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ABSTRACT Crown-of-thorns starfish, Acanthaster planci (COTS), are common in coral reefs of Indo-Pacific
Ocean. Since they are highly fecund predators of corals, periodic outbreaks of COTS cause substantial loss of
healthy coral reefs. Using complete mitochondrial DNA sequences, we here examined how COTS outbreaks
in the Ryukyu Archipelago, Japan are reflected by the profile of their population genetics. Population
genetics of the blue starfish, Linckia laevigata, which lives in the Ryukyu Archipelago, but not break out and
the northern Pacific sea star, Asterias amurensis, which lives in colder seawater around the main Islands of
Japan, were also examined as controls. Our results showed that As. amurensis has at least two local
populations that diverged approximately 4.7 million years ago (MYA), and no genetic exchanges have
occurred between the populations since then. Linckia laevigata shows two major populations in the Ryukyu
Archipelago that likely diverged ~6.8 MYA. The two populations, each comprised of individuals collected
from coast of the Okinawa Island and those from the Ishigaki Island, suggest the presence of two cryptic
species in the Ryukyu Archipelago. On the other hand, population genetics of COTS showed a profile quite
different from those of Asterias and Linckia. At least five lineages of COTS have arisen since their divergence
~0.7 MYA, and each of the lineages is present at the Okinawa Island, Miyako Island, and Ishigaki Island.
These results suggest that COTS have experienced repeated genetic bottlenecks that may be associated
with or caused by repeated outbreaks.
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We are interested in genic, genetic, and genomic changes that underly
outbreaks of crown-of-thorns starfish (COTS), Acanthaster planci,
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especially in the Ryukyu Archipelago, southwestern and subtropical
islands of Japan. COTS are common in coral reefs throughout the
Indo-Pacific Ocean and are highly fecund predators of reef-building
corals (Birkeland and Lucas 1990; Fabricius 2013). COTS periodically
break out, which causes substantial loss of coral cover, diminishing
the integrity and resilience of reef ecosystems (De’ath et al. 2012;
Pratchett et al. 2014; Uthicke et al. 2015). In the Great Barrier Reef
(GBR), Australia, one-third of coral-reef damage is attributed to
COTS predation (De’ath et al. 2012). The Ryukyu Archipelago
comprises of three main islands, from south to north: Ishigaki Island,
Miyako Island, and Okinawa Island. Although the strong Kuroshio
Current runs northward along the archipelago, local surface currents
in Okinawa Prefecture appear more complex (the Japan Meteoro-
logical Agency: http://www.jma.go.jp/jma/indexe.html), presumably
affected by winds and other factors. In the Ryukyu Archipelago, the
first COTS outbreak was recorded in the late 1950s near Ishigaki
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Island and then expanded northeastward to Okinawa Island, followed
by large, periodic outbreaks (Yamaguchi 1986; Nakamura et al. 2014).
For example, during the 1980s, more than 1.5 million COTS were
removed by divers, in a very painful and costly effort to maintain
healthy coral reefs. Although COTS are presently decreasing in
number in the Ryukyu Archipelago, severe local outbreaks have been
reported in recent years, and others are anticipated in the future (Dr.
Ken Okaji, personal communication).

Why and how do such periodic outbreaks of COTS occur? Adult
COTS are large, reaching ~30 cm in diameter, and they spawn
hundreds of thousands of comparatively small eggs. It is thought that
anthropogenic environmental changes, such as pollution, increased
temperatures, and especially eutrophication of seawater, increase
survival of COTS larvae and juveniles, promoting outbreaks
(Pratchett et al. 2017). However, many questions remain unanswered
regarding reproductive, developmental, and ecological mechanisms
of COTS outbreaks. To address these questions, several population
genetic studies have been performed in various regions of Indo-
Pacific Ocean (Nishida and Lucas 1988; Yasuda et al. 2009). For
example, Vogler et al. (2012) identified the geographic distribution of
two COTS lineages in the Indian Ocean based on partial mitochon-
drial gene sequences. By using mitochondrial DNA and microsatellite
loci, Yasuda et al. (2015) reported genetically homogenized pattern of
COTS during an outbreak from 2006-2009 in French Polynesia.
Between ‘reef-scale’ populations in the central Pacific Ocean, al-
though Timmers et al. (2012) observed genetic differentiation of
mitochondrial control region, they also found vestiges of recent gene
flow or the ancestral polymorphisms/gene flow. In GBR, a micro-
satellite survey by Harrison et al. (2017) suggested high genetic
homogeneity in populations from four different locations. These
researches suggest limited dispersal of COTS within smaller geo-
graphic areas. On the other hand, using microsatellites, Tusso et al.
(2016) documented the lack of genetic differentiation between Guam
and extremely distant populations in the Pacific Ocean. The potential
long-distance dispersal of COTS in the Pacific Ocean indicates that
COTS outbreaks can be caused by recent colonization from different
Pacific populations.

Our previous study sequenced the genomes of two wild-caught
COTS from locations separated by over 5,000 km, one from the GBR
and the other from the Ryukyu Archipelago (Hall et al. 2017). The
~384-Mb draft assembly was estimated to contain ~25,400 protein-
coding genes. Interestingly, heterozygosity of the genomes was un-
expectedly low, 0.88% and 0.92% for the GBR and the Ryukyu
Archipelago, respectively. In addition, reciprocal BLAST analysis
of scaffolds longer than 10 kb showed 98.8% nucleotide identity
between the GBR and the Ryukyu Archipelago genomes, evidence of
the great similarity of their nuclear DNA sequences. This great
nuclear DNA sequence similarity in marine invertebrates from such
widely separated locations is extremely unusual.

In this study, we examined population genomics of COTS in the
Ryukyu Archipelago from a different perspective than those of pre-
vious studies. First, we employed a technical improvement. In
general, population genetic studies of marine invertebrates have been
carried out by comparing sequences derived from microsatellites or
sequences of a few genes, including the mitochondrial cytochrome C
oxidase subunit 1 gene (COI). Given the sequence similarity of the
two COTS mentioned above, sequence comparisons of single genes or
a limited number thereof, might not yield useful results. Therefore,
the present study analyzed complete mitochondrial DNA sequences.
Second, we examined two other species, which were used as controls.
For species boundaries of marine invertebrates, molecular data have
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revealed enigmatic instances (Avise 2000): (1) a widespread, pheno-
typically variable “species” is actually several sympatric or parapatric
populations of sibling taxa, or (2) taxonomically accepted species are
genetically indistinguishable from each other. Analyses using only
COTS can offer limited information about the evolutionary history
that underlies recent outbreaks. So, we thought employment of other
sea star species for this purpose. The class Asteroidea is one of the
most diverse groups in the phylum Echinodermata, including nearly
1,900 extant species (Mah and Blake 2012). We also examined the
blue starfish, Linckia laevigata, which inhabits the same coral reefs as
COTS in the Ryukyu Archipelago, but L. laevigata never exhibits
break out, and the northern Pacific sea star, Asterias amurensis, which
is common in the colder waters of the Japanese main islands,
occurring in environmental conditions very different from coral reefs.

MATERIALS AND METHODS

Biological materials

Three species of starfish, Asterias amurensis, Linckia laevigata, and
Acanthaster planci were examined in this study. Collection localities
and sample numbers are summarized in Table 1.

Asterias amurensis

Twenty-five adult Asterias amurensis were collected from three
locations of the main island of Japan (Table 1); 10 specimens from
Mutsu Bay, near the Asamushi Research Center for Marine Biology of
Tohoku University, Aomori in fall of 2017, five from Onagawa Bay
near Onagawa Field Center of Tohoku University, Miyagi in winter of
2018, and 10 from the Seto Inland Sea, near the Ushimado Marine
Institute of Okayama University, Okayama in winter of 2017.

Linckia laevigata

Twenty-five adult Linckia laevigata were collected in the summer of
2018 in the South China Sea, in the Ryukyu Archipelago (Table 1).
These included 10 from Onna, Okinawa Island and 15 from Ishigaki
Island.

Acanthaster planci

Twenty-six adult Acanthaster planci were collected in the summer of
2017 in the South China Sea, from three locations (Table 1). Twelve
were collected at Onna, Okinawa Island, six from Miyako Island, and
eight from Iriomote Island.

DNA sequencing and assembly of mitochondrial

genomes

Feet of adults were dissected with scissors and fixed in 80% ethanol.
Specimens were kept at 4° until use for DNA sequencing. Genomic
DNA was extracted from a total of 76 specimens using the standard
phenol-chloroform method with 100 mg/L RNaseA treatment. The
quantity of DNA was determined by NanoDrop (Thermo Scientific
Inc., Madison, USA), and the quality of high molecular-weight DNA
was checked using agarose gel electrophoresis.

In paired-end library preparations for sequencing, genomic DNA
was fragmented with Focused-ultrasonicator M220 (Covaris Inc.,
Massachusetts, USA). Paired-end libraries (average insert size:
540 bp) were prepared using Illumina TruSeq DNA LT Sample Prep
Kits (Illumina Inc., San Diego, USA), following the manufacturer’s
protocols. Sequencing was performed using the Illumina HiSeq
2500 sequencer. Approximately 30X coverage of nuclear genome
DNA sequences were obtained. After removing low-quality reads,
under default parameters, paired-end reads were assembled using GS
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Table 1 Three starfish used for this population genomics study

Species name Location Number Approximate latitude Year
Asterias amurensis Ushimado 10 34°60" N, 134°14' E 2017
Onagawa 5 38°44' N, 141°46' E 2018

Asamushi 10 40°89" N, 140°86' E 2017

Linckia laevigata Okinawa 10 26°49' N, 127°83' E 2018
Ishigaki 15 24°20" N, 124°10" E 2018

Acanthaster planci Okinawa 12 26°49" N, 127°83' E 2017
Miyako 6 24°84' N, 125°31" E 2017

Iriomote 8 24°33"' N, 123°73' E 2017

De novo Assembler version 2.3 (Newbler, Roche) and NOVOPlasty
2.6.3 (Dierckxsens et al. 2016) with published A. planci sequence
(Hall et al. 2017) as the seed input. Usually, the largest scaffolds
contained mitochondrial DNA sequences.

Alignment

Whole mitochondrial genome sequences were aligned using MAFFT
(Katoh et al. 2005). Multiple sequence alignments were trimmed by
removing poorly aligned regions using TRIMAL 1.2 (Capella-Gutier-
rez et al. 2009) with the option “gappyout.”

Divergence time estimation

To determine the approximate timing of divergence events, a time
calibrated tree was estimated using RelTime (Tamura et al. 2012), as
implemented in MEGA X (Kumar et al. 2018). To estimate di-
vergence times, a neighbor-joining tree (Saitou and Nei 1987) was
estimated using a dataset comprising all 76 specimens of the three
species, using the GTR model with gamma-distributed rate variations
among sites (Yang 1994a; Yang 1994b). In order to bisect possible
long branches, data of sister species were added for focal species by
using retrieved sequences from NCBI: Aphelasterias japonica for
Asterias amurensis, Luidia quinaria and Patiria pectinifera for Linckia
laevigata, and Acanthaster brevispinus for Ac. planci (Table 2). Ophia-
cantha linea and Gorgonocephalus chilensis (Ophiuroidea) were used
for rooting (Table 2). The previously estimated divergence time be-
tween Luidia (Luidiidae) and Patiria (Asterinidae), ca. 185 MYA
(O’Hara et al. 2014), was employed as a calibration point. All positions
containing gaps and missing data were eliminated. Mitochondrial
DNA sequence data used for analyses are summarized in Table 2.

Phylogenetic analysis

To examine population structures within each species, maximum
likelihood (ML) trees were created using RAXML 8.2.6 (Stamatakis
2014). Trees were estimated with the “-f a” option, which invokes a
rapid bootstrap analysis with 100 replicates and searches for the best-
scoring ML tree, using the GTRCAT model.

Principal component analysis (PCA)

We also analyzed population structures using model-free approaches.
Based on mitochondrial genome sequences, principal component anal-
ysis (PCA) was performed on all individuals, using PLINK 1.9 (Chang
et al. 2015). Pairwise genetic distances among localities were estimated
with Weir and Cockerham’s Fgr (Weir and Cockerham 1984) and Nei’s
genetic distance (Nei 1972) using StAMPP (Pembleton et al. 2013).

Data availability

Figure S1 contains alignment of the complete mitochondrial DNA
sequences of Acanthaster planci (NC_007788.1 and specimen’s name,
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M2), Linckia laevigata (specimen’s name, Ishigaki-11), and Asterias
amurensis (specimen’s name, A1). All the sequence data are accessible
under https://www.ncbi.nlm.nih.gov/bioproject/PRJDB9380. Supple-
mental material available at figshare: https://doi.org/10.25387/
g3.12386060.

RESULTS AND DISCUSSION

Mitochondrial genome sequences of starfish

Matsubara et al. (2005) determined the complete mitochondria DNA
sequence of an individual Asterias amurensis collected from the coast
near Miyako City, Iwate using a primer-based long PCR method

Table 2 Classification and data source of species analyzed

Classification Data source

Asterozoa
Ophiuroidea
Ophiuridea
Euryalida
Gorgonocephalidae
Gorgonocephalus chilensis
(Basket star)
Ophiurida
Ophiacanthidae
Ophiacantha linea
(Brittle star)
Asteroidea
Forcipulatacea
Forcipulatida
Asteriidae
Aphelasterias japonica
Asterias amurensis
(Northern Pacific sea star)
Valvatacea
Paxillosida
Luidiidae
Luidia quinaria
(Spiny sand sea star)
Valvatida
Asterinidae
Patiria pectinifera
(Blue bat star)
Ophidiasteridae
Linckia laevigata
(Blue starfish)
Acanthasteridae
Acanthaster brevispinus
(Short-spined crown-of-thorns starfish)
Acanthaster planci
(Crown-of-thorns starfish)

NC_040147.1

KC990833.1

NC_025766.1
This study

NC_006664.1

NC_001627.1

This study

NC_007789.1

This study
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Figure 1 Complete mitochondrial genomes for (a) Asterias amurensis, (b) Linckia laevigata, and (c) Acanthaster planci, determined by whole-
genome shotgun sequencing. The mitochondrial genome of As. amurensis is identical to that determined using a primer-based, long PCR method
(Matsubara et al. 2005). The L. laevigata mitochondrial genome was sequenced in this study. The Ac. planci genome, which was determined using a
primer-based, long PCR method (Yasuda et al. 2010), was improved by whole-genome shotgun sequencing in this study. Genome lengths and the
order of genes are shown. Names of sequenced specimens are shown. Schematic genome structures were drawn by using MitoAnnotator (http://

mitofish.aori.u-tokyo.ac.jp/annotation/input.html).

(accession #AB183559.1). It was a circular genome composed of
16,427 bp. In this study, we re-sequenced it using the whole-genome
shot-gun method, with a specimen collected from Asamushi (Figure
1a). The sequences fall within the range of 16,419 to 16,421 bp and are
identical to that reported by Matsubara et al. (2005) with respect to
gene order and transcription direction. That is, the genome consists
of a gene set of cytochrome oxidase subunits I, IT and III (COI, COII
and COIII), cytochrome b (Cyt b), NADH dehydrogenase subunits
1-6 and 4L (NDI-6 and 4L), ATPase subunits 6 and 8 (ATPase6 and 8),
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two rRNAs, and 22 tRNAs (Figure 1a; the entire DNA sequence is
shown in Supplementary Fig. S1). The complete mitochondrial
DNA sequence of Linckia laevigata was first determined in this
study, using a specimen collected from Ishigaki (Figure 1b). Genomes
of 16,211-16,365 bp contain a set of genes with identical gene
order and transcription direction as in As. amurensis (Figure 1b;
Fig. S1).

The complete mitochondrial DNA sequence of Acanthaster planci
determined by the long PCR method was reported by Yasuda et al.

-=.G3:Genes| Genomes | Genetics
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(2006) (accession #NC_007788.1). However, the sequence we de-
termined here, using the whole-genome shotgun method, for a
specimen collected from Miyako, was not identical to that of
Yasuda et al. (2006) (Figure 1c; Fig. S1). Even in 1% or 274 codon
positions, nucleotide differences were observed between the two
studies (see Fig. S1). We first thought that these discrepancies might
be due to individual differences, but comprehensive comparisons of
the previous and present A. planci mitochondrial DNA sequences
with those of Asterias amurensis, and Linckia laevigata suggested
some reading errors in the previous study, probably due to long PCR
amplification (see Fig. S1). We therefore used the present sequences
(Figure 1c) for further analyses.

Estimated divergence times of three starfish

To compare evolutionary histories among the three starfish, we
estimated divergence times of nodes, with special reference to their
basal separations. Data sources for this analysis are shown in Table 2.
The genus Luidia belongs to the order Paxillosida and the genera
Linckia and Acanthaster to the order Valvatida. O’Hara et al. (2014)
estimated that the divergence of the two orders occurred approxi-
mately 185 million years ago (MYA). Using this divergence date and
by comparing complete mitochondrial DNA sequences, we estimated
the divergence times of the three starfish. First, within the order
Forcipulatida, comparison of the mitochondrial genome sequences of
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Asterias amurensis and Aphelasterias japonica suggested that these
taxa diverged approximately 89 MYA. From the ancestor of As.
amurensis, the population we examined in this study diverged 4.7
MYA, then one lineage diverged 2.2 MYA and the other 0.86 MYA
(Figure 2; see following sections).

The Superorder Valvatacea is divided into the Orders Paxillosida
and Valvatida, the latter of which includes Linckia (Family Ophi-
diasteridae) and Acanthaster (Family Acanthasteridae). Analyses of
data, including those of Luidia quinaria, Patiria pectinifera and
Acanthaster brevispinus, showed that the divergence time of a com-
mon ancestor of the two populations of Linckia laevigata was
estimated to be 6.8 MYA. Since then, one population diverged 3.4
MYA and the other 2.6 MYA (Figure 2; see following sections). In
contrast, the divergence date of Acanthaster planci ancestor of the
populations was more recent, 0.7 MYA (Figure 2; see following
sections).

Population genetics of the three starfish

Asterias amurensis: Asterias amurensis is common in cold-water off
the coast of Japan (Figure 3a). We collected 10, 5, and 10 specimens
near Asamushi, Onagawa, and Ushimado, respectively (Figure 3b),
and determined their complete mitochondrial DNA sequences. The
entire mitochondrial genome of As. amurensis was 16,419-16,421 bp
in length. After removing a poorly aligned 42-bp region from a
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16,458-bp alignment, we compared sequences of 16,416 nucleotides
from 26 individuals, including that reported by Matsubara et al.
(2005). Among them, 728 nucleotide sites were identified as variable
sites and were able to use for ML tree analysis. Two individuals, Ul
and U2, collected at Ushimado showed completely identical se-
quences, and therefore U2 was included in further phylogenetic
analysis (Figure 3c).

This study showed the divergence of two local populations, one is
from Ushimado (U: Seto Inland Sea) and the other from Tohoku
(northeastern Japan) (A, Asamushi and On, Onagawa) including the
specimen from Miyako, Iwate of Matsubara et al (2005). The
ancestor of the two populations was estimated to have diverged
approximately 4.7 MYA (Figure 2; Figure 3¢c). The Tohoku popula-
tion was established 2.2 MYA, while the Ushimado population
became independent more recently, 0.86 MYA. Nine individuals
from Ushimado formed a comparatively cohesive group, suggesting
no genetic introgression from other areas, partially because of the
isolation of the Seto Inland Sea. It is likely that the As. amurensis
ancestor, which lived in the cooler seas of northern Japan, expanded
its niche into the Seto Inland Sea around 0.9 MYA and then remained
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there. Since then, the Ushimado population has become independent,
without genetic influx from other areas. PCA supported results of the
tree analysis, namely the existence of a distinctive Ushimado pop-
ulation and a genetically more diverse Tohoku population (Figure 3d).

On the other hand, the Tohoku population appeared as a more
diverse genetic assemblage from Asamushi, Miyako, and Onagawa.
Six individuals of Asamushi formed a group, suggesting the presence
of a population of As. amurensis restricted to Mutsu Bay. On the other
hand, several groups comprised individuals from Asamushi and
Onagawa, and Miyako as well (Figure 3c), suggesting frequent gene
flow among these areas. A short branch including individuals from
different coastal regions, e.g., A2 and On4 or A8/A7/On3 suggests
recent genetic exchange between Asamushi and Onagawa. Ocean
currents in Tohoku are complex (Unoki and Kubota 1996), including
a strong flow from Onagawa northward, a flow from Hokkaido
southward, and a flow from the Japan Sea eastward through Mutsu
Bay to the Pacific Ocean. Such complex sea flows might result in
distinct populations in different localities.

Overall, Asterias amurensis population genomics appears similar
to those reported for other marine animals (Hirase and Ikeda 2014). It

-=.G3:Genes| Genomes | Genetics
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is highly likely that after divergence of the Ushimado and Tohoku
populations, the two developed unique genomic structure in the
absence of gene flow between them.

Linckia laevigata: Linckia laevigata (Figure 4a), the blue starfish, is
common in the Ryukyu Archipelago, comprising from south to
north, Ishigaki Island, Miyako Island, and Okinawa Island (Figure
4b). Ishigaki is approximately 400 km southwest of Okinawa, and the
powerful Kuroshio Current moves northward along the three Islands.
As previously mentioned, L. laevigata shares its coral reef habitat with
COTS. Linckia laevigata also eats corals, but there have been no
records of any outbreaks in this area in the last 70 years.

We determined the complete mitochondrial DNA sequences
(16,171-17,055 bp) of 10 and 15 specimens collected form Okinawa
and Ishigaki Islands, respectively. With the alignment including 1,392
variable sites, we analyzed population genomics of L. laevigata. The
results showed that these 25 individuals were divided into two major
groups, L1 and L2/L3, the former probably diverged ~3.4 MYA and
the latter 2.6 MYA (Figure 4c). L2/L3 is one of the two major groups,
composed of two smaller subgroups, L2 and L3. PCA supported the
results of the tree analysis with regard to populations L1 and L2/L3
(Figure 4d).
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Interestingly, both populations constituted mixtures of individu-
als collected from Ishigaki and Okinawa. L1 was represented by eight
Okinawan (O) individuals and four Ishigaki (I) individuals. L2
included two specimens from Okinawa and six from Ishigaki, while
L3 consisted of four Ishigaki (Figure 4c). This result raises several
issues. First, 6.8 MY have elapsed since the two populations com-
prising individuals from different islands (L1 and L2/L3) diverged. In
other words, gene flow or genetic exchange appears not to have
occurred to an appreciable degree for more than 6 MY. Crawford
and Crawford (2007) reported the presence of two cryptic species of
another Linckia species, L. multifora, in the Cook Islands, and Williams
(2000) suggested the presence of possible cryptic species within L.
laevigata specimens obtained from widely separated locations of the
Pacific Ocean. Our results strongly suggest the presence of two cryptic
populations of L. laevigata in the Ryukyu Archipelago, although no
adult morphological differences have been reported to date.

Second, population genomic structure of L. laevigata may provide
further insight into the role of surface currents in establishment of
marine invertebrate populations. Significant gene flow among indi-
viduals from Ishigaki and Okinawa is evident in both the L1 and L2
populations. In addition, a comparatively short branch length be-
tween O5 and I9 suggests recent genomic exchange within the L1
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population. It is generally believed that the northbound Kuroshio
Current strongly controls the movement of marine invertebrate
larvae from Ishigaki to Okinawa. If this is the case, population
genomics studies may eventually reveal a pattern of two populations,
one composed only of individuals from Ishigaki and the other of
specimens from both Ishigaki and Okinawa. L2/L3 likely illustrates
this situation, in which L3 is composed of only Ishigaki individuals
while L2 is a mixture of both islands in the ML tree analysis.

On the other hand, L1 is composed of a mixture of Ishigaki and
Okinawa individuals. This result is rather difficult to explain by one-
directional settlement of individuals from Ishigaki to Okinawa.
Rather, bidirectional exchange between the two islands may provide
more a reasonable explanation for the results. If so, surface ocean
currents in the Ryukyu Archipelago are more complex than pre-
viously assumed, including currents that allow larval movement from
Okinawa to Ishigaki. A similar example has been shown in a coral
species (Zayasu et al. 2016). Marine currents in the Ryukyu Archi-
pelago should be explored in the future in relation to marine in-
vertebrate larval dispersal.

Acanthaster planci: We attempted to develop complete mitochon-
drial DNA sequences for 12, 6, and 8 specimens from Okinawa,
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Miyako, and Iriomote Islands, respectively, but we succeeded for only
9, 5, and 7 individuals (Figure 5a, b). Therefore, we performed
population genomics analyses on 21 specimens using the alignment
including 268 variable sites of 16,230-16,282-bp sequences. This
resulted in a profile quite different from those of As. amurensis
and L. laevigata (Figure 5¢). First, the divergence date of A. planci was
estimated to be 0.7 MYA (Figure 2), a much more recent event
compared to the separation of As. amurensis and L. laevigata. In
addition, the analysis suggested the divergence of five populations,
each comprising a small number (2~6) of individuals (Figure 5c).
Branch lengths of the five groups from ancestral divergence points
were also very short. PCA also supported the existence of five small
populations (Figure 5d). This suggests a genetic bottleneck in the
history of A. planci in the Ryukyu Archipelago, which may reflect
periodic COTS outbreaks in this area.

As in the case of L. laevigata, each of the five groups comprised
individuals from all three islands (Figure 5c, d). For example, G2 was
composed of three individuals from Okinawa (O3, 4 and 8), two from
Miyako (M2 and 3), and two from Iriomote (Ir1 and 3). Even though
Okinawa Island is separated from Iriomote Island by more than
450 km, this indicates significant gene flow among the three Islands,
i.e., frequent larval dispersal from all three islands. If this is correct, an
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outbreak at Ishigaki and Iriomote could trigger a similar event in
Okinawa within several years, or vice versa. Such frequent larval
exchange might partially explain periodic local outbreaks in the
Ryukyu Archipelago since the 1950s.

Previous studies have demonstrated discrete populations of COTS
in various locations in the Indo-Pacific Ocean (Nishida and Lucas
1988; Yasuda et al. 2009; Timmers et al. 2012; Vogler et al. 2013;
Yasuda et al. 2015; Tusso et al. 2016). The present study offers
insights into COTS population genetics in the Ryukyu Archipelago.
That is, COTS have likely experienced recent genetic bottlenecks that
may be associated with their periodic outbreaks. Ocean currents in
the Ryukyu Archipelago appear more complicated than previously
assumed, consisting not just of the southwest-to-northeast Kuroshio
Current, but comprising multi-directional currents, including flows
in the opposite direction. This might play a role in multidirectional
gene flow in this area. Influence of these ocean currents is not
investigated for marine organisms except for a few studies (Ogoh
and Ohmiya 2005; Shinzato et al. 2015; Soliman et al. 2016; Zayasu
et al. 2016). Moreover, population genetic structures may reflect
differences in the duration of the pelagic larval stage as shown in
Yorifuji et al. (2012). Thus, further studies will be required to better
understand ecological and reproductive mechanisms of COTS out-
breaks in this area.
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