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Cognitive control and decision-making rely on the interplay of medial and lateral prefrontal

cortex (mPFC/lPFC), particularly for circumstances in which correct behavior requires

integrating and selecting among multiple sources of interrelated information. While the

interaction between mPFC and lPFC is generally acknowledged as a crucial circuit in

adaptive behavior, the nature of this interaction remains open to debate, with various

proposals suggesting complementary roles in (i) signaling the need for and implementing

control, (ii) identifying and selecting appropriate behavioral policies from a candidate

set, and (iii) constructing behavioral schemata for performance of structured tasks.

Although these proposed roles capture salient aspects of conjoint mPFC/lPFC function,

none are sufficiently well-specified to provide a detailed account of the continuous

interaction of the two regions during ongoing behavior. A recent computational model of

mPFC and lPFC, the Hierarchical Error Representation (HER) model, places the regions

within the framework of hierarchical predictive coding, and suggests how they interact

during behavioral periods preceding and following salient events. In this manuscript, we

extend the HER model to incorporate real-time temporal dynamics and demonstrate

how the extended model is able to capture single-unit neurophysiological, behavioral,

and network effects previously reported in the literature. Our results add to the wide

range of results that can be accounted for by the HER model, and provide further

evidence for predictive coding as a unifying framework for understanding PFC function

and organization.

Keywords: medial prefrontal cortex, lateral prefrontal cortex, cognitive control, attention, learning, predictive

coding, computational neuroscience

INTRODUCTION

Medial and lateral prefrontal cortex (mPFC/lPFC) are core hubs of the cognitive control and
decision-making network in the brain (Cole and Schneider, 2007). The regions are densely and
reciprocally connected (Barbas and Pandya, 1989; Barbas and Rempel-Clower, 1997; Nácher et al.,
2019), suggesting that their contribution to behavior depends in part on their tightly-coupled
interactions during preparation, execution, and monitoring of the consequences of actions.
Although these regions have long been the target of focused investigation, it remains an open
question as to how they collaborate in an ongoing and interactive fashion to support adaptive
behavior (Badre and Nee, 2018).
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Independently, both regions have been implicated in
a wide range of functions, and these functions appear
to suggest a dissociation between the regions along a
temporal dimension. Activity in mPFC, especially dorsal
anterior cingulate cortex (dACC), is frequently observed
in conjunction with behaviorally-salient events, such as
error commission (Gehring et al., 1990; Shen et al., 2015)
or the appearance of stimuli cueing multiple, potentially
conflicting, responses (Brown, 2009). In contrast, activity

FIGURE 1 | Interactions of mPFC and lPFC in the HER model. (A) The HER model is organized hierarchically, with each hierarchical level instantiating a computational

motif of prediction and prediction error calculations. Information flows between hierarchical levels along top-down and bottom-up pathways, which carry information

regarding likely errors in a given context (top-down), and error signals (bottom-up) derived from external feedback (base hierarchical level) conjoined with items

maintained in working memory (additional hierarchical levels). Circled numbers indicate governing equations within and between hierarchical levels (see section

Methods). Reciprocal connections between mPFC and lPFC correspond to a putative hierarchical rostrocaudal gradient (Badre and D’Esposito, 2009) with bottom-up

and top-down pathways governing the adjustment of behavior during ongoing task performance. (B) During a trial, top-down connections serve to establish the

current context and relevant rules that govern eventual behavioral responses during preparatory periods. (C) Following the generation of a response (right), bottom-up

error signals are used to update outcome predictions and derive composite “proxy” outcomes that train higher-order representations of rules and contexts.

in lPFC is typically associated with long-term behavioral
contingencies, such as maintaining information over
extended periods of time (Sawaguchi and Goldman-Rakic,
1991) and representing the structure of ongoing tasks
(Badre and D’Esposito, 2007). This temporal dissociation
has been interpreted as reflecting complementary aspects
of task performance in which mPFC signals changes in
behavioral requirements, including specification of control
signals (Shenhav et al., 2013) or selection of action policies
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(Holroyd and Yeung, 2012), and the implementation
of appropriate control measures is delegated to lPFC
(Botvinick et al., 2001).

How such temporally specific functional contributions of
medial and lateral PFC can give rise to a wide variety of
cognitive and behavioral effects has been formalized within
the framework of hierarchical predictive coding (Alexander
and Brown, 2015, 2018). The Hierarchical Error Representation
(HER) model states that error signals generated by mPFC are
used to train error representations in lPFC, and that, once learned,
error representations maintained by lPFC serve to contextualize
subsequent error calculations carried out by mPFC (Figure 1).
Using this basic circuit as a repeating computational motif,
the HER model is able to learn complex cognitive tasks in
a manner that accords with human behavior, and measures
of activity derived from error calculation and representation
in the model reproduce qualitative patterns of single-unit and
neuroimaging data.

While the HER model suggests how and when mPFC and
lPFC might interact, our previous implementation of the model
was aimed at the “event” level (Alexander and Brown, 2015):
model equations were applied, and activity derived, following the
occurrence of salient behavioral events, such as the presentation
of task stimuli or performance feedback. The HER model is
therefore only able to account for mPFC/lPFC interactions at a
temporally coarse level, and is unable to capture the co-evolving
development of activity during intra-event periods, nor can it
capture aspects of behavior, such as switch costs (Wylie and
Allport, 2000), that may manifest through differences in response
time. Thus, although the HER model provides a promising
framework for understanding the function, organization and
interactions of PFC regions (Alexander and Brown, 2018), a
significant gap in its explanatory power remains.

To address this limitation and derive novel model predictions,
we here incorporate temporal dynamics to the model-unit
activity of the HER model. When model units transform inputs
to outputs during performing of a reversal learning task we
simulate their activation with a non-linear “shunting” equation
(Grossberg, 1988). These dynamics reproduce the rise and
fall of neuronal activations in cortical circuits. This allowed
us to analyze the timing and duration of computations at
different hierarchical levels of the model and to relate these
dynamics to the behavioral, single-unit, and brain network data
of empirical studies.

METHODS

Model Equations
Details regarding the operation of the HER model are
described in previous publications (Alexander and Brown,
2015). Here we review the equations specifying the model,
adopting the notational convention that BOLD UPPERCASE

variables indicate matrices, bold lower case variables indicate
column vectors, and lowercase italicized variables indicate scalars.
Variables marked with a single apostrophe (e.g., P’) indicate
superior hierarchical levels. Table 1 lists parameters in the model,
their interpretation, and their value for the simulations reported

TABLE 1 | Model Parameters.

Parameter Values

Parameter Description Equation Hierarchical

Level 1

Hierarchical

Level 2

α Response learning

rate

7 0.05 0.02

λ Working memory

learning rate

10 0.3 0.5

β Working memory

update gain

2 12 14

γ Response selection

temperature

4 12 N/A

TABLE 2 | Model Variables.

Variable Description Equation

v Utility for storing item in WM (1, 2)

X Associative WM weights (2, 10)

s Stimulus vector (1, 10)

p Model-generated predictions (3, 4, 6)

P Matricized predictions (p) (5)

W Associated response weights (3, 5, 7, 9)

r Working memory representation (3, 7, 8, 9)

e Error (6, 7, 8)

o Observed response-outcome vector (6, 8)

eWM Backpropagated working memory error (9, 10)

here. Table 2 lists model variables, their interpretation, and
equations in which they appear.

Generally, the HER model is composed of 2 or more
hierarchical levels, and each level of the hierarchy consists of
three primary components: a working memory (WM) store r,
and weight matrixX determining the probability that a stimulus s
will be stored in r, and a weight matrixW determining how items
stored inWMeither influence behavior (at the lowest hierarchical
level) or modulate the processing of lower hierarchical levels.
Whether a stimulus s is stored in working memory is determined
by the pair of equations:

v = XTs (1)

and the probability of WM representation ri =
expβvi

expβvi + expβvj

(2)

Equation (1) reflects the learned value of storing an item in
working memory—at each hierarchical level of the model. Here,
s is a binary vector of stimulus representations reflecting the
current trial, with each element indicating the presence (1)
or absence (0) of the corresponding task feature (cf. the task
description below). The relative values of maintaining the current
contents of WM (indexed by j) vs. updating WM with a new
representation (indexed by i) are compared in Equation (2).
Equation (2) is a softmax function calculating the probability
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of storing the current stimulus si in WM relative to the current
contents of WM and β is a gain parameter governing the degree
is a gain parameter governing the degree by which differences
in elements of v influence the probability of maintaining or
updating WM. Intuitively, these equations determine which
of multiple “valuable” to store in WM (Equation 1), and
transform this value into a probability (Equation 2). WM
memory transform this value into a probability (Equation 2).
WMmemory storage is binary, and only a single WM any time.

The WM representation r and associative weightsW are used
to generate the output p of that hierarchical level:

p=WTr (3)

At the lowest hierarchical level, network output p is used to
generate a behavioral response i (out of j possible responses)
using another softmax function over elements of p:

Probability of response i =
expγ pi

∑

j exp
γ pj

(4)

where γ is a gain parameter indicating how likely the model is
to select the response i from j possible responses. The output
of higher-order hierarchical levels, p’, is used to modulate the
processing of lower-order levels output as follows. First, p’ is
reshaped from a vector to a matrix with the same dimensionality
as W. That is, p’ is matricized as P’. Next, modulated weight
matrices are calculated as:

Wmod
= W + P′ (5)

Note that p’ is constrained to have the same number of
elements as W so that P’ has the same dimensionality
following matricization.

Learning
Learning in the model depends on the calculation of error signals
at each level of hierarchy. At the base hierarchical level, errors are
computed as:

e= a ◦
(

o− p
)

(6)

where o is a feedback vector indicating the response identity and
whether the response was correct or incorrect, and a is a filter that
is 1 for the index of the generated response and 0 everywhere else.
The operator ◦ reflects elementwise multiplication (Hadamard
product) of two matrices. Associative weights at each level are
updated according to:

Wt+1=Wt+ α(etrt
T) (7)

and α is the learning rate. To train higher-order hierarchical
levels, a proxy outcome signal is composited from the error signal
computed at the lower level (Equation 6) and the active WM
representation r at the lower level. This is done by taking the
outer product of the lower-level error and representation vectors:

O′
= reT (8)

For computational convenience, O’ is vectorized as o’ with the
same dimensionality as p’.

Training of WM weights X is done by backpropagating the
output error term e to derive an error term for the current
WM representation:

eWM = WT
t et ◦ rt (9)

Xt+1 = Xt+λ

(

eWM sTt

)

(10)

with learning rate λ.

Simulated Task
The HER model was developed to account for behavior and
brain function in tasks requiring the selection and application
of rules that govern how to respond to a concrete stimulus
(e.g., an arrow cueing response identity). We therefore selected
a recent, rule-based task (Oemisch et al., 2019) in which, on
each trial, monkeys were presented two stimuli, one on each
side of the screen (Figure 2A). Stimuli had two behaviorally
relevant features that varied independently from each other,
namely color (red/green), and the direction of motion of a
grating inside a circular aperture (up/down). The task required
that the monkey learn through trial-and-error which of the two
colors is currently relevant, and to respond with a saccade in

the up- or downward motion direction of the stimulus with
the currently relevant color. Once the relevant color has been
learned, successful performance of the task requires that, on each
trial, themonkey first identifies the location (side of the screen) of
the appropriately-colored stimulus, after which the identity of the
response (up/down) corresponding to the direction of the pattern
movement is determined. The task described in Oemisch et al.
additionally incorporates periodic reversals when the relevant
color changes and the monkey must adapt their responses to the
new task contingencies (Figure 2B); while the HER model is able
to learn such reversals (cf. Figure 2C), this aspect of the task is
not further considered here as it does not bear directly on the
within-trial temporal dynamics of PFC interactions.

Model Simulations
To simulate real-time dynamics in the HER model, we adopt
the approach taken by previous studies of network models
of cognitive control [e.g., Yeung et al. (2004)] in which the
process used to establish weights suitable for performing a task is
carried out independently of simulations of temporal dynamics.
In order to establish model weights suitable for performing
the Oemisch et al. reversal task, a previously-described version
of the (event-level) HER model (Alexander and Brown, 2015)
using the same parameters was trained on 20,000 trials of the
reversal task, divided into 50 blocks of 400 trials each. On
each trial during learning, 3 events were modeled: the onset
of task stimuli, the occurrence of a response and feedback,
and a neutral cue indicating the start of the intertrial interval
(ITI). Stimuli were modeled as a binary vector, with elements
corresponding to color and movement direction (four total
elements per stimulus), and independent stimulus vectors were
used to model each side of the simulated display, for a total of
eight task stimulus elements. A 9th element was used to indicate
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FIGURE 2 | (A) The color-based reversal task described in Oemisch et al. (2019). Subjects are shown a fixation point and two neutral stimuli. Then the stimuli

switched to opposite colors and began to move within their apertures in opposite, upward, or downward directions of motion. Following a brief interval, a “Go”

(dimming) signal is presented, following which the subject is required to indicate the direction of the grid for the currently relevant color. The dimming signals occurred

at unpredictable moments in time either in both stimuli simultaneously or in sequence to control covert attention (not shown). (B) The rewarded, relevant color

reversed uncued after ≥30 trials, and subjects had to adjust their behavior to indicate the movement direction associated with the newly relevant color. (C) The HER

model is able to learn the Oemisch et al. reversal task easily. During an initial period lasting from 1 to 10 reversal epochs, the model learns to preferentially gate in task

features to hierarchical levels. Following reversals, the model rapidly learns the new task contingencies while preserving the hierarchical order of information. (D) The

concrete decision variable in the reversal task is the apparent direction of motion associated with the currently relevant color. The HER model learns to represent this

variable at the lowest hierarchical level (Level 1), consistent with its direct relevance to generating behavioral responses.

the ITI. Themodel was permitted 3 responses, two corresponding
to movement direction (up/down), and one neutral response
indicating acknowledgment of ITI onset. Each response could
be associated with two outcomes (correct/incorrect), for a total
of 6 response-outcome predictions. Responses were generated
by subtracting, for each response, the prediction of incorrect
feedback from the prediction of correct feedback, and passing the
values through a softmax function, as described in the methods
section. Code for the HER model is available at https://www.
github.com/modelbrains.

Temporal Dynamics
The network weights recovered from the training procedure were
fixed during the real-time simulations as described above. In
order to simulate real-time dynamics in the network, changes
in unit activity on each cycle were modeled by a non-linear
“shunting” equation (Grossberg, 1988):

1Ei = exci (θ − Ei) − (Ei + η) + N(0, σ ) (11)

where θ is the upper asymptotic activity a unit could achieve
(set to a value of 10), η is the lower boundary toward which
unit activity decays passively (−0.05), and N is gaussian noise

applied to the signal change with mean 0 and variance σ = 0.01.
Ei is the current activity of unit i, and exci is the current net
excitatory input to the unit, computed as in equations 1, 3,
and 6. Specifically, exci is equal to v in Equation (1), governing
the dynamics of WM update and maintenance. For computing
model predictions at all hierarchical hierarchical levels, exci
is equal to p in Equation (3). Finally, for computing error
(Equation 6), exci is set to e, the difference between predictions
p and observed outcomes o.

Models of neuron activity similar to Equation (11) [e.g.,
Wilson and Cowan (1972)] approximate the dynamics of
individual neurons (Hodgkin, 1969) without introducing
unnecessary complexity. The approach to simulate activity
dynamics with a typical neuronal activation function has
advantages over the use of biophysical model neurons when
models are complex and the aim is to understand the algorithmic
as opposed to the implementational level of a computational
problem (Niv and Langdon, 2016). The HER model architecture
has not previously been implemented into a biophysical model
in order to allow for an analysis of the model mechanisms
at the level of the computational units across hierarchy as
opposed to the level of biophysical mechanisms underlying
these units.
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Each simulated trial lasted up to 700 cycles, and on each cycle
the processing steps outlined in Equations (1–10) were followed
and unit activity updated according to Equation (11). During the
first 100 cycles of the trial, no input was presented to the network.
On cycle 101, a stimulus vector representing the color and
movement direction of the left and right stimuli was presented
to the network, after which the network was able to register
a response. Responses were generated when the corresponding
unit in p reached 95% of its upper asymptotic value. Following a
response, the stimulus vector was set to 0 and the network was
provided feedback for 50 cycles. Following the offset of feedback,
the network was run for an additional 250 cycles prior to the
beginning of the next trial. Network activity was not re-initialized
after each trial. As described in previous work (Alexander and
Brown, 2011, 2014, 2015, 2018), Equations (1–10) specify two
primary signal types, namely prediction (Equations 1 and 3) and
error (Equation 6), and analyses were conducted on unit activity
reflecting individual network units recruited during each trial. In
the simulations reported reported here, both types of signals are
subject to the temporal dynamics embodied in Equation (11). All
model results were derived from 20 simulation runs.

Granger Causality
We recorded the time course of unit activity for prediction
(Equation 3) and error (Equation 6) signals from both
hierarchical levels of the model. To determine the average
causality between regions for each type of signal, we used
the Granger Causality Toolbox (Luo et al., 2013; https://www.
dcs.warwick.ac.uk/\simfeng/causality.html). The goal of Granger
causality is to determine whether the value of a signal y at time
t is better predicted by the history of another signal, x, than by
its own history. The magnitude of Granger causality is given by
the log ratio of the error when considering only the history of y
vs. the history of both y and x. When the history of x does not
improve predictions of y at time t above only the history of y, the
log ratio is equal to 0 (i.e., the error is the same in both cases).

The length of the signal history to be considered is determined
by the analyst; here we selected a time window of 50 model
cycles. For causality analyses, trial timing was standardized—
even if a response was indicated prior, the model was simulated
for 350 cycles following the onset of a stimulus. The average
Granger causality magnitude of one hierarchical level on the
other for each signal type was estimated for each cycle. This
procedure was repeated 20 times, and a two-sample t-test
(Bonferroni corrected) was conducted for the distribution of
Granger causality magnitudes at each cycle to determine whether
the granger causality of one region on the other was significantly
greater. Thus, although both regions could Granger-cause
activity in the other at any time point, our analysis indicated
whether one region had a significantly higher degree of causality
than the other.

RESULTS

The HER model was able to learn and perform the reversal task
relatively easily. During an initial “burn-in” period (Figure 2C),
the model primarily learned to hierarchically segregate relevant

feature dimensions (Figure 2D): the WM “gating” mechanism
(Equations 1 and 2) learned to store the “concrete” movement
direction at the lowest hierarchical level while color information
was stored in the superior hierarchical level. This pattern accords
with intuitions regarding how individuals might solve the task
(Oemisch et al., 2019): The reward-associated color acts as a
feature-reward “rule” that indicates which concrete stimulus
(movement direction) should govern the ultimate response.
After this initial learning period, the model is able to perform
reversals within a short period of time. Because the model has
learned stableWMmappings, learning to respond to the opposite
color entails relatively rapid changes in top-down modulation
of concrete responses, i.e., rather than relearning the task from
the ground up. These findings suggest one manner in which a
hierarchical representation of information might support rapid
and flexible reconfiguration of responses in the face of changing
task contingencies.

Response Preparation
Introducing real-time dynamics allows us to investigate the
evolution of predictive activity (Equation 3) in the model during

FIGURE 3 | (A) mPFC unit activity in model simulations is influenced by

switches or repetitions of feature dimensions between trials. When both

feature dimensions (location and response direction) repeat (same/same), as

well as repetitions of the target direction (diff/same), mPFC activity reaches

asymptote quickly after stimulus onset, while changes in the target response

(same/diff, diff/diff) produce delays in the evolution of mPFC activity. (B)

Activity in lPFC likewise shows intertrial effects; however, in this case, delay in

the development of lPFC activity is due principally to shifts in the location of the

target stimulus (diff/same, diff/diff), while changes in the more concrete

target direction variable (same/diff) have relatively little influence on lPFC

activity relative to a trial in which all features are the same (same/same). (C)

The delay in model activity following feature switches contributes to changes in

model reaction times: reaction times are most rapid on trials in which both

feature dimensions repeat, while switches in either or both features result in

longer reaction times.
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a trial, the influence of previous trial effects, and derive measures
of reaction time frommodel activity. During preparatory periods
following the onset of a task stimulus the activity of predictive
units in both mPFC (Figure 3A) and lPFC (Figure 3B) begins
to ramp up, and the time course of this ramping up depends
on whether task features in the current trial are the same
as or different than features in the preceding trial. In lPFC,
activity increases more rapidly for trials in which the target
location is the same as the previous trial. This rapid increase is
a consequence of lPFC’s role in representing color information
needed to identify the location of the target stimulus during a
trial: when the location remains the same, lingering activity in
the appropriate lPFC representations are rapidly re-activated.
In contrast, mPFC activity is sensitive to changes both in the
location of the target stimulus, as well as changes in the cued
direction; both factors influence the development of mPFC
activity. The sensitivity of mPFC in changes to both stimulus
features is due in part to lingering activity within MPFC from the
previous trial. As with the effect of location repetitions on lPFC
activity, repetitions in the motion direction of the target stimulus
re-activate mPFC representations that were already partially
active from the previous trial. However, activity in mPFC is
additionally modulated by activity in lPFC (Equation 5); changes
in the location of the target stimulus that influence the evolution
of lPFC activity thus have downstream effects on mPFC activity.

The sequence-dependent development of activity directly
influences the speed at which a response is generated (Figure 3C).
Responses in the model are ultimately generated by mPFC
function (Equation 4): the longer activity in mPFC takes to
reach a critical threshold, the slower the response time. Because
the evolution of mPFC activity in the model depends on
whether task features for the current trial are the same, the
model reproduces standard trial sequence effects wherein feature
repetition facilitates responding, while feature switches interfere
with responses (Fecteau and Munoz, 2003). The HER model

further suggests why some feature switches may produce greater
interference effects than others. Specifically, switches of the
feature that most directly drives response, i.e., the motion
direction of the stimulus, results in a greater RT difference than
changes in the more abstract feature dimension, i.e., the color of
the stimulus in this task.

Furthermore, the model suggests how lPFC lesions might
affect the development of mPFC activity (and consequent
behavioral performance) on tasks that require integrating
multiple features (Figure 4). The evolution of both LFPC and
mPFC activity is affected by whether the abstract task variable
(location) in the current trial is the same or different than in
the previous trial (Figure 4A), and lPFC activity tends to lead
mPFC activity, suggesting a causal role of lPFC activity on
mPFC activity. This causal relationship can be directly queried
by artificially lesioning lPFC in the network (e.g., by multiplying
P’ by zero in Equation 5). mPFC activity following lesions to
lPFC (Figure 4B, left frame) is slower to evolve than when lPFC
is intact. When considering only trials in which the location of
the target stimulus has changed (Figure 4B, right frame), lPFC
lesionsmore profoundly impactmPFC functionwhen both target
location and target response identity have changed relative to
changes only in the target location.

Feedback Processing
Following a response, the model receives feedback indicating
whether the selected response was correct or incorrect. While
equations used to compute errors in the model (Equation
6), like those used to calculate prediction unit activity, apply
at every moment in the simulations, error-related activity is
most prominent following feedback delivery, during which
ongoing predictive activity is compared to an experienced
outcome. During learning in the event-level model, comparison
of feedback and concrete outcomes occurs only at the lowest
hierarchical level; at superior hierarchical levels, “outcomes” are

FIGURE 4 | (A) lPFC activity develops more quickly than mPFC activity during early trial stages, consistent with a causal role for lPFC in modulating mPFC responses.

(B) Left frame. Artificially lesioning the simulated lPFC component of the model results in slower development of mPFC activity (x axis) compared to a non-lesioned

version of the model (y axis) irrespective of trial sequences condition. However (Right Frame), mPFC function is more severely impacted by lPFC lesions in some

conditions than others.
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FIGURE 5 | Temporal dynamics of error and prediction. (A) Performance-related error signals in the model mPFC at the lowest hierarchical level evolve rapidly

following the onset of feedback, peaking soon after the onset of task feedback (top panel, dark blue line) and tailing off rapidly (bottom panel, dark blue line).

Proxy outcomes used to train superior hierarchical levels in lPFC are a composite of error signals calculated by inferior levels and the contents of WM, with a

consequent lag in the temporal profile (top panel, light blue line) and lingering activity (bottom panel, light blue line). (B) The relative temporal profiles of error and

composite training signals matches reward predictions errors observed in monkey mPFC and lPFC performing the reversal task, with spiking activity for prediction

error units peaking in mPFC/ACC prior to lPFC (top frame) and prolonged activity in lPFC relative to ACC/mPFC (bottom frame). Figures adapted with permission

from Oemisch et al. (2019).

derived from WM representations at the inferior level combined
with the results of the feedback comparison process (i.e., the error
signal, Equation 8). These “proxy” outcomes constitute a higher-
order training signal that is composited from lower-level WM
representations and error signals; the composition of the higher-
order training signal is carried out by lPFC in the HER model,
while the comparison of outcomes and predictions is undertaken
by mPFC.

Naturally, since the proxy outcome depends on the lower-
level error signal, the evolution of error units in mPFC in
our simulations precedes the development of activity in lPFC
training units (Figure 5A, top panel): the mPFC error signal
ramps up rapidly at the onset of feedback, and decays quickly
following feedback offset. In contrast, the lPFC training signal
lags the mPFC error signal, and its activity is temporally
blurred. Although the relative onset of the error and training
signals is prefigured by the architecture of the HER model, the
relative distribution (Figure 5A, bottom panel) of the signals
emerges only due to the temporal dynamics introduced in these
simulations. This emergent pattern qualitatively matches data
recorded from monkey dACC and lPFC during performance
of the reversal task (Figure 5B; Oemisch et al., 2019), and
adds to the already considerable array of effects the HER
model has been applied to (Alexander and Brown, 2015, 2018).
Furthermore, the HERmodel provides a mechanistic explanation
for both why prediction errors are observed in multiple brain
regions during feedback processing, and for their relative time
courses. Instead of multiple areas of the brain engaging in
independent calculation of prediction errors, the HER model
proposes that a single outcome prediction error calculation

propagates through the cognitive control network in a bottom-
up fashion.

Information Flow
So far, our results are suggestive of how mPFC and lPFC interact
during preparatory and feedback periods of a trial. To determine
how thesemPFC/lPFC interactions develop during a trial we turn
to Granger causality (Luo et al., 2013) as a measure of how well
one variable can be predicted by lagged values of another variable.
Here, the variables are the unit activities in mPFC and lPFC and
Granger causality indexes whether unit activity in one area is
better predicted by the preceding unit activity from the other
area than by its own past. Granger causality was computed for a
time lag of 50 model cycles for both error-related and prediction
units in the model, and trial timing was standardized—even if a
response was indicated prior, the model was simulated for 300
cycles following the onset of a stimulus.

We first tested for causally significant error signals
(Equation 6) and found they emerged prominently following
performance-related feedback (Figure 6, top row). Immediately
following the onset of feedback, Granger causality for the
influence of mPFC on lPFC was significant at a level of p < 0.05
(two sample t-test, df= 19, Bonferroni corrected), and remained
so until feedback-related activity naturally decayed. lPFC also
causally influenced mPFC during the feedback epoch of the
task at a significance level of p < 0.05 (two sample t-test, df =
19, Bonferroni corrected), but only after an outcome feedback
had ended.

We next analyzed Granger causal effect of the prediction
signal of the model (Figure 6, bottom row). We found
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FIGURE 6 | Analysis of causality in the model shows a transient causal relationship of mPFC units to lPFC units following behaviorally salient events such as feedback

(top row). This causal relationship is reversed during trial periods involving the preparation and execution of responses (bottom row). The dynamic shift in causal

direction over the course of a trial matches similar patterns observed in monkey mPFC and lPFC during feedback processing and cued performance [right frames,

adapted with permission from Stoll et al. (2016)].

that prediction signals at the mPFC representation of the
model immediately following stimulus onset Granger-cause
activity in lPFC (p < 0.05; two sample t-test, df = 19,
Bonferroni corrected). While the HER model contains no
mechanism by which predictions in mPFC influence processing
activity in lPFC, Granger causality only indicates whether
one signal can be predicted by previous values of another
signal. In this case, predictive signals in mPFC and lPFC
are correlated, but mPFC signals develop more rapidly than
lPFC signals, producing a significant Granger causality effect.
Following this transient effect, Granger causality for the
influence of lPFC on mPFC becomes significant during the
delay period prior to the generation of a response (Figure 6,
bottom frame). This finding is consistent with the role of
lPFC in maintaining information and implementing control
demands. These simulation results are consistent with monkey
neurophysiological studies demonstrating differences in the
relative onset and peak activity of neurons in mPFC and
lPFC that depend on the trial epoch (Figure 6, right panels;
Stoll et al., 2016).

DISCUSSION

In this manuscript, we have described additional simulations
of the HER model in which real-time temporal dynamics were
introduced to the model. The results of these simulations provide
additional perspective on how the activity of mPFC and lPFC,
as components of a hierarchical predictive coding framework
(Alexander and Brown, 2018), might develop and interact
following salient task events, and how the relative direction
of this interaction evolves over the course of a trial. Beyond
simply exploring the dynamics of model activity, our simulations
demonstrate how the HER model can further account for

additional single-unit (Oemisch et al., 2019), behavioral (Wylie
and Allport, 2000), and network effects (Stoll et al., 2016)
previously reported in the literature.

At the level of neurons, the activity of single units in the
HER model corresponding both to lPFC and mPFC, is observed
to ramp-up following the onset of a task-relevant stimulus
(Figure 3). Previous real-time models of mPFC (Alexander and
Brown, 2011, 2014) have likewise shown units with ramping
activity profiles, similar to those of reward- and error-predicting
neurons in monkey mPFC (Amador et al., 2000; Amiez et al.,
2006). The HER model, conceived as a temporally-coarse
hierarchical extension to the PRO model (Alexander and Brown,
2015), was unable to replicate this pattern; by re-introducing
real-time dynamics, and consequently reproducing effects from
the PRO model that depended on temporal processes, our
simulations underscore that the principal role and computational
mechanisms attributed tomPFC by the PROmodel remain intact
in the HER model.

Furthermore, the simulations in this manuscript extend
real-time processing to the registration of feedback and
the development of error signals. The original PRO model
(Alexander and Brown, 2011) was developed using temporal
difference (TD) learning formulations (Sutton, 1988) in which
the temporal profile of feedback signals (and subsequent error
signals) was specified by the modeler (e.g., either as a punctate
event or a box car profile). Here, the duration and magnitude
of feedback signals is still modeler-defined, but the development
of activity registering these signals is described by the same
timing equations used to model all other unit activity in the
model. By extending temporal dynamics to feedback processes,
the simulations here are able to capture the temporal profile of
error-signaling units recorded from monkey mPFC and lPFC, as
well as the relative onset and decay of these signals (Figure 5).
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Specifically, simulated error-related signals in mPFC peak
earlier and decay more rapidly than signals observed in lPFC,
consistent with recent reports (Shen et al., 2015; Oemisch et al.,
2019). The HER model explains this through the role of mPFC
in training error representations in lPFC: error signals generated
directly by outcome feedback in the model are combined with
active representations of task-stimuli to derive higher-order
outcome and error signals (Equation 8), represented in lPFC. As
the development of these higher-order signals is mechanically
subsequent to direct error signals (Figure 1), the dynamics
specified in Equation (11) dictate a later peak and lingering
activity. Furthermore, the “proxy” outcome signals derived in
lPFC are required for subsequent higher-order error calculations,
suggested by the HER model to be carried out in hierarchically-
superior regions of mPFC (Figure 4), and these error signals are
subject to additional lag as lower-order error and training signal
computations that support their calculation develop. The HER
model thus provides a mechanistic explanation for the relative
time course of error signals in caudal-to-rostral regions of mPFC
(Polli et al., 2005).

Although computation of error(Equation 6) and prediction
signals (Equation 3) is ongoing throughout our causality analysis
over the entire course of a trial reveals that the net direction
of information flow depends both on the type of information
(prediction or error) computed, as well as the period within a
trial. Following salient task events, such as stimulus onset or
delivery of feedback, information in the model flows primarily
from mPFC to lPFC, while during periods in which a salient
event is expected but has yet to occur, information flows
principally from lPFC to mPFC. This pattern maps well both
to functional roles attributed to these regions, as well as the
observed time course of interactions. Functionally, mPFC has
long been associated with processing novel or behaviorally-
relevant events, especially the occurrence of errors (Gehring
et al., 1990) or otherwise surprising (Jessup et al., 2010; Ide
et al., 2013) stimuli, while lPFC is implicated in slower processes
involving information maintenance (Sawaguchi and Goldman-
Rakic, 1991), representing task structure (Badre and D’Esposito,
2007), or implementing control in preparation for upcoming
demands (Botvinick et al., 2001). This temporal dissociation,
implied in the architecture of the HER model (Alexander and
Brown, 2015) is made explicit in this manuscript, and the relative
timing and flow of information in the model is consistent with
human andmonkey studies of PFC (Taren et al., 2011; Shen et al.,
2015; Stoll et al., 2016; Oemisch et al., 2019).

The model distinguishes different levels of a computational
hierarchy, which we associate with different brain areas to
highlight the overarching functional contributions of a specific
brain area. The association of the first (lowest) level of the
hierarchy with mPFC and the next higher hierarchical level
with lPFC should not imply that these areas are exclusively
representing information pertaining to these hierarchical levels.
Rather, task related information about the value of stimulus
features and the type of prediction errors can be decoded
from model units at all levels, albeit to different degrees.

This observation is consistent with a large body of literature
demonstrating that prefrontal cortical neurons code task
variables with mixed selectivity (Fusi et al., 2016), whereby
individual neurons encode multiple task variables, i.e., they
mix information about task rules, feature values, and outcome
variables in their firing independent of the specific source of
the information (Bernardi et al., 2020). According to these
insights, mPFC and lPFC will host neurons tuned to similar
task variables, but will show a “representational gradient”
(Kyriazi et al., 2020) showing more prominent encoding of
feedback information in mPFC and a more abstract stimulus
value code in lPFC (Rigotti et al., 2013; Bernardi et al., 2020).
Our model depiction is consistent with these insights and
specifies the actual computations that might give rise to these
representational gradients.

Finally, by introducing temporal dynamics, we were able to
use the HER model to replicate sequential trial effects that are
a staple of the cognitive control literature (Wylie and Allport,
2000; Fecteau and Munoz, 2003). Unsurprisingly, reaction times
for the model are the most rapid for trials in which all features
of the chosen stimulus are identical, and slowest for trials in
which all features have changed relative to the previous trial. Of
interest, however, are trials in which only one relevant feature
(out of two in the current study) changes. In these cases, the
identity of the changing stimulus can have differential effects
on reaction time. The HER model solves structured tasks by
decomposing stimulus dimensions hierarchically (Alexander and
Brown, 2015): dimensions that are “concrete,” i.e., those thatmost
directly inform the eventual response, are preferentially encoded
at the lowest hierarchical level, while more abstract features are
encoded at superior hierarchical levels. The simulations reported
here suggest that changes in the concrete decision variable (in
this case, the direction of the target response) may have a
more profound influence on reaction time than changes in the
more abstract variable. Recent work (Vassena et al., 2019) has
begun to explore how interfering with the structure of a task
through manipulations of presentation order might influence
decision making and performance. The results of the present
study suggest a complementary approach in which the differences
in performance elicited through feature changes might be used to
infer the representation of task structure.

In summary, the simulations of the extended HER model
reported in this manuscript demonstrate that including temporal
dynamics endows the model with additional explanatory power,
and provides the basis for additional work investigating the
function and interaction of regions within PFC, as well as how
they contribute to behavior. More generally, the HER model, as
an instance of predictive coding, suggests how additional regions
in PFC may be organized (Alexander et al., 2017); specifically,
the HER model is primarily concerned with how information is
integrated in order to generate responses, but may have little to
say about how information is acquired to begin with. It is possible
that additional regions implicated in cognitive control may be
integrated with the HER framework to describe information is
actively selected and interpreted to assist in adaptive behavior.
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