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Objective: This study aimed to investigate the direct monosynaptic projections from
cortical functional regions to the cerebrospinal fluid (CSF)-contacting nucleus for
understanding the functions of the CSF-contacting nucleus.

Methods: The Sprague–Dawley rats received cholera toxin B subunit (CB) injections
into the CSF-contacting nucleus. After 7–10 days of survival time, the rats were
perfused, and the whole brain and spinal cord were sliced under a freezing microtome
at 40 µm. All sections were treated with the CB immunofluorescence reaction. The
retrogradely labeled neurons in different cortical areas were revealed under a confocal
microscope. The distribution features were further illustrated under 3D reconstruction.

Results: The retrogradely labeled neurons were identified in the olfactory, orbital,
cingulate, insula, retrosplenial, somatosensory, motor, visual, auditory, association,
rhinal, and parietal cortical areas. A total of 12 functional areas and 34 functional
subregions showed projections to the CSF-contacting nucleus in different cell intensities.

Conclusion: According to the connectivity patterns, we conclude that the CSF-
contacting nucleus participates in cognition, emotion, pain, visceral activity, etc. The
present study firstly reveals the cerebral cortex→CSF-contacting nucleus connections,
which implies the multiple functions of this special nucleus in neural and body
fluid regulations.

Keywords: CSF-contacting nucleus, projection, cerebral cortex, retrograde trace, 3D reconstruction

INTRODUCTION

The cerebrospinal fluid (CSF)-contacting nucleus is a special nucleus identified by our group
in the brain (Wang and Zhang, 1992; Zhang et al., 1994, 2003; Lu et al., 2008; Song
et al., 2019). It is “rivet”-like shape located in the brainstem caudal to the dorsal raphe
nucleus (DR) (Song et al., 2019). The neural somata of this nucleus are located in the brain
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parenchyma, but the axons pass across the brain-CSF barrier
and stretch directly into the CSF (Song and Zhang, 2018; Song
et al., 2019). Morphological experiments have confirmed that the
CSF-contacting nucleus has broad connections with non-CSF-
contacting cells, blood vessels, and CSF (Zhang et al., 2003). The
CSF-contacting nucleus is regarded as a pivotal structure bridging
and facilitating communications between the nerves and body
fluids (CSF and plasma) (Song and Zhang, 2018; Song et al.,
2019). Many biological substances existed in the CSF-contacting
nucleus as revealed by the combination of specific labeling (Lu
et al., 2008) and immunofluorescence double-staining technique
(Lu et al., 2011; Wang et al., 2014; Liu et al., 2017). The
involvements of the CSF-contacting nucleus in sodium appetite,
pain, morphine dependence and withdrawal, and stress have
been discussed (Lu et al., 2011; Wu et al., 2015; Xing et al.,
2015; Zhou et al., 2017). However, the anatomical pathways and
mechanisms of this nucleus in different biological activities have
not been clarified yet.

The cerebral cortex is one of the most complicated and top-
level regions of the central nervous system (CNS). It is the
primary organ modulating the functioning of the whole body and
occupies the peak position in the motor and sensory system. It is
the largest region of the cerebrum in the mammalian brain and
has important roles in memory, attention, perception, cognition,
awareness, consciousness, etc. (Kandel, 2013). On the basis of
morphology, neuronal cell types, and connections, the cortical
neurons can be divided into different layers, which have different
functions and connections with other cortical and subcortical
areas (Mountcastle, 1997; Katzel et al., 2011). The allocortex
(consisting of the paleo- and archicortex) has three layers, and
the neocortex has six layers (Posimo et al., 2013). On the basis of
the basic functions of the cortex, it can be divided into multiple
functional regions that drive cognition, emotion, somatosensory,
motor, visual, etc.

The main aim of neuroscience research is to discuss the
neural connection networks between different brain regions
and thereby understand the brain functions (Watabe-Uchida
et al., 2012). We have already illustrated the diencephalon
(Song et al., 2020b), brainstem, and spinal cord anatomical
projections to the CSF-contacting nucleus (Song et al.,
2020a). The cerebral cortex is regarded as the core of the
brain’s cognitive system (Bota et al., 2015), and it is also
important to identify the cortex→CSF-contacting nucleus.
In this study, we planned to inject the retrograde tracer into
the CSF-contacting nucleus, the anatomical cortex→CSF-
contacting nucleus projections can be observed by using an
immunofluorescence technique, and the possible functional
significance of the nucleus can be determined on the basis of
the projection relationships, which will lay the foundation for
further deeper research.

MATERIALS AND METHODS

Animals
Specific pathogen-free (SPF)-grade Sprague–Dawley rats
weighing 250 ± 50 g were acquired from the Experimental

Animal Center of Xuzhou Medical University. Six rats
(n = 6) successfully injected with a tracer into the CSF-
contacting nucleus were used for analysis. All experiments
were approved by the Committee for Ethical Use of Laboratory
Animals of Xuzhou Medical University and were carried
out according to the Guidelines for the Care and Use of
Laboratory Animals.

Tracer Administration
As described previously (Song et al., 2020a,b), rats were
anesthetized with pentobarbital sodium (40 mg/kg, i.p.). The
heads were fixed on the stereotaxic instrument (Stoelting
51700, United States). The 1% cholera toxin B subunit
(CB) solution (0.2 µL; Sigma, United States, Cat#SAE0069)
was injected into the CSF-contacting nucleus according
to the stereotaxic coordinates provided by Song et al.
(2019) by using the Hamilton syringe (33 Gauge, Hamilton
Company, Switzerland). Microinfusion pump (KD Scientific,
United States) was applied for the injections over 30 min
periods. After injection, the microsyringe was left for 10–15 min
before retraction.

Sampling
After 7–10 days, the animals were perfused as described
previously (Song et al., 2020a). The whole brain and spinal
cord were isolated and placed in the same 4% paraformaldehyde
solution for postfixation at 4◦C overnight. After fixation,
the brain and spinal cord were immersed in 30% sucrose
solution until sinking to the bottom. Then, serial coronal
sections at 40 µm thickness were made on a cryostat
(Leica CM1900, Germany). In this study, only the cortical
areas were analyzed.

Tracer Staining and Positive Neuron
Counting
The staining and counting steps were performed following
previous methods (Song et al., 2020a,b). All the sections were
incubated with rabbit anti-CB primary antibody (diluted in
1:600, Abcam, Cat#ab34992) at 4◦C overnight. After washing
in 0.01 M PBS for three times, the sections were incubated
with donkey anti-rabbit Alexa Fluor 488 secondary antibody
(diluted in 1:200, Life Technologies, Cat#A-21206) at room
temperature for 2 h. Then the sections were mounted on
the slides in sequence and coverslipped. The results were
observed and captured under a confocal microscope (Zeiss,
Germany). The cell density (cell number/0.2 mm2 area)
of CB-positive neurons was calculated by using Image-Pro
Plus 7.0 software, and the density of >10, 6–10, and <5
positive neurons were classified as dense, moderate, and sparse
distributions, respectively.

Three-Dimensional Reconstruction of
the Cortex Connections
The CB retrogradely labeled neurons in the cortex were
registered into the rat reference atlas (Paxinos and Watson,
2007). The Imaris software version 8.4.1 (Bitplane, United States)
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was used for three-dimensional (3D) surface rendering
of cortex connections. The color codes representing the
connection intensity was the same as previous studies
(Song et al., 2020a,b).

RESULTS

Injection Site of Retrograde Tracer
The retrograde tracer CB injection into the CSF-contacting
nucleus showed dense positive staining (green). The injection

needle tract was located within the boundary of the CSF-
contacting nucleus (Figure 1).

Neural Morphology of Cortical
Connections
After the tracer CB is injected, it transports retrogradely
via axoplasmic transport, and neural somata of cortex→CSF-
contacting nucleus projections can be detected.

In the olfactory bulb, the retrogradely labeled neurons appear
round or fusiform. The sizes of the neurons are not identical,
and the dendrites are sparse and short. In the medial orbital

FIGURE 1 | The injection site of the retrograde tracer CB and representative section of the cerebrospinal fluid (CSF)-contacting nucleus. (A,B) The injection site.
(C,D) CSF-contacting nucleus representative coronal section. Aq, aqueduct. Bar = 100 µm in panel (B). Bar = 70 µm in panel (C). Bar = 40 µm in panel (D).
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cortex, the labeled neurons are mainly located in layers V and
VI. The CB-positive neurons in layer V are mainly pyramidal
neurons, which have many processes. Among them, one to two
processes are longer and reach toward the superficial region of
the cortex. In other parts of the cortex, the labeled neurons are
mainly pyramidal neurons in layer V (Figure 2).

Connection Sites of the Cortical Areas
All the cortex→CSF-contacting nucleus connections
are shown by positively labeled neurons. In olfactory
regions, CB retrogradely labeled neurons are found in the
olfactory bulb (OB), accessory olfactory bulb (AOB), and
piriform cortex (Pir). The OB sends sparse connections,
and the CB-labeled neurons are mainly located in the
mitral cell layer. The AOB sends moderate projections
to the CSF-contacting nucleus, while Pir sends strong
and dense connections. The positive neurons are obvious
throughout the Pir and are mainly located at the pyramidal
layer (Figure 3).

In the orbital cortex, the CB-positive neurons can be found in
eight areas. Among these, the prelimbic cortex (PrL), infralimbic
cortex (IL), medial orbital cortex (MO), dorsal peduncular cortex

FIGURE 2 | The neural morphology of positive cells. (A1–D1) Positive neurons
in the olfactory bulb, orbital cortex, somatosensory cortex, and piriform
cortex, respectively. (A2–D2) The corresponding sections in Nissl staining in
A1-D1. “↑” is the mitral cell layer in the olfactory bulb. Bar = 100 µm.

FIGURE 3 | The CB retrogradely labeled neuron distribution in the olfactory
region. (A) Olfactory bulb (OB). (B) Accessory olfactory bulb (AOB).
(C) Piriform cortex (Pir). Bar = 100 µm.

(DP), and tenia tecta (TT) have dense projections to the CSF-
contacting nucleus. The ventral orbital cortex (VO) and lateral
orbital cortex (LO) have moderate connections. The dorsolateral
orbital cortex (DLO) has sparse connections (Figure 4).

Dense positive neurons are found in Cg1 and Cg2 of the
cingulate cortex. Moderately positive neurons are seen in the M1
and M2 of the motor cortex. In the somatosensory cortex, sparse
positive neurons are seen in the S1 and moderate positive neurons
are located in S2 (Figure 5).

In the insular cortex, dense CB-positive neurons are located
in the dysgranular insular (DI) part of the insular cortex and
moderate positive neurons can be seen in the granular insular
(GI) and agranular insular (AI) parts (Figure 6).

In the retrosplenial cortex (RSC), moderate positive neurons
are found in both the retrosplenial dysgranular (RSD) and
retrosplenial granular (RSG) regions (Figure 7).

In the association cortex, dense positive neurons are found
in medial parietal association cortex (MPtA) and temporal
association cortex (TeA) and moderate positive neurons are
found in lateral parietal association cortex (LPtA). Sparse positive
neurons are found in the posterior area of the parietal cortex
(PtP) (Figure 8).

In the visual cortex, sparse positive neurons are seen in
the primary visual cortex (V1) and moderate positive neurons
are seen in the secondary visual cortex (V2). In the auditory
cortex, moderate positive neurons are found in the primary
auditory cortex (Au1), secondary auditory cortex, dorsal area
(AuD), and secondary auditory cortex, ventral area (AuV). In
the rhinal cortex, strong and dense projections are found in
the ectorhinal cortex (Ect), and moderate positive projections
are found in the entorhinal cortex (Ent) and perirhinal cortex
(PRh) (Figure 9).

In summary, the retrogradely labeled neurons in the cortex
are distributed in 12 cortical areas (34 functional sub-regions),
ranged from sparse to dense. The CB-positive neurons do not
exist in other parts of the cortex.
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FIGURE 4 | The CB retrogradely labeled neuron distribution in the orbital cortex (A–H). PrL, prelimbic cortex; IL, infralimbic cortex; MO, medial orbital cortex; DP,
dorsal peduncular cortex; VO, ventral orbital cortex; LO, lateral orbital cortex; DLO, dorsolateral orbital cortex. Bar = 100 µm.

Three-Dimensional Reconstruction of
the Cortex Retrograde Projections
The retrograde labeling neurons throughout the cortical areas
are reconstructed and visualized in 3D. The red areas represent
dense connections (PrL, IL, MO, DP, TT, Pir, Cg1, Cg2,

DI, MPtA, TeA, and Ect); the green areas show moderate
connections (VO, LO, AOB, GI, AI, RSD, RSG, S2, M1, M2,
V2, Au1, AuD, AuV, LPtA, Ent, and PRh); and the blue
areas indicate sparse connections (DLO, OB, S1, V1, and
PtP) (Figure 10).
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FIGURE 5 | The CB retrogradely labeled neuron distribution in the cingulate,
motor, and somatosensory cortices (A–F). Cg1, cingulate cortex, area 1; Cg2,
cingulate cortex, area 2; M1, primary motor cortex; M2, secondary motor
cortex; S1, primary somatosensory cortex; S2, secondary somatosensory
cortex. Bar = 100 µm.

The Amount of Cortex Inputs to
CSF-Contacting Nucleus
In the 12 functional areas of the cortex, the retrogradely labeled
neurons are located in 34 subregions. The amount of the cortical
projections is shown in Figure 11.

DISCUSSION

The CSF-contacting nucleus is special compared with other
already known nuclei in the brain (Figure 12). This article
systematically presents comprehensive and standardized
monosynaptic input to the CSF-contacting nucleus from
different cortical zones. Broad projections from 12 cortical
functional areas send direct input to the CSF-contacting
nucleus (Figure 13). The role of CSF-contacting nucleus in
different functional modulations can be speculated depending
on the connections.

Functional Implications
Cognition
The CSF-contacting nucleus receives input from the orbital
cortex, Ent, PRh, and RSC, which might participate in cognition.

In the orbital cortex, the medial prefrontal cortex (mPFC)
is associated with higher-order cognitive functions, including
decision-making, attention, working memory, and goal-directed
behavior (Metz et al., 2009). In rodent physiological studies,

FIGURE 6 | The CB retrogradely labeled neurons distribution in the insular
cortex (A–E). GI, granular insular cortex; DI, dysgranular insular cortex; AI,
agranular insular cortex. Bar = 100 µm.

FIGURE 7 | The CB retrogradely labeled neuron distribution in the
retrosplenial cortex (A–C). RSD, retrosplenial dysgranular cortex; RSG,
retrosplenial granular cortex. Bar = 100 µm.
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FIGURE 8 | The CB retrogradely labeled neuron distribution in the association
cortex and PtP (A–D). MPtA, medial parietal association cortex; LPtA, lateral
parietal association cortex; TeA, temporal association cortex; PtP, parietal
cortex, posterior area. Bar = 100 µm.

prefrontal cortex (PFC) activity was shown to be likely to track
sustained attention across the session, and the reduction of PFC
activity was required in reducing the effort (Passetti et al., 2000;
Dalley et al., 2001). The orbital cortex was shown to be involved in

mental exertion in human imaging studies (Schmidt et al., 2012).
Individual variations in the medial and lateral orbital cortices are
correlated with the differences in effortful choice (McGuire and
Botvinick, 2010; Treadway et al., 2012).

The Ent and PRh are primarily associated with declarative
memory (Squire and Zola-Morgan, 1991) and process
non-spatial and spatial information to the hippocampus
(Knierim et al., 2014). Moreover, PRh has extensively
been related to recognition memory, the ability to
determine that an event has been experienced previously
(Brown and Aggleton, 2001).

The RSC is involved in hippocampal-dependent contextual
and spatial learning and memory (Burgess, 2008), possibly
by affecting hippocampal information processing (Sugar et al.,
2011). Lesions of the RSC that occur either before or
after conditioning impair contextual fear memory in rats
(Keene and Bucci, 2008).

Emotion
The CSF-contacting nucleus receives extensive inputs from
the orbital cortex and cingulate cortex, which may participate
in emotional modulation. The PrL and IL in the orbital
cortex in both rodents and humans play important roles
in emotional modulation (Farrell et al., 2010; Rive et al.,
2013). For example, the PrL mainly participates in the
emergence of fear, while the IL is engaged in fear extinction

FIGURE 9 | The CB retrogradely labeled neuron distribution in the visual, auditory, and rhinal cortices (A–K). V1, primary visual cortex; V2, secondary visual cortex;
Au1, primary auditory cortex; AuD, secondary auditory cortex, dorsal area; AuV, secondary auditory cortex, ventral area; Ent, entorhinal cortex; Ect, ectorhinal
cortex; PRh, perirhinal cortex. Bar = 100 µm.
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FIGURE 10 | 3D structure of the positive neuron distribution in the cortical areas from different perspectives (A–D). The red, green, and blue areas represent dense,
moderate, and weak cortex→CSF-contacting nucleus connections, respectively.

(Vidal-Gonzalez et al., 2006; Corcoran and Quirk, 2007; Burgos-
Robles et al., 2009). Using the optogenetic method to activate IL
mediates rapid and persistent anti-depressive effects (Fuchikami
et al., 2015). MO is closely related to the emergence of
anxiety-like behavior (Shi et al., 2017). In the cingulate
cortex, the anterior cingulate cortex (ACC) participates in
fear behaviors (Shackman et al., 2011). Electrical stimulation
of the cingulate cortex causes significant emotional effects
(Caruana et al., 2018).

Pain
The CSF-contacting nucleus receives input from S1, S2, PFC,
ACC, and insular cortex projections, which may participate in
pain modulation.

The classical spino-thalamic-cortex pathway sends
nociceptive signals to the primary (S1) and secondary (S2)
somatosensory cortices, which represents aspects of localization
and intensity and modality discrimination of nociception
(Pedersen et al., 2007).
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FIGURE 11 | Whole statistics of cortex→CSF-contacting nucleus retrogradely
labeled neurons (A–L) (mean ± SD, n = 6).

Recently, the PFC, ACC, and insular cortex were considered to
form the medial nociceptive system, which mainly mediates the
emotional–affective and cognitive components of pain (Rainville
et al., 1997; Pedersen et al., 2007; Linnman et al., 2010). Under
chronic pain conditions, morphological alterations take place
within the mPFC (Gundel et al., 2008). Moreover, the mPFC
is considered to mediate placebo analgesia, which means that
expectations and beliefs shape reality by affecting pain perception
and influencing pain-related behavior (Krummenacher et al.,
2010; Petrovic et al., 2010). The role of ACC in pain is also
related to the emotional–affective profile confirmed by using
neuroimaging techniques, and the ACC was shown to be
positively correlated to the patient’s feelings of unpleasantness
(Rainville et al., 1997). In addition to its emotional–affective
functions, the ACC also participates in modulating the
sensory component of pain (Sikes et al., 2008; Wei and
Zhuo, 2008; Wu et al., 2008; Xu et al., 2008), which is
supposed to be associated with the descending facilitatory
system (Xu et al., 2008). In the insular cortex, rostral lesions
result in diminishing the inflammatory and neuropathic pain-
related behaviors (Coffeen et al., 2011), while caudal lesions

FIGURE 12 | The schematic diagram of the synapse connections between
CSF-contacting neurons and general neurons and non-synapse between
CSF-contacting neurons and vessels and CSF.

before or after neuropathic pain result in the alleviation
of allodynia without affecting normal mechanical thresholds
(Benison et al., 2011).

Visceral Activity
The orbital cortex has been confirmed to remarkably influence
visceral/autonomic activity. It is viewed as the “visceral cortex”
(Hurley-Gius and Neafsey, 1986; Neafsey, 1990; Hassan et al.,
2013) and has extensive projections with autonomic structures
(Hurley et al., 1991). Acute rectal stimulation in rats induced
activation of the orbital cortex (Wang et al., 2008). In addition,
stimulation or lesions of this region can cause a variety of
autonomic responses (Panteleev and Grundy, 2000).

The ACC spontaneous activity is enhanced in viscerally
hypersensitive rats. These rats show a reduction in the colorectal
distention pressure threshold and an increased ACC neuronal
response to visceral stimulation (Gao et al., 2010). The ACC
participates in a functional circuit in modulating different
processes of chronic visceral hypersensitivity (Cao et al., 2008)
and produces emotional and motivational responses after visceral
stimulation (Zhang et al., 2013).

The insular cortex is involved in viscero-autonomic functions,
as revealed by fMRI findings in humans and neuronal level
data in primates (Rolls, 2016). The visceral organs transmit
information throughout different parts of the insular cortex
(Sticht et al., 2015).

Smelling, Vision, and Auditory Sensation, and Motor
Function
Apart from the brain regions’ input to the CSF-contacting
nucleus, the nucleus also receives inputs from the olfactory
cortex, visual cortex, auditory cortex, and motor cortex. Odors
are registered at the main olfactory epithelium, then processed
at the main OB, AOB, and the Pir (Manella et al., 2017; Tsuji
et al., 2017). The visual cortex (V1 and V2) participates in
coding and intergrading of visual messages or multisensory
convergence (Hirokawa et al., 2008; Ajina and Bridge, 2018;
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FIGURE 13 | The schematic diagram of the cortex→CSF-contacting nucleus projections (including the number of subregions).

Scheyltjens et al., 2018). The auditory cortex modulates auditory
information (Kwon et al., 2012; Gao and Wang, 2018). The
motor cortex is known for motor control (Green et al., 2018;
Wei et al., 2018).

In the present study, the conventional tract-tracing method is
applied to illustrate the projection patterns to the CSF-contacting
nucleus from cortical areas. The neurons of the CSF-contacting
nucleus in the brain parenchyma receive the inputs from the
abovementioned cortical areas and form different cortex→CSF-
contacting nucleus circuits, while the axons have different
synaptic and non-synaptic connections with other functional
structures in modulating the life activities via the neuron-neuron
crosstalk and neuron-body fluids interactions (Song and Zhang,
2018; Song et al., 2019). Moreover, different cell types including
the excitatory or inhibitory neurons have been identified in
the cerebral cortex according to their chemical properties and
firing patterns (Morishima et al., 2017; Nixima et al., 2017;
Chistiakova et al., 2019). The projections from different neurons
to the CSF-contacting nucleus might form a complex neural
circuit and mediate different life activities. On the basis of
the connection regularities of CSF-contacting nucleus from the
cortex, we conclude that the CSF-contacting nucleus is involved
in cognition, emotion, pain, visceral regulation, other sensory
activities (smell, vision, and auditory sensation), motor function,
etc. These findings provide neuroanatomical evidence for further
assessment of the unique function of the CSF-contacting nucleus.
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