestication process impacted alleles
involved in microbiome assembly.

Two of the most salient genes in this list included genes with
high transcription in the roots; an aquaporin and a Fer-like iron
deficiency-induced transcription factor (FIT). The aquaporin
(SlTIP2.3) has the highest fold change of all tonoplast intrinsic
proteins in tomato roots as compared to all other organs32,33,
while the FIT gene is a bHLH transcriptional regulator
controlling iron homeostasis in tomato34,35. Other genes within
this region on chromosome 6 include a glycine rich protein, a
receptor-like kinase known to be upregulated during drought36,
alcohol dehydrogenase, numerous phosphatases, expansins,
ethylene-responsive transcription factors, gibberellin receptors,
aminocyclopropane-1-carboxylate oxidase (ACO), an enzyme
involved in the last step of ethylene biosynthesis, and finally,
alpha-humulene and (-)-(E)-beta-caryophyllene, a known tomato
terpene and signaling molecule in tomato37,38 and also acting as a
volatile in microbiome assembly39. Root specific genes involved
in carbohydrate, protein, and amino metabolism were also
identified, including trypsin-alpha amylase inhibitor, prolyl 4-
hydroxylase, polygalacturonase, trehalose phosphatase, glyco-
genin, xyloglucan fucosyltransferase, and a metallocarboxypepti-
dase inhibitor, spermidine synthase, acetolactate synthases,
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Fig. 5 Validation of Cellvibrio and Streptomyces 16S rRNA QTLs with bulk segregant analysis. A total of 77 RIL accessions were grown with
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replicates representing for each treatment is detailed in the top row of each panel. The number of replicates within the RIL population is represented by
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addition to the scatter plot, data are presented with boxplots representing the median value, the interquartile range, and whiskers representing the minimal
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modern (M), wild (W), and RIL accessions at marker position 464 on chromosome 1. At this position, 32 and 45 RIL accessions with modern (A) and wild
alleles (B) were used (130 and 177 samples with biological replication respectively). ANOVA showed a statistical difference between genotypes and bulk
soil (F(4, 396) = 21.56, p= 4.16 e−16), A post hoc Tukey test supported the conclusion that wild allele at markers 464 associated with increased
abundance Cellvibrio (p= 3.913 e−04). b Similarly, for marker 3142 on chromosome 9, there were a total of 35 and 42 RIL accessions with modern (A) and
wild alleles (B), (143 and 164 samples with biological replication respectively). ANOVA showed a statistical difference between genotypes and bulk soil
(F(4, 396) = 18.43, p= 6.68 e−14), A post hoc Tukey HSD test supported the conclusion that wild allele at markers 464 associated with increased
abundance Cellvibrio (p= 0.08). c The normalized CSS abundances of Streptomyces 16S rRNA and sequences in bulk soil (B), modern (M), wild (W), and
RIL accessions at marker 2274 on chromosome 6. There was a total of 42 and 35 RIL accessions with modern (A) and wild alleles (B), (166 and
141 samples with biological replication respectively). ANOVA showed a statistical difference between genotypes and bulk soil (F(4, 396) = 8.423, p= 1.57
e−06), A post hoc Tukey HSD test supported the conclusion that wild allele at markers 464 associated with increased abundance Streptomyces (p= 1.152
e−04). Source data are provided as a Source Data file.
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alanine aminotransferase, and an amino acid permease. On
chromosome 11, a ferrodoxin, an aluminum-activated malate
transporter40, and a cluster of various acetyltransferases and a
sulfotransferase were identified. An aluminum-activated malate
transporter was also identified in the QTL region on chromosome
6, which has been linked to increased malate accumulation in
both fruit and roots41.

A total of 57 root specific genes were identified in the QTL
regions on chromosome 1 and 9 linked to Cellvibrio. These
include a cytochrome p450 involved in coumarin synthesis,
numerous extensins, phosphatases, respiratory burst oxidase-like
protein, iron chelator nicotianamine synthase42,43, and on
chromosome 11 phenazine biosynthesis. On chromosome 5, 37
root specific genes were identified including multiple peroxidases,
glutamine synthetase, rhamnogalacturonate lyase, pectinesterase,
metacaspase, and trehalose-phosphatase. Furthermore, numerous
ethylene responsive transcription factors and receptor-like
kinases were observed. The QTL on chromosome 1 contains
genome-wide sweeps associated with the initial tomato domes-
tication and subsequent improvements of fruit quality traits,
suggesting that one or both of these events were connected to or
act as a ‘side effect’ on the decreased abundance of Cellvibrio in
the tomato rhizosphere.

Illuminating metagenomic traits in Cellvibrio and Strepto-
myces. To further investigate the potential functional importance
of the 476 rhizosphere-enriched metagenomic contigs mapped as
QTLs, we performed a deeper analysis into their functional gene
content (Supplementary Data 14, 15, and 16). An antiSMASH44

analysis identified 30 biosynthetic gene clusters (BGCs) across
these contigs. These BGCs largely originated from contigs tax-
onomically assigned to Cellvibrio and Streptomyces. They inclu-
ded several gene clusters potentially associated with root
colonization, such as two melanin BGCs (c00216, NODE_5919;
c00255, NODE_7250) from Streptomyces (which have been
positively associated with colonization45) and a Cellvibrio aryl
polyene BGC (c00185, NODE_4941), which is thought to protect
bacteria against reactive oxygen species generated during immune
responses of the host plant46. The contigs also contained gene
clusters potentially beneficial to the host, such as BGCs encoding

iron-scavenging siderophores, which have been associated with
disease suppression in tomato47; specifically, homologs of coe-
lichelin and desferrioxamine BGCs from streptomycetes were
found (c00269, NODE_7969, and c00122, NODE_3362), three
IucA/IucC-like putative siderophore synthetase gene clusters
(c00106, NODE_2973; c00041, NODE_1131; c00238,
NODE_6661), as well as a Cellvibrio NRPS-PKS gene cluster
(c00001, NODE_101) most likely encoding the production of a
siderophore based on the presence of a TonB-dependent side-
rophore receptor-encoding gene as well as a putative tauD-like
siderophore amino acid β-hydroxylase-encoding gene48. The
Cellvibrio contigs also contain several genes relevant for carbo-
hydrate catabolism. For example, homologs of xyl31a
(B2R_23365) and bgl35a (B2R_06825-06826) were detected (with
78%, 79 and 65% amino acid identity, respectively), genes that
have been shown to be responsible for utilization of the abundant
plant cell wall polysaccharide xyloglucan in Cellvibrio japonicus49.
In addition, a possible homolog of the β-glucosidase gene bgl3D50

(B2R_26663), involved in xyloglucan utilization, was also iden-
tified, having high similarity to bgl3D from Cellvibrio japonicus
(64% amino acid identity). Also, putative cellulose-hydrolizing
enzymes were detected, such as a homolog (B2R_21082) of the
cellobiohydrolase cel6A from Cellvibrio japonicus51 encoded in a
complex locus of nine carbohydrate-acting enzymes annotated on
this contig (NODE_5090) by DBCAN52 (Supplementary
Data 14). Collectively, these results point to a possible role of
microbial traits related to iron acquisition and metabolism of
plant polysaccharides in tomato rhizosphere microbiome
assembly.

Contigs of the metagenome-assembled genome (MAG) asso-
ciated with Streptomyces ASV5 (the key taxon associated with
tomato QTLs described above) contained a multitude of
functional genes potentially relevant for host-microbe interactions.
Taxonomically, the ASV5 MAG was most closely related to a clade
of streptomycetes that includes type strains of species such as
arenae, flavovariabilis, variegatus, and chartreusis. To understand
how tomato might differentially recruit ASV5 streptomycetes, we
analyzed the MAG for genes and gene clusters potentially involved
in colonization. Intriguingly, we found contigs to be rich in genes
associated with plant cell wall degradation. In particular, we

0

5

10

3.4e+07 3.6e+07 3.8e+07 4.0e+07 5.3e+07 5.4e+07 5.4e+07

LO
B

F
IT

E
xp

an
si

n

S
pe

rm
id

in
e

C
al

m
od

ul
in

A
D

A
LS

A
C

O
P

ol
yg

al
ac

tu
ro

na
se

A
H

L
Tr

eh
al

os
e−

P
A

qu
ap

or
in

G
R

P
 T

om
R

2
P

 (x
3)

R
oo

t/L
ea

f R
at

io

S
ul

fo
A

cy
l (

x3
)

F
er

re
do

xi
n

A
LM

T

A
cy

l

a b
Transcript Abundance

(FPKM)

0 500 1000 1500 2000
sweep / no sweep/

A
B

C
-2

2O
G

D
D

Fig. 6 The prioritized regions of the Streptomyces QTL on chromosomes 6 and 11 overlaying previously reported data on transcript expression and
genetic sweeps due to domestication. Within each region, the log2 ratio gene expression patterns from leaf and root materials were calculated and those
with a log2 greater than 2, as delineated by the dotted line, were further prioritized. The log2 root transcript abundances (fragments per kilobase of exon per
million mapped fragments, FPKM) are depicted by the size of the bubble. Previously reported genetic sweeps are indicated in red. a The 6.31 Mbp region on
chromosome 6 position 33.99–40.3 Mbps. Abbreviations of highlighted genes: LOB - LOB domain protein 4, 2OGDD - 2-Oxoglutarate-dependent
dioxygenases, FIT - FIT (Fer-like iron deficiency-induced transcription factor), Spermidine - Spermidine synthase, AD - Alcohol dehydrogenase 2, ALS -
Acetolactate synthase, ACO - 1-aminocyclopropane-1-carboxylate oxidase, Polygalacturonase, AHL - AT-hook motif nuclear-localized protein, Trehalose-P -
Trehalose 6-phosphate phosphatase, Aquaporin - Tonoplast intrinsic protein 23/Aquaporin, GPR TomR2 - Glycine-rich protein TomR2, P - Acid phosphatase
(×3). b The 0.83 Mbp region on chromosome 11 position 53.06–54.89 Mbps. Abbreviations of highlighted genes: ABC-2 - ABC-2 type transporter,
Acyl–Acyltransferase (×4), Sulfo–Sulfotransferase, ALMT- Aluminum-activated malate transporter. Source data are provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30849-9

8 NATURE COMMUNICATIONS |         (2022) 13:3228 | https://doi.org/10.1038/s41467-022-30849-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


identified a family 6 glycosyl hydrolases (B2R_10154) of which the
glycosyl hydrolase domain has 84% amino acid identity to that of
the SACTE_0237 protein that was recently shown to be essential
for the high cellulolytic activity of Streptomyces sp. SirexAA-E31.
Additionally, we detected a homolog (82% amino acid identity) of
Streptomyces reticuli avicelase, a well-studied cellulase enzyme that
degrades cellulose into cellobiose53 (B2R_29198). Larger gene
clusters associated with degradation of plant cell wall materials
were also found. These included an 8 kb gene cluster coding for
multiple pectate lyases and pectinesterases (B2R_31553-31558),
and an 8 kb gene cluster encoding a family 43 glycosyl hydrolase, a
pectate lyase L, a rhamnogalacturonan acetylesterase RhgT, a
GDSL-like lipase/acylhydrolase, a family 53 glycosyl hydrolase,
and an endoglucanase A (B2R_15915-15920). Together, these
findings suggest that ASV5 Streptomyces has the capacity to
effectively process complex organic materials shed by plant roots
during growth. These results are in line with a recent study on
plant-associated streptomycetes that indicated that their coloniza-
tion success appears to be associated with the ability to utilize
complex organic material of plant roots54.

Root exudates also play a key role in the recruitment of
microbes. Prominent sugar components of tomato root exudates
are glucose, but also xylose and fructose55. The Streptomyces
MAG contains xylA and xylB genes (B2R_19014, B2R_19013)
and a putative xylFGH import system (B2R_29274, B2R_23438,
B2R_23439) facilitating xylose metabolism. Similarly, a frcBCA
import system was identified in the genome (B2R_17966-
B2R_17968) as well as a glucose permease (B2R_32780) with
91,5% amino acid identity to glcP1 SCO5578 of Streptomyces
coelicolor A3(2)56. Other genes putatively involved in root
exudate catabolism were also found in the ASV5 MAG, such as
sarcosine oxidase (soxBAG, B2R_20550-20551, and B2R_21105),
which has been shown to be upregulated in the presence of root
exudates of various plants57,58.

In summary, the Cellvibrio and Streptomyces contigs encoded a
range of functions that likely allow them to profit from tomato
root exudates as well as complex organic material shed from
growing tomato roots. How these plant traits differ between wild
and domesticated tomatoes and if/how these influence differential
colonization of roots of wild and domesticated tomato lines by
these two bacterial lineages will require detailed comparative
metabolomic analyses of the root exudates of both tomato lines as
well as isolation of the corresponding Cellvibrio and Streptomyces
ASVs, analysis of their substrate utilization spectrum followed by
site-directed mutagenesis of the candidate genes, root coloniza-
tion assays and in situ localization studies.

Genomic structure in Cellvibrio and Streptomyces provides
insights into adaptations for differential recruitment. Bacterial
populations often contain significant genomic heterogeneity. This
heterogeneity may be associated with differential recruitment
through altered nutrient preferences or host colonization
mechanisms. The use of metagenomics enabled us to investigate
the population structure within each rhizobacterial lineage and
identify intraspecific differences. To do so, we first identified a
unique set of 697,731 microbiome Single Nucleotide Variants
(SNVs) in a subset of parental and bulk metagenomes using
InStrain22. A set of 15,026 SNVs enriched in either the wild or
modern tomato rhizosphere were selected and the abundance of
each allele at each SNV was calculated. Using these abundances,
QTL mapping was performed using R/qtl2 as described in the
methods. A total of 3,357 QTL peaks were identified (LOD > 3.01,
P < 0.05), to 1229 independent loci. A total of 1354 QTL with
positive effects and 2,001 QTL with negative effects were identi-
fied, derived from 2,898 unique SNVs, and corresponding to 810

and 1068 unique rhizobacterial genes respectively (Supplemen-
tary Data 17).

We investigated the 103 Streptomyces SNV QTLs at 94 unique
positions within annotated genes whose mapping coincided with
the previously identified QTLs for Streptomyces contigs to tomato
chromosomes 4, 6, and 11 (Supplementary Data 17). Numerous
Streptomyces SNVs were associated positively with the reference
tomato alleles on chromosomes 6 and 11. In particular, alpha-
galactosidase (B2R_16136) and arabinose import (B2R_29105)
had the highest LOD and smallest overlapping confidence
intervals with chromosomes 6 and 11 (Fig. 7). Indeed, many
SNVs in genes involved in the degradation of xylan59, one of the
most dominant non-cellulosic polysaccharides in plant cell-
walls60, as well as carbohydrate and protein metabolism were
associated positively to QTL on chromosomes 6 and 11, including
xyloglucanase Xgh74A (B2R_10589), alpha-xylosidase
(B2R_23763), endo-1,4-beta-xylanase (B2R_20609), extracellular
exo-alpha-L-arabinofuranosidase (B2R_20608), multiple protease
HtpX (B2R_19218), cutinase (B2R_19356), and putative ABC
transporter substrate-binding protein YesO (B2R_09821) which
has been implicated in the transport of plant cell wall pectin-
derived oligosaccharides61. A Streptomyces SNV in acetolactate
synthase (B2R_28001) was associated positively to QTL on
tomato chromosome 6 where a plant acetolactate synthase was
located. Similarly, multiple SNVs in Streptomyces genes involved
in putrescine transportation (B2R_25489) were associated
positively to QTL on tomato chromosomes 6 and 11, which
contain genes for spermine synthase, suggesting a possible
metabolic cross-feeding from plant to microbe. A majority of
these SNVs were synonymous having no effect on the produced
amino acid sequence. However, some were non-synonymous,
resulting in an altered amino acid sequence, including the
histidine decarboxylase SNV (B2R_16511) mapping to both
tomato chromosomes 6 and 11 (Fig. 7). Streptomyces SNVs that
were associated negatively with the QTL on tomato chromosome
4 included an antibiotic resistance gene (daunorubicin/doxor-
ubicin, B2R_28992) and maltooligosyl trehalose synthase
(B2R_07820) among others.

Similarly, we investigated the 324 Cellvibrio SNV QTLs within
annotated genes whose mapping coincided with the previously
identified Cellvibrio contig QTLs to chromosomes 1 and 9. Again,
numerous SNV QTLs were identified in genes were related to
sugar catabolism, including a gene encoding an extracellular exo-
alpha-(1->5)-L-arabinofuranosidase (B2R_16093), fructose import
FruK (B2R_22268), a cellulase/esterase-encoding celE homolog
(B2R_11067), and genes involved in malate (B2R_18213),
mannonate (B2R_14081), xyloglucan (B2R_10668) and xylulose
(B2R_22179) metabolism. Furthermore, many additional SNV
QTL were identified in genes related to vitamin and cofactor
metabolism as well as sulfur and iron metabolism. In particular,
these included genes for a phosphoadenosine phosphosulfate
reductase (B2R_15720), vitamin B12 transporter BtuB (10
different genes, see Supplementary Data 17), a siroheme synthase
(B2R_24033), a pyridoxal phosphate homeostasis protein
(B2R_17481), a heme chaperone HemW (B2R_12751), a hemin
transport system permease protein HmuU (B2R_09175), a Fe(2+)
transporter FeoB (B2R_19968), a biotin synthase (B2R_30007), a
catecholate siderophore receptor Fiu (B2R_17486), and a Fe(3+)
dicitrate transport ATP-binding protein Fec (B2R_09176) (Sup-
plementary Data 17). Taken together, this analysis suggests that a
shotgun metagenomic approach integrated with quantitative plant
genetics can be instrumental in a high-throughput manner to
discover putative reciprocal genetic links between plant and
microbial metabolisms, such as those identified here for
polysaccharides, trehalose, iron, vitamin, amino acid, and
polyamine metabolism.
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Discussion
Breeding for microbiome-assisted crops is a daunting task,
encompassing ecological, evolutionary, and cultural processes.
What constitutes a desirable trait for selection is context-
dependent and differs between societies, crops, and locations62.
As society grapples with modern challenges such as a rapidly
changing environment, water scarcity and land degradation, it is
becoming increasingly clear that a new era of trait selection is
needed with increased focus on sustainability and microbiome
interactions63–66. In this regard, it is also time to reckon with the
consequences of historic yield-centric trait selection and accom-
panying genomic sweeps34, especially with regards to
plant–microbe interactions (Fig. 8a, b). Current approaches to
investigating the genomic architecture determining microbiome
assembly rely primarily on mutational studies in known genes
and pathways. More recently, studies leveraging the natural var-
iation within plant populations have been used to conduct GWA
and QTL of the leaf20,67 and rhizosphere18. To date, the micro-
biome has been primarily characterized through amplicon
sequencing, thereby providing limited functional resolution of
microbiome structure. Increasing the resolution of phenotyping
of quantitative traits has been shown to improve the precision
and detection of QTLs68. Thus, integrating microbial genomics
into microbiome QTL analysis plays a dual purpose; increasing
the ecological resolution with which microbial traits may be

mapped (e.g., at a community and population level, Fig. 8c), and
second, affording the identification of the reciprocal microbial
adaptations that drive plant–microbe interactions (e.g., by using
SNVs a microbiome features). In this investigation, we addressed
these challenges by integrating amplicon and shotgun metagen-
ome sequencing to identify microbiome QTLs for the tomato
rhizosphere.

One major difference between the amplicon and contig QTL
analysis is the number of lineages for which QTLs were identified.
Amplicon-based sequencing, which captures more rare taxa per
unit sequencing, provided a broader taxonomic picture and was
able to capture QTLs of both abundant and relatively rare rhi-
zobacterial lineages. In contrast, the majority of contig QTLs
mapped to the most predominant lineages yet failed to identify
QTLs for more rare lineages. Nevertheless, besides the fact that
the shotgun-based approach provided functional insights into the
associated bacterial taxa, the size of the 95% confidence interval of
the QTL region was significantly smaller using contig QTLs, with
a median size of just 6.47 Mbp compared to 58.56 Mbp for the
amplicon-based QTL regions. Furthermore, for Streptomyces, the
number of unique QTLs identified was greater in the contig-based
approach. Thus, we identified a trade-off between amplicon and
shotgun-based technologies, whereby amplicon sequencing pro-
vides a deeper view into broad community structure, whereas
shotgun-based approaches provided a more nuanced picture. In
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particular, the smaller regions identified by our contig-based
metagenome mapping provided considerably more functional
insights as it enabled us to analyze the genomic content contained
in the regions linked to Cellvibrio and Streptomyces. It is possible
that less stringent prioritization steps could be used to increase
the number of metagenomic features identified, but this may also
increase the false discovery rate. It should be noted that a lim-
itation of the approaches taken is that both amplicon and
shotgun-based approaches produce non-independent measure-
ments. Here we use CSS normalization, one of the top performing
computational approaches to address compositional bias69.
Nevertheless, future approaches that provide community level
absolute ASV abundances will further minimize compositionality
of the microbiome data and likely perform better when mapping
microbiome features as QTLs. Extending these studies to the
endophytic compartment and including metatranscriptome
analyses may also further improve the identification of micro-
biome features, provided that the endophytic microbiome can be
separated well from the plant cells to obtain sufficient
sequencing depth.

The increased QTL mapping resolution provided by shotgun-
based phenotyping of the microbiome combined with SNV
analysis provided an approach to leverage both the host diversity
of the RIL and the natural microbiome population diversity to
disentangle the reciprocal genomic adaptions between plants and
natural microbiomes (Fig. 8d). For example, understanding the
forces driving the abundances of rhizospheric Streptomyces is of
increasing interest and has been linked to both iron70 and water
limitations54. Here, we pinpointed the genetic basis for these
interactions among the short list of highly expressed root-specific
tomato genes linked positively to Streptomyces abundance
including both aquaporin and FIT. More specifically, the aqua-
porin (SlTIP2.3) has the highest fold change of all tonoplast

intrinsic proteins in the tomato genome in the roots when
compared to all other organs71,72, while the FIT gene has been
shown to largely control iron homeostasis in tomato35,73. Future
experiments will focus on functional validation by, among others,
transcriptome analyses and site-directed mutagenesis of the
microbial and plant genes identified.

In addition to these high priority genes, many other key
genes were identified in these regions. Those previously
shown to contribute to microbiome assembly included 1-
aminocyclopropane-1-carboxylate oxidase, which plays a central
role in plant regulation of various processes including bacterial
colonization and root elongation74 and alpha-humulene/(-)-(E)-
beta-caryophyllene synthase, a terpene known to modify micro-
biome structure39. In addition, numerous genes related to growth,
development, and cell wall loosening75 known to be involved in
microbial colonization76 and aluminum-activated malate trans-
porter, which has been linked to microbiome-mediated abiotic
stress tolerance40 and selected during tomato domestication
resulting in high malate content in both fruit and roots41. Both
low-malate and high-malate haplotypes have been identified in
tomato41, which may form the basis of future studies investi-
gating the role of malate exudation in microbiome assembly.

The historic impact of domestication on genomic regions
linked to microbiome assembly is also apparent (Fig. 6, Supple-
mentary Data 14, and Supplementary Fig. 4). However, the
processes and consequences of these sweeps, and possible sub-
sequent recombination events on microbiome assembly remain
unclear. In particular, the discontinuity of sweeps in microbiome
QTL regions suggests that evolutionary pressure for recombina-
tion of key (microbiome associated) traits, such as iron home-
ostasis and water transport, may have acted against selective
sweeps. The approach developed here provides the means to
illuminate such complex eco-evolutionary questions, forming the
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basis of integrating the microbiome into the classic genotype by
environment model of host phenotype10.

From the microbial perspective, the increased resolution in
QTL analysis afforded by our shotgun-based approach also pro-
vided a window into the host-specific bacterial adaptations to
wild and modern alleles. In particular, the SNV QTL analysis
demonstrated that genes related to the degradation of various
plant-associated polysaccharides in Streptomyces were associated
positively with the modern reference allele. Many other functions
were identified in both plant and microbe, such as trehalose
metabolism, polyamine metabolism, and acetolactate synthase,
suggesting either a direct link through cross-feeding77 or
signaling78, or perhaps shared ecological pressures. While the
microbial adaptations related to polysaccharides79, vitamins80

and iron metabolism47,70 are well documented in relation to plant
colonization, here we demonstrate that the reciprocal adaptations
that drive plant–microbe interactions can be investigated simul-
taneously to uncover their genetic architecture in both host and
microbiome (Fig. 8d). From a societal context, linking quantita-
tive genetics with community level microbiome data provides us a
tool to understand the complex genotype, environment, micro-
biome, and management interactions that shape our agroeco-
systems structure and function. Armed with these tools and
molecular insights, we can begin to re-envision the agroecosys-
tem; targeting QTLs for improved plant–microbe interactions,
identifying ‘missing microbes’ or functions lost during the
domestication process, or pinpointing the molecules that drive
these interactions.

Methods
Recombinant inbred line population. An F8 RIL population derived from the
parental lines Solanum lycopersicum cv. Moneymaker (modern) and Solanum
pimpinellifolium L. accession CGN14498 (wild) consisting of 100 lines were used
for this study23. A high density map produced from this population was used to
map QTLs26.

Growth conditions for RIL. The natural soil was collected in June 2017 from a
tomato greenhouse in South-Holland, The Netherlands (51°57’47”N 4°12’16”E).
The soil was sieved, air dried, and stored at room temperature until use in 2019.
Before the beginning of the experiment, soil moisture was adjusted to 20% water by
volume using deionized water. All soil was homogenized by thorough mixing and
allowed to sit, covered by a breathable cloth, in the greenhouse for one week prior
to potting. The soil was then homogenized once again and then potted. Each pot
was weighed to ensure all pots were 175 g ± 0.5 (wet weight). Duplicate pots for
each accession were planted, as well as six replicates of each modern and wild
parental accession, and 8 bulk soil pots that were left unseeded. Each replicate was
prepared simultaneously. Planting was done separately representing biological
replicates.

In each pot, 3 seeds were planted in a triangular pattern to ensure the
germination success for all pots. The first seedling to emerge in each pot was
retained and others were removed after germination. All pots were randomly
distributed in trays containing approximately 10 plants. Throughout growth,
careful attention was given to randomize the distribution of plants. First, tray
location and orientation with relation to each other were randomized on a nearly
daily basis. In addition, the distribution of plants within trays was randomized
three times during growth. All pots were kept covered with a transparent lid until
germination, which was scored daily. After germination, plants were visually
monitored and watered at the same rates. To minimize the impact of
environmental differences between pots on microbiome composition, the watering
regime for all plants was standardized and leaks from the bottom of the pot and
overflows were completely prevented. To achieve this, a minimal volume
(2.5–5.0 mL) of water was used at each watering. This strategy was successful as
washout was never observed. Moisture content was measured by weighing the pots
at the middle and end of the experiment to ensure all pots had similar moisture
contents.

Harvesting and processing of plant materials. All plants had between 5 and 7
true leaves at harvest (Supplementary Data 1). Plants were gently removed from the
pot and roots and were vigorously shaken. Soil that remained attached to the roots
after this stage was considered the rhizosphere. The remaining bulk soil and rhi-
zosphere (plus roots) fractions were weighed. The root and attached rhizosphere
fraction were treated with 4 mL of lifeguard, vortexed, and sonicated. Roots were

then removed. The remaining rhizosphere sample was then stored in LifeGuard
Soil Preservation Solution (Qiagen) at −20 °C until DNA extraction.

The dry weight of shoots was measured after drying at 60 °C. The dry weight of
the bulk soil was measured after storing at room temperature in open paper bags
for 1 month. The DNA was extracted using the DNeasy PowerSoil extraction kit
(Qiagen). The protocol was optimized for the soil in the following manner: each
sample was vortexed and then a volume of approximately 1.5 mL was transferred
into 2 mL tubes. This subsample was centrifuged at 10,000 × g for 30 s such that a
pellet was formed. The supernatant was removed, and a new subsample was
transferred, and centrifuged until the total volume of the original sample, without
sand, had been transferred to the 2 mL tubes. The resulting pellet was recalcitrant
to disruption through bead beating, and therefore was physically disrupted by a
pipette tip before proceeding with DNA extraction protocol. In test samples, DNA
extractions from the sand fraction yielding no, or marginal levels of DNA.

rRNA amplicon sequence processing. All DNA was sent to BaseClear (Leiden,
The Netherlands) for 16S rRNA gene 300 bp paired-end amplicon sequencing
(MiSeq platform). MiSeq primers targeted the V3-V4 region of Bacteria:

341FCCTACGGGNGGCWGCAG, 805RGACTACHVGGGTATCTAATCC. In
total, 20,542,135 16S rRNA gene amplicon read pairs over 225 samples were
generated. The raw reads were processed using the DADA2 workflow (v1.14.1) to
produce amplicon sequence variants (ASV) and to assign taxonomy based on the
Silva database version 13881,82 (Supplementary Data 2). ASVs tagged as non-
bacterial, chloroplast, or mitochondria were removed. Next, ASV counts were
normalized using the cumulative sum scaling (CSS) (Supplementary Data 3), which
has been shown to be one of the most effective computational transformation
techniques69, and filtered based on the effective sample size using the
metagenomeSeq package (v1.28.2)27. Differential abundances between rhizosphere
and bulk soil were determined using the eBayes function from the limma package.
Enriched rhizosphere ASVs with a greater than log(2) fold change in abundance
were analyzed based on their presence and absence, standard deviation and mean
values. Using these statistics, stochastic ASVs (<50% of samples) were removed
from further analysis (Supplementary Data 4). All ASV sequences may be found in
Supplementary Data 5. The remaining microbiome features were then mapped as
QTLs as described subsequently. To investigate diversity metrics as quantitative
traits, the Shannon diversity of each sample was calculated using all ASV after
filtering based on the effective sample size using the metagenomeSeq package
(v1.28.2)27, and using all ASV in greater than 50% of samples (Supplementary
Data 21). Similarly, a PCoA analysis using Bray Curtis distances was conducted,
and the values for principle components axis 1 and 2 were extracted
(Supplementary Data 22). Both calculations were done in phyloseq version
1.34.083. These diversity-based microbiome features were then mapped as QTLs as
described subsequently.

Metagenomics analysis. For the one set of replicates for each accession, paired-
end sequence read libraries were generated in the length of 150 bp per read on
NovaSeq paired-end platform by BaseClear B.V. Demultiplexing was performed
before the following analysis. It is computationally expensive to assemble the 114
read libraries all at once. Therefore, a strategy of (merging) partial assemblies was
undertaken. Two assemblers were used to create the assembled contigs, namely
SPAdes (version 3.13.2)84 and MEGAHIT (version 1.2.9)85. Assembly quality was
assessed by running MultiQC (version 1.8)86 with Quast Module87 (Supplementary
Figure 5). First, 6 modern parents, 5 wild parents, and 1 bulk soil sample were co-
assembled via SPAdes with the metagenomic mode and parameter of -k
21,33,55,99, generating the first assembly (A1). Subsequently, a second assembly
(A2) was done using the unmapped reads from the remaining metagenomes using
MEGAHIT with the parameter of --k-list 27,33,55,77,99. The third assembly (A3)
was performed similarly as A2, however, included the unmapped reads, ambigu-
ously mapped reads, and mapped reads with a low mapping quality score
(MapQ < 20) (Supplementary Data 18). Read mapping was done with BWA-MEM
with default settings88 and SAMtools was used to convert the resulting SAM files
into sorted and indexed BAM files (version 1.10). Extraction of these reads was
conducted by samtools bam2fq. Redundancy between assemblies was evaluated by
alignment to A1 via nucmer package of MUMmer with --maxmatch option
(version:4.0.0)89.

Firstly, 111.5 Gbp of reads from the parental samples were assembled, labeled as
A1, and yielded a total assembly length of 8.6 Gbp with the largest contig of 933.0
kilobase pairs (Kbp). After aligning the reads from RIL samples to A1, unmapped
reads, ambiguously mapped reads, and mapped reads with a low mapping quality
score (MapQ < 20) were retrieved and assembled, yielding the second and third
assembly (A2 and A3). Specifically, A2 stemmed from solely the unmapped reads
while A3 included the ambiguously mapped reads and mapped reads with MapQ <
20 in addition to the unmapped reads. A2 and A3 produced a total assembly length
of 9.6 Gbp and 14.0 Gbp, with the largest contig of 56.2 and 86.3 Kbp respectively.
There were 1.2, 2.0, and 2.8 million contigs with the length over 1 Kb for A1, A2,
and A3 respectively. In particular, 912 contigs in A1 were greater or equal to 50
Kbp whereas 1 or 2 such large contigs were successfully assembled in A2 or A3.
The detailed assembly statistics is given in Supplementary Data 18 and the
numbers of contigs with different ranges of length for each assembly are presented
in Supplementary Fig. 5.
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The sequence similarities of the contigs in each assembly (≥1 Kbp) were
compared using the nucmer package in MUMer. No contigs in A2 were reported to
share an overlapped region with A1, therefore contigs in A1 and A2 could be
merged directly. When A3 was aligned to A1, 1.1% of the total length (≥1 Kbp) of
A3 was reported to be overlapped with A1, however, only 18 contigs from A3 were
100% identical to regions in larger contigs in A1. The sensitivity of filtering the
overlapping contigs was evaluated by a benchmarking test using a random RIL
sample to calculate the mapping rates (Supplementary Fig. 6). 83.4% reads were
mapped to A1+A3 at MapQ ≥ 20 without filtering. Excluding the contigs from A3
that were completely and identically covered by A1, the mapping rate was nearly
the same as the one without filtering. Nevertheless, the removal of all aligned
contigs in A3 resulted in a slight drop of mapping rate to 82.6%. To conclude, the
final assembly was determined as A1+A3 with the 18 redundant contigs from A3
removed.

To assess the overall assembly quality and quantify the abundance of contigs
among all samples, metagenomic reads were mapped to A1, A1+A2, and A1+A3
(deduplicated) respectively. Afterwards, the mapping rates were calculated for the
mapped reads with MapQ > 20 in each sample. As shown in Supplementary Fig. 7,
approximately 70% reads among rhizosphere samples could be mapped to A1,
while the mapping rates were 55 to 65% in the bulk soil samples. With the
unmapped reads assembled and added to A1, the mapping rates for A1+A2
increased by 10%. The read recruitment was further improved by assembling and
adding ambiguously mapped reads and mapped reads with low MapQ in the final
assembly (A1+A3). A1, as well as de-replicated A3, were merged to acquire the
final assembly. All the ‘contigs’ mentioned below are referring to the contigs in this
final assembly.

Binning of metagenomic contigs. Metabat2 (version 2:2.15)90 was used for
assigning the contigs into genomic bins. Based on tetra-nucleotide frequency and
abundance scores, 588 genomic bins were generated. Afterwards, genomic quality
of those genomes was evaluated by CheckM (version: 1.1.1)30 with the command
“checkm linage_wf” (Supplementary Data 8). The 33 genomes displaying the
completeness larger than 90% and contamination smaller than 5% were used for
further study as quantitative traits.

Making phenotype files based on contig depth. Read counts for each position on
the assembled contigs were acquired using bedtools genomecov (version: 2.29.2)91.
A custom Python script was applied to calculate the average depth (defined as the
number of total mapped reads divided by contig length) and coverage (defined as
the number of covered base pairs divided by contig length) of every contig. Fur-
thermore, the average abundance of contigs assigned into a bin was calculated for
the high-quality genomic bins detected by CheckM30.

Feature selection. Average depths of the contigs were first normalized using the
CSS and filtered based on the effective sample size using metagenomeSeq package
(v1.28.2)27. Differential abundance analysis was performed by moderated t-tests
between groups using the makeContrasts and eBayes commands retrieved from the
R package Limma (v.3.22.7)92. Obtained P-values were adjusted using the
Benjamini–Hochberg correction method. Differences in the abundance of contigs
between groups were considered significant when adjusted P-values were lower
than 0.01 (Supplementary Data 19).

In either comparison, the contigs that were significantly enriched in the
rhizosphere were gathered and regarded as the statistically rhizosphere-enriched
contigs after removing the replicated ones. To perform QTL analysis for the
abundance of these enriched rhizosphere contigs, only the contigs with biological
meanings were kept, i.e., the log (2) fold-change of mean values for the normalized
abundances of RIL and bulk samples should be greater than 2, and the contig
should be in enough depth with at least the mean value of a group larger than 1.
This selection step resulted in 1249 rhizosphere-enriched contigs. The statistics of
the filtered normalized abundance were further inspected based on the presence
and absence of contigs, standard deviation, and mean values of the counts.

Taxonomic and functional annotation of the metagenome. Taxonomic classi-
fications were assigned to the contigs in the final assembly using Kraken2 (version:
2.0.8)31 based on exact k-mer matches. A custom Kraken2 database was built to
contain RefSeq complete genomes/proteins of archaea, bacteria, viral, fungi, and
protozoa. Univec_Core was also included in the custom database (20200308).
Using the Kraken2 standard output, a python script based on TaxonKit93 was
utilized to add full taxonomic names to each contig in the format of tab-delimited
table. 76.22% of the contigs > 1 kb were classified. Among the contigs >10 kb, up to
99.44% contigs were classified. Prokaryotic microbial genes were predicted by
Prodigal (version: 2.6.3)94 with metagenomics mode. 10,246,55 genes were pre-
dicted from contigs > 1 kb. Open reading frames (ORFs) on contigs >10 kb were
annotated by prokka (v1.14.5) and the Streptomyces ASV5 bin (MAG.72) was
further annotated by DRAM (v1.2.0) integrating UniRef, Pfam, dbCAN and KEGG
databases95. To assess the impact of the prioritization on the functional repre-
sentation of the metagenome, we identified the fraction of protein clusters repre-
sented in the rhizosphere-enriched contigs compared to the rest of the contigs
greater than 10 kb. First, Prodigal was used in metagenomics mode to predict genes

in the metagenomic assembly with contigs longer than 10 kbp. Next, MMSeqs2 was
used to cluster the protein sequences based on 70% similarity and based on 50%
similarity, and with or without partial predicted genes32. To calculate the number
of clusters that contained proteins encoded in rhizosphere-enriched contigs, the
clusters were searched for the presence of protein IDs of the 1249 rhizosphere-
enriched contigs. In total, approximately 8.3% of protein clusters contained genes
from the rhizosphere-enriched contigs. In addition to proteins contained on
rhizosphere-enriched contigs, these clusters contained approximately 25% of all
proteins encoded in contigs larger than 10 kb (Supplementary Data 20).

Single nucleotide variant analysis. To investigate strain level QTLs, we mapped
single nucleotide variants (SNVs) identified using inStrain on the 1249
rhizosphere-enriched contigs. A total of 555, 382, and 535,432 SNVs were iden-
tified in the modern and wild parental metagenomes respectively. Of these, 162,299
and 142,349 SNVs were unique to each dataset respectively, as they either con-
tained only reference alleles or did not exceed the inStrain SNV calling thresholds.
For each unique SNV locus, coverage in the other dataset was determined using
SAMtools depth after read filtering with settings comparable to inStrain and was
considered identical to the reference allele frequency. Including the unique SNVs,
this resulted in a final set of 697,731 SNVs. To select SNVs that showed differential
reference allele frequencies between MM and P, first the difference in reference
allele frequency (MM–P) was calculated per SNV. From the distribution of all
SNVs, the 95% confidence interval (CI) was determined to select the 5% (30,911)
most different SNVs (Supplementary Fig. 8). SNVs were further selected using a
Fisher’s exact test based on the allele read count differences between MM and P. P-
values were sorted, and a final selection of 15,026 differentially abundant SNVs
distributed over 1037 contigs was obtained using a Benjamini-Hochberg false
discovery rate (FDR) correction of 0.01. SNV allele read counts were extracted
from the RIL dataset using the pysam Python package after filtering with settings
comparable to inStrain.

Quantitative trait locus analysis. The QTL analysis linking selected amplicon,
contig, bin, and SNV features with plant loci was performed using the R package R/
qtl225. Pseudomarkers were added to the genetic map to increase resolution, with a
step distance of 1 Mbp between the markers and pseudomarkers. Plant genome
probabilities were calculated using the genetic map with pseudomarkers, plant loci
cross data, and error probability of 1E-4. Plant locus kinship matrix was calculated
as proportion of shared alleles using conditional allele probabilities of all plant
chromosomes, which were calculated from the plant genome probabilities. A
genome scan using a single-QTL model using a linear mixed model was performed
on the SNV allele read counts as phenotypes, plant genotype probabilities as input
variables and as covariates the number of leaves, harvest day, rhizosphere soil
weight (g), soil starting weight (g) and plant dry weight (g). The LOD score was
determined for each plant locus SNV allele combination. A permutation test using
randomized data was performed with 1000 permutations to assess the distribution
of the LOD scores. The 95% quantile was used as threshold for the selection of
LOD peaks, as well as a P= 0.95 Bayes credible interval probability.

Independent validation of QTLs through bulk segregant analysis. To validate
the QTLs, 33 Solanum lycopersicum cv. Moneymaker (modern), 30 Solanum
pimpinellifolium L. accession CGN14498, and 77 RIL accessions (with replicates of
4 each) were grown and their microbiomes characterized through 16S rRNA gene
amplicon sequencing. Parental lines and RIL accessions were germinated in pots
filled with 300 g agricultural soil. For each accession, were planted with six plants
per replicate pot. The plants were arranged randomly in the growth chamber
(25 °C, 16 h daylight) and watered every day. Bulk soil samples without plants were
used as controls (N= 31).

Rhizospheric soil was collected according to standard methods96. In order to
synchronize the developmental stage, the plants were harvested after 21 days, or
when the 3rd trifoliate leaf was reached. The soil loosely attached to the roots was
removed and the entire root system was transferred to a 15 mL tube containing
5 mL LifeGuard Soil Preservation Solution (MoBio Laboratories). The tubes were
vigorously vortexed and sonicated. Subsequently, the roots were removed and at
least 1 g (wet weight) of rhizospheric soil was recovered per sample for DNA
extraction. For the bulk soil samples, approximately 1 g of soil was collected and
mixed with 5 mL of LifeGuard solution.

To extract rhizospheric DNA, PowerSoil Total DNA/RNA Isolation Kit (MoBio
Laboratories, Inc., USA) was used in accordance with the manufacturer’s
instruction. Rhizospheric DNA was obtained using RNA PoweSoil DNA Elution
Accessory Kit (MoBio Laboratories, Inc. USA). The quantity and quality of the
obtained DNA was checked by ND1000 spectrophotometer (NanoDrop
Technologies, Wilmington, DE, USA) and Qubit 2.0 fluorometer (ThermoFisher
Scientific, USA). DNA samples were stored at −20 °C until further use.

The extracted samples were used for amplification and sequencing of the 16S
rRNA gene, targeting the variable V3–V4 (Forward Primer: 5′-CCTACGGGNG
GCWGCAG-3′ Reverse Primer: 5′-GACTACHVGGGTATACTAATCC-3′)
resulting in amplicons of approximately ~460 bp. Dual indices and Illumina
sequencing adapters using the Nextera XT Index Kit were attached to the V3–V4
amplicons. Subsequently, library quantification, normalization, and pooling were
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performed and MiSeq v3 reagent kits were used to finally load the samples for
MiSeq sequencing. For more info please refer to the guidelines of Illumina MiSeq
System. The RDP extension to PANDASeq97, named Assembler98, was used to
merge paired-end reads with a minimum overlap of 10 bp and at least a Phred
score of 25. Primer sequences were removed from the per sample FASTQ files
using Flexbar version 2.599. Reads were processed as before except the Silva version
132 was used for taxonomic classification82.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The 16S amplicons and shotgun metagenomics sequencing data have been deposited in
the NCBI database under BioProject ID PRJNA787039 and PRJNA789467, respectively.
Metagenome assembled genomes are available at Zenodo [https://doi.org/10.5281/
zenodo.6561541]. The Silva database was used to assign taxonomy to 16S rRNA
amplicon sequences [https://www.arb-silva.de/download/archive/]. A custom database
was used to assign taxonomy for Kraken. Due to size limitation, this database is available
upon request (please contact J.M.R. at j.raaijmakers@nioo.knaw.nl and expect 2 weeks of
processing time). Source data are provided with this paper.

Code availability
The code used in the analysis can be found at Zenodo [https://doi.org/10.5281/zenodo.
6561541].
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