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Molecular evidence strongly supports deadwood-
inhabiting fungi exhibiting unexpected tree species
preferences in temperate forests
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Wood-inhabiting fungi have essential roles in the regulation of carbon stocks and nutrient cycling in
forest ecosystems. However, knowledge pertaining to wood-inhabiting fungi is only fragmentary and
controversial. Here we established a large-scale deadwood experiment with 11 tree species to
investigate diversity and tree species preferences of wood-inhabiting fungi using next-generation
sequencing. Our results contradict existing knowledge based on sporocarp surveys and challenge
current views on their distribution and diversity in temperate forests. Analyzing α-, β- and γ-diversity,
we show that diverse fungi colonize deadwood at different spatial scales. Specifically, coniferous
species have higher α- and γ-diversity than the majority of analyzed broadleaf species, but two
broadleaf species showed the highest β-diversity. Surprisingly, we found nonrandom co-occurrence
(Po0.001) and strong tree species preferences of wood-inhabiting fungi, especially in broadleaf trees
(Po0.01). Our results indicate that the saprotrophic fungal community is more specific to tree species
than previously thought.
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Wood-inhabiting fungi have an essential role in the
decomposition of deadwood, an important carbon
stock in global forest ecosystems (Pan et al., 2011;
Rajala et al., 2012). Deadwood is a complex and poor
quality (high C: N ratio) substrate composed of a
heterogeneous assemblage of simple molecules com-
bined with several types of complex biopolymers,
creating a nutrient resource that is difficult to access
and decompose for most organisms (Pan et al., 2011;
Hoppe et al., 2016). Wood-inhabiting fungi secrete
oxidoreductases and hydrolases (wood-decomposi-
tion enzymes) that mineralize or decompose most
plant cell wall polymers into simple compounds that
are accessible to other organisms (Floudas et al.,
2012; Purahong et al., 2016a).

Diversity and distribution patterns of microbial
community and their drivers are central issues in
microbial ecology as this information is crucial for
understanding and predicting the role played by
microbes in maintaining ecosystem functions and
stability (Kubartová et al., 2012) and can help when
making decisions about land management. Recently,
the conservation of microorganisms has become an

issue of concern, especially for wood-inhabiting
fungi (Seibold et al., 2015). However, our knowledge
about wood-inhabiting fungi is only fragmentary and
contested due to limitations in detection methods for
fungal communities and a lack of well-designed field
experiments with sufficient replicates (Kubartová
et al., 2012; Seibold et al., 2015; Hoppe et al., 2016).
Even the most fundamental questions about diversity
and tree species preference of wood-inhabiting fungi
have never been tackled using suitable approaches
and experiments (Seibold et al., 2015). Based on
existing knowledge pertaining to wood-inhabiting
fungal ecology based on sporocarp surveys, wood-
inhabiting fungal communities in temperate forests
are thought to exhibit low α-diversity (average ∼ 2
species or less/deadwood log) (Blaser et al., 2013)
and not be specific to tree species, leading to
researchers differentiating only between softwood
and hardwood degraders (Tuor et al., 1995), and
these views have been confirmed recently (Baber
et al., 2016). The lack of tree species preference of
wood-inhabiting fungi in temperate forest has also
not been questioned as it fits with the widely
accepted view that saprotrophic fungi have weaker
relationships to specific tree species than do sym-
biotic or parasitic fungi (Peay et al., 2013). However,
there are few studies that showed some degrees of
the selectivity of heart-rot fungi for trees species
(Rayner and Boddy, 1988; Boddy, 2001; Boddy et al.,
2017).
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This study aimed to address two specific ques-
tions. (i) Are there differences in the diversity of
wood-inhabiting fungi that colonize deadwood of
different tree species? (ii) Do wood-inhabiting
fungal taxa exhibit tree species preference? There-
fore, we sampled deadwood, not fruiting bodies,
and used pyrotag sequencing of the fungal internal
transcribed spacer rRNA genes to investigate the
diversity, composition and distribution patterns of
wood-inhabiting fungal communities in the early
phase of decomposition (3 years) in 11 tree species
(7 broadleaf: birch (Betula pendula Roth, Betula-
ceae), hornbeam (Carpinus betulus L., Betulaceae),
beech (Fagus sylvatica L., Fagaceae), ash (Fraxinus
excelsior L., Oleaceae), aspen (Populus spp., Sali-
caceae), oak (Quercus spp., Fagaceae), and lime tree
(Tilia spp., Malvaceae), and 4 coniferous species:
larch, (Larix decidua Mill., Pinaceae), Norway
spruce (Picea abies L., H.Karst., Pinaceae), pine
(Pinus sylvestris L., Pinaceae), and Douglas fir
(Pseudotsuga menziesii (Mirb.), Franco, Pinaceae)
(Figure 1 and Supplementary Information) distrib-
uted across three geographical locations in Ger-
many. To our knowledge, this study is among the
largest experiment on deadwood investigating tree
species preference using a molecular approach (11
tree species × 27 replicates (1 ha forest plot each) =
297 deadwood logs). All details on set-up, location,
sampling methodology and pyrotag sequencing are
described elsewhere and in Supplementary
Information (Baber et al., 2016; Purahong et al.,
2016a, b). Sampling design, laboratory procedures,
bioinformatics and statistical analysis are described
in Supplementary Information. Briefly, the freshly
cut logs from each tree species (∼4m long and mean
diameter of 31 ± 5.9 cm (s.d.)) were randomly put in
each forest plot beside each other with a distance of
1 m between logs in 2009 and allowed to decom-
pose for 3 years before sampling (Kahl et al., 2015).
For bioinformatics, we filtered for good-quality
sequences and processed as described in Purahong
et al. (2016b). The quality filtered reads were
shortened to their first 300 bases and normalized
to the smallest read number per sample (3011
reads). Potential chimeras were removed using
UCHIME 4.2.40 (Edgar et al., 2011) as implemented
in MOTHUR. Rare operational taxonomic units
(OTUs; singletons to quadrupletons) could poten-
tially have originated from sequencing errors
(Kunin et al., 2010) and were therefore removed
from the data set. The raw sequence data sets are
available in the European Nucleotide Archive under
the study number PRJEB21052 (http://www.ebi.ac.
uk/ena/data/view/PRJEB21052). α-Diversity of
wood-inhabiting fungi across different tree species
and wood-inhabiting fungal tree species preference
data sets were tested using Kruskal–Wallis test
combined with Mann–Whitney U-test and analysis
of similarity (ANOSIM) based on the presence–
absence data and Jaccard distance measure.

Tree species preference of wood-inhabiting fungi
can be explained by different ecological proxies
(including tree community composition and the
surrounding environmental conditions) and traits of
the deadwood itself (Ferrer and Gilbert, 2003).
Theoretically, when tree species diversity increases,
opportunities for specialized wood-inhabiting fungi
decrease as the probability of successful colonization
drops when each specific tree species becomes rare
(May, 1991). Therefore, in typical European temperate
forests, which are characterized by a few abundant
dominant tree species and some individuals of rare
species, we expected wood-inhabiting fungi to exhibit
tree species preferences for the dominant rather than
the rare tree species. We determined dominant trees
based on a percentage cover 410%, resulting in only
four dominant species Picea abies, Pinus sylvestris,
Fagus sylvatica and Quercus spp. (BMEL, 2014). The
other seven species present (Betula pendula, Carpinus
betulus, Fraxinus excelsior, Populus spp., Tilia spp.,
Larix decidua, Pseudotsuga menziesii were consid-
ered to be rare.

We detected an average of 22–42 wood-inhabiting
fungal OTUs per log in the 11 tree species investi-
gated, amounting to a total of 1254 OTUs, of which
677, 539 and 38 OTUs belonged to Ascomycota,
Basidiomycota or other fungal groups (that is,
Chytridiomycota, Zygomycota and unidentified
fungi), respectively. Diversity and distributions of
wood-inhabiting fungal OTUs in association with
broadleaf and coniferous trees are shown in
Figures 1 and 2 and described in detail in
Supplementary Information (Supplementary Table
S1). A recent study identified only 97 species based
on sporocarp surveys in the same experimental plots
(Baber et al., 2016), but we detected ∼12 times more
wood-inhabiting fungal OTUs by sequencing DNA
extracts from the logs (although in our study we had
to exclude two broadleaf species not occurring in
every plot but considered by Baber et al., 2016). The
majority of wood-inhabiting fungi identified in the
sporocarp study were also found in our molecular
study (470%), but many abundant wood-inhabiting
fungal OTUs (that is, Amylostereum sp., Resinicium
sp., Dacrymyces sp., Sistotrema sp., Phlebiopsis sp.,
and so on) were absent from the sporocarp survey.
This discrepancy between the two approaches
reflects the fact that the actively reproducing wood-
inhabiting fungal community that can be seen in
sporocarp surveys only poorly represents the whole
wood-inhabiting fungal community and that a large
portion of wood-inhabiting fungi reside in deadwood
as vegetative mycelia or spores (Kubartová et al.,
2012; Hoppe et al., 2016). Interestingly, we found a
higher number of Ascomycota than Basidiomycota
OTUs in all 11 tree species. Although Ascomycota
are generally relatively poor at producing enzymes
for deadwood decomposition, they may regulate
wood decomposition rate by interacting and compet-
ing with Basidiomycota at least in the early stage of
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Figure 1 Tree species preference of wood-inhabiting fungal OTUs and diversity (α-, β-and γ-diversity) detected for different tree species.
Tree species preference is indicated by the R statistics from analysis of similarity (ANOSIM) based on the presence–absence data and
Jaccard distance measure (R=0–0.24, no separation to barely separated (green); R⩾0.25–0.75, separation with different degrees of overlap
(yellow); R>0.75–1, well separated to complete separation (red); significant P-values (Po0.05) are given in bold and are based on 9999
permutations and Bonferroni corrections in all cases). Different letters indicate significant differences (Po0.05) according to Kruskal–
Wallis test combined with Mann–Whitney U-test of average R statistics among different wood type combinations (broadleaf and
broadleaf = blue, n=21; broadleaf and coniferous= gray, n=28; coniferous and coniferous=black, n=6) and average fungal richness
(Ascomycota (Asco) richness per sample (mean± s.e., n=27); Basidiomycota (Basi) richness per sample (mean± s.e., n=27); total richness
per sample (mean± s.e., n=27)). Other fungi =Zygomycota, Chytridiomycota and unidentified fungi.
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decomposition (van der Wal et al., 2014; Hoppe
et al., 2016).

We found differences in the wood-inhabiting
fungi of different tree species at the levels of
α-, β- and γ-diversity. In general, the coniferous
species displayed higher α- and γ-diversities
than the majority of the broadleaf species
(Figure 1). However, among the broadleaf
species, Quercus spp., Fraxinus excelsior and
Populus spp. also had high α- and γ-diversities,
similar to those of the conifers. In contrast, two
broadleaf species (Fagus sylvatica and Carpinus
betulus) with low α- and γ-diversities exhibited the
highest β-diversity levels (regional-to-local diver-
sity ratio). All these patterns remained when
Ascomycota and Basidiomycota were considered
separately (Figure 1).

It is noteworthy that we found a nonrandom co-
occurrence pattern (C-score = 46.028, Po0.001) and
strong tree species preferences, especially in broad-
leaf species (Figures 1 and 2). Wood-inhabiting
fungi colonizing coniferous wood showed less
pronounced tree species preferences (Figures 1
and 2). Instead of detecting two separate clusters
of wood-inhabiting fungal communities in conifer-
ous vs broadleaf trees, we detected nine wood-
inhabiting fungal communities (R= 0.29–0.83,
Po0.01), seven on the broadleaf species and two
on the four conifers (Figure 1). In particular,
although Quercus spp. and Fraxinus excelsior are

broadleaf species with similar wood structure (ring
porous) and C: N ratio (low), we found that the
wood-inhabiting fungal communities associated
with these two tree species were among the most
different in all pairwise comparisons across all tree
species (R = 0.80, Po0.01) (Figures 1 and 2d). Of the
conifers, Pinus sylvestris significantly separated
from the other species (R = 0.29–0.39, Po0.01)
except Picea abies. Overall, we found only 16
generalist wood-inhabiting fungal OTUs (∼1%),
while 331 (26%) were potential specialists
(Figure 2). For broadleaf species, the proportion of
potential specialists reached 41% (398 OTUs),
whereas generalist wood-inhabiting fungal OTUs
accounted for approximately 2% (18 OTUs). The
proportion of the potential specialists in coniferous
species was still high (35%, 288 OTUs) but there
was high proportion of generalists as well (16%, 132
OTUs). The overall architecture of tree species–
fungal associations illustrates how wood-inhabiting
fungal OTUs that show preferences for particular
tree species (that is, detected in a maximum of two
tree species, Supplementary Table S2, Supplemen-
tary Information) were distributed within a web of
wood-inhabiting fungi as shown in Figure 2d. We
further discovered that the tree species preference
of wood-inhabiting fungi was consistent in
both Asco- and Basidiomycota and across the
geographical locations (Figures 1 and 2 and
Supplementary Information Figure S1,

Figure 2 Specific and shared fungal OTUs detected in 11 tree species (a), 7 broadleaf tree species (b) and 4 coniferous tree species (c). The
number next to each bar indicates the number of all detected fungal OTUs (Ascomycota, Basidiomycota, Zygomycota, Chytridiomycota
and unidentified fungi). The overall architecture of tree species–fungal associations (d) illustrates how fungal OTUs that show preferences
for particular tree species (detected in no more than two tree species) were distributed within a web of wood-inhabiting fungi. Different
node sizes and colors represent different organismic and taxonomic groups: large nodes=plants (green=broadleaf tree and
orange= conifer tree) and small nodes= fungi (red=Basidiomycota, navy blue=Ascomycota, sky blue=Zygomycota, purple =unidentified
fungi).
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Supplementary Information). However, wood-
inhabiting fungi of the Ascomycota (R = 0.51,
Po0.01) appeared more specific to tree species
than those of the Basidiomycota (R = 0.41, Po0.01)
(Figure 1).

The high degree of tree species preference exhib-
ited by wood-inhabiting fungi found in this study led
us to ask ‘how do tree species influence the fungal
saprotrophic community after their death?’ The
results of the current study contrast sharply with
the widely held belief that wood-inhabiting fungi in
temperate forests are generalists and only separated
into hardwood- and softwood-degrader communities
(Tuor et al., 1995; Baber et al., 2016). Our results also
further challenge the view that symbiotic fungi (that
is, arbuscular mycorrhizal fungi or ectomycorrhizal
fungi) have stronger and more specific relationships
to their host plant (tree species preference) than
saprotrophic fungi (Peay et al., 2013; Gao et al.,
2013). On the contrary, we found very strong tree
species preferences equal to or even stronger than
those reported previously for symbiotic fungal
communities. In our experiment, the logs from the
11 species were placed close to one another before
being allowed to decompose for 3 years, which
means that potential wood-inhabiting fungi from the
surrounding environment had equal chance of
reaching any of the logs and that cross colonization
between logs was possible. Our finding of high
specificity patterns despite this close arrangement of
the logs led us to question the mechanisms behind
this strong tree species preference of wood-
inhabiting fungi. One might argue that, as we
examined an early decomposition stage of the logs
all of which originated from the same region, the
detected wood-inhabiting fungi could correspond to
endophytes and plant pathogens already present in
the logs when they were cut. However, this is
unlikely as some recent studies on the early stages
of wood decay have shown that 470% of fungal
endophytes in wood disappear after 140 days and
the initial wood-inhabiting fungal community com-
position from freshly cut wood was completely
different after 1 year of exposure (van der Wal
et al., 2016; Song et al., 2017). Nevertheless, there are
few studies indicating that latent endophytes and
plant pathogens can survive in wood for longer time
(Chapela and Boddy, 1988; Hiscox et al., 2015;
Purahong et al., 2017), thus we checked all detected
wood-inhabiting fungal OTUs. We found that, after 3
years of decomposition, o10% of the total wood-
inhabiting fungal community could have originated
from surviving initial endophytes and plant pathogens
(see Supplementary Table S3, Supplementary Infor-
mation). Removal of all these potential endophytes
and plant pathogens from the data analyzed did not
change our results relating to tree species preferences
of wood-inhabiting fungi (Supplementary Figure S2,
Supplementary Information).

The three important factors (traits of deadwood,
the forest tree community composition and the

surrounding environmental conditions) that are
known to determine the tree species preference of
wood-inhabiting fungi in tropical forests (Ferrer
and Gilbert, 2003) could not explain our results
completely. Strong tree species preferences for
Fagus sylvatica and Quercus spp. can be explained
based on the tree species abundances (May, 1991).
However, for other rare broadleaf species,
strong tree species preferences are unusual and
difficult to understand. Wood-inhabiting fungi in
temperate forests tend to be specific to tree species
even when the trees are rare. If this is true,
wood-inhabiting fungi should be prone to extinc-
tion as a result of monoculture forests. In addition,
the wood traits described as shaping
wood-inhabiting fungal communities (that is, wood
types, wood structure, C: N ratio) failed to be
predictors in our study, as we found that tree
species with similar wood traits harbor different
wood-inhabiting fungal communities (Seibold
et al., 2015). In addition, our design of placing logs
of all tree species close to each other but in random
order across sites in three distinct regions enabled
us to minimize the effects of surrounding environ-
mental conditions in shaping wood-inhabiting
fungal communities. We hypothesize that the tree
species preferences of wood-inhabiting fungi may
arise from (i) coevolution between tree species and
wood-inhabiting fungi, as already envisaged for
symbiotic fungi (Brundrett, 2002) and (ii) the intra-
and inter-kingdom relationships among fungal,
bacterial and invertebrate communities in dead-
wood (Müller et al., 2015; Hoppe et al., 2015; Song
et al., 2017).

In conclusion, for the first time we investigated
tree species preferences of wood-inhabiting fungi
and quantified their diversity at different spatial
scales (α-, β- and γ-diversity) using the next-
generation sequencing approach. We were able to
provide evidence of tree species preference exhib-
ited by wood-inhabiting fungi in temperate forests
in contrast to the widely accepted absence of tree
species specificity. In deadwood, as well as other
plant-derived substrates, the majority of microbes
are unseen and much more diverse than those
directly observable as fruiting bodies or revealed by
isolation and culture techniques (Kubartová et al.,
2012; Hoppe et al., 2016). High-resolution culture-
independent molecular approaches (next-genera-
tion sequencing) should be applied to test and
validate accepted knowledge and improve our
understanding of the diversity and distribution
patterns of microbial communities across wide
ranges of habitats. Furthermore, such molecular
approaches should be urgently incorporated and
used to inform management and conservation
strategies for microorganisms. Further studies on
the wood traits, co-evolution of wood-inhabiting
fungi and their tree species and the intra- and inter-
kingdom relationships between fungi, bacteria and
invertebrates in deadwood are needed for the
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mechanistic and functional understanding of tree
species preferences of wood-inhabiting fungi in
temperate forests.
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