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ABSTRACT
The two b-carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic bacterium Brucella suis, BsuCA1 and
BsuCA2, were investigated for their inhibition profile with a series of pyridine-3-sulphonamide derivatives
incorporating 4-hetaryl moieties. BsuCA1 was effectively inhibited by these sulphonamides with inhibition
constants ranging between 34 and 624nM. BsuCA2 was less sensitive to these inhibitors, with KIs in the
range of 62nM -> 10mM. The nature of the 4-substituent present on the pyridine ring was the main factor
influencing the inhibitory profile against both isoforms, with 4-halogenophenylpiperazin-1-yl and 3,4,5-tri-
substituted-pyrazol-1-yl derivatives showing the most effective inhibition. Some of these sulphonamides
were most effective bacterial CA than human (h) CA I and II inhibitors, making them selective for the pro-
karyotic enzymes. Investigation of bacterial CA inhibitors may be relevant for finding antibiotics with a
new mechanism of action compared to the clinically used agents for which substantial drug resistance
emerged.
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1. Introduction

Bacteria encode for at least three genetic families of the metal-
loenzyme carbonic anhydrase (CA, EC 4.2.1.1), the a-, b- and
c-CAs1–3. By catalysing the interconversion between carbon diox-
ide and bicarbonate, with formation or consumption of a hydro-
nium ion, these widespread enzymes are involved in a multitude
of physiologic processes connected with the pH regulation, bio-
synthetic processes in which CO2/bicarbonate are involved, photo-
synthesis, acclimation in various environments were the bacteria
thrive, colonisation of the host and more1–5. Since CA inhibition
from vertebrates, more exactly humans, in which 15 different a-CA
isoforms were described6, has pharmacologic applications, the
idea to exploit bacterial/microbial CA inhibition for obtaining anti-
infectives with a new mechanism of action started to be explored
in recent years1–4,7–11. Indeed, many classes of inhibitors for all
three types of bacterial CAs were discovered to date, among
which the sulphonamides represent the most investigated chemo-
type12–16. CA inhibitors (CAIs) targeting human enzymes (hCAs)
are in clinical use for decades for the management of various dis-
eases among which glaucoma, obesity, epilepsy, intracranial hyper-
tension and as diuretics13–16. More recently they started to be
used for the treatment of hypoxic tumours13,14, being also investi-
gated as possible drugs for neuropathic pain17, cerebral ischemia18

and arthritis19.
Brucella suis is one of the bacteria responsible of brucellosis, a

disease affecting an increasing number of people and which
showed variable degrees of resistance to the clinically used antibi-
otics [1c,9–11]. Two b-class CAs were discovered in the genome of
this pathogen, BsuCA1 and BsuCA29,10, which have also been

investigated for their inhibition with various compounds, such as
sulphonamides, sulphamates, anions, phenols, etc.9–12.
Furthermore, the growth of the bacterium was also impaired (in
cell cultures) by some of these inhibitors, which constitutes the
proof-of-concept that BsuCA1/2 inhibition may have a significant
antibacterial effect9. Continuing our interest in the discovery of
CAIs which effectively target bacterial CAs, we report here an
inhibition study of BsuCA1/2 with a class of pyridine-3-sulphona-
mide derivatives incorporating 4-heterocyclic/heteroaryl moieties,
previously designed by our groups for targeting the tumor-associ-
ated human isoforms hCA IX and XII12. Some of the investigated
sulphonamides from this article are among the most effective and
isoform-selective BsuCA1 inhibitors ever reported.

2. Materials and methods

2.1. Chemistry

Sulfonamides 1–18 used in this study were reported earlier by our
groups12 and were used without further purification.
Acetazolamide (AAZ), buffers and other inorganic reagents were
the highest purity available reagents from Sigma-Aldrich (Milan,
Italy).

2.2. Cloning, expression and purification of BsuCA1and BsuCA2

cDNA encoding BsuCA1 and BsuCA2 (a kind gift of Prof J.Y.
Winum from University of Montpellier, France) were PCR engi-
neered to be cloned in pETM13 (a kind gift from EMBL,
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Heidelberg) expression vector. The resulting plasmids, pETM13-
bsuca1 and pETM13-bsuca2, were verified by appropriate digestion
with restriction enzymes and sequencing. BsCA1 and BsCA2 were
expressed in LB culture medium by induction with 1mM IPTG in
Escherichia coli BL21 (DE3) and BL21 (DE3) plusS cells, respectively.
After 16hs incubation at 22 �C, cells were harvested by centrifuga-
tion, lysed and affinity purified onto a 1ml His Trap FF column
and subsequently on a Superdex 75 10/300 GL column (GE
Healthcare). Purity level of BsCA1 and BsCA2 was assessed by LC-
MS and SDS-PAGE.

2.3. Carbonic anhydrase inhibition

An Applied Photophysics stopped-flow instrument has been used
for assaying the CA catalyzed CO2 hydration activity20. Phenol red
(at a concentration of 0.2mM) has been used as indicator, working
at the absorbance maximum of 557 nm, with 20mM TRIS (pH 8.3)
as buffer and 20mM NaClO4 (for maintaining constant the ionic
strength), following the initial rates of the CA-catalyzed CO2 hydra-
tion reaction for a period of 10–100 s. The CO2 concentrations
ranged from 1.7 to 17mM for the determination of the kinetic
parameters (by Lineweaver–Burk plots) and inhibition constants.
For each inhibitor at least six traces of the initial 5–10% of the
reaction have been used for determining the initial velocity. The
uncatalyzed rates were determined in the same manner and sub-
tracted from the total observed rates. Stock solutions of inhibitor
(10mM) were prepared in distilled-deionized water and dilutions
up to 0.1 nM were done thereafter with the assay buffer. Inhibitor
and enzyme solutions were preincubated together for 15min at
room temperature prior to assay, in order to allow for the forma-
tion of the E-I complex. The inhibition constants were obtained by
non-linear least-squares methods using PRISM 6 and the
Cheng–Prusoff equation, as reported earlier21–25, and represent
the mean from at least three different determinations.

3. Results and discussion

Aromatic and heterocyclic sulphonamides were showed earlier by
some of us to act as inhibitors of the two b-CAs from B. suis, with
various degrees of efficacy9,10. Usually, the heterocyclic derivatives,
such as acetazolamide (5-acetamido-1,3,4-thiadiazole-2-sulfona-
mide, AAZ) were among the best bacterial CA inhibitors, but their
efficacy was much better for the human isoforms hCA I and II
(highly abundant proteins found in the blood, GI tract and many
other tissues6,13) which may lead to a series of side effects if such
inhibitors should be used as anti-bacterials. Thus, exploration of
structurally different sulphonamides may lead to the discovery of
compounds with a better inhibitory profile and better selectivity
for the bacterial over the human isoforms. Thus, in the present
study, we investigated a series of pyridine-3-sulfonamide deriva-
tives incorporating 4- heterocyclic/heteroaryl moieties 1–18,
reported earlier by our groups as effective tumor-associated
human isoforms hCA IX and XII inhibitors12.

Inhibition data of hCA I and II (offtargets) as well as BsuCA1/2
with sulfonamides 1–18 and acetazolamide as standard inhibitor
are shown in Tables 1 and 2.

The following structure–activity relationship for the inhibition
of the two bacterial CAs with sulphonamides 1–18 can be drawn
from data of Tables 1 and 2:

i. BsuCA1 was rather sensitive to be inhibited by sulphona-
mides 1–18 investigated here, showing KIs ranging between
34 and 624 nM (Table 1). The nature of the ring appended

in position 4 of the pyridine sulphonamide and the moieties
substituting it were the most important factors influencing
enzyme inhibitory properties of these compounds. Thus, the
derivatives incorporating the five-membered heterocyclic
rings present in 13–18 were generally more effective
than sulfonamides incorporating substituted piperazines/
piperidines 1–12. For the six-membered ring substituted
derivatives, the substitution patterns leading to the most
effective inhibitors were 4-chloro/fluorophenyl (2 and 3);
benzyl (10 and 12) and piperonyl (11), all these compounds
being more effective as BsuCA1 inhibitors compared to the
standard inhibitor acetazolamide. For the second subset,
only the triazole derivative 18 was slightly less effective as

Table 1. Inhibition of human (h) CA isoforms hCA I and II and bacterial (Brucella
suis) enzymes BsuCA1 and BsuCA2 with sulfonamides 1–12, by a stopped-flow
CO2 hydrase assay20. Acetazolamide (AAZ) was used as standard inhibitor.

KI (nM)�

No. R1 hCA Ia hCA IIa BsuCA1b BsuCA2b

1 3320 436 121 860

2 2450 389 61 62

3 1285 354 62 915

4 4335 295 346 822

5 2650 477 118 >10000

6 5400 629 428 >10000

7 5335 1238 156 >10000

8 1340 96.1 624 94

9 1250 115 598 237

10 864 85.3 34 97

11 729 349 36 336

12 1346 215 40 4650

AAZ – 250 12 63 303
�Mean from 3 different assays, errors in the range of ±5–10% of the reported
values (data not shown).

aWork by Sławinski et al.12.
bThis work.
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BsuCA1 inhibitor (KI of 112 nM) whereas all pyrazoles 13–17
had KIs< 100 nM, in the range of 38–96 nM. The substitution
patterns connected with the most effective inhibition were
those present in 13–16 (R1 a methyl group, and R2 being a
H, Me, Bu or ethoxycarbonylethyl moiety). For the first sub-
set the least effective inhibitors (4–9) incorporated diverse
substituents at the 4-phenyl-piperazine moiety, of the type
o-fluoro-phenyl; 3,4-dichlorophenyl; o-methoxyphenyl, 2,5-
dimethylphenyl). It is obvious that small modifications in
the substitution pattern and nature of the moieties present
on the phenyl ring in the 4-arylsubstituted piperazines
strongly influence the biological activity.

ii. BsuCA2 was slightly less sensitive to inhibition with sulphona-
mides 1–18 compared to BsuCA1, but this behaviour was
already reported in previous inhibition studies of these two
enzymes9–11. Thus, 5–7 did not substantially inhibit this
enzyme up to 10 mM concentration of inhibitor within the
assay system. Weak BsuCA2 inhibitors were also sulfonamides
1, 3, 4, 9, 11, 12 and 13–18, with KIs in the range of 237 –
4650 nM (Tables 1 and 2). Thus, for this enzyme, the 5-mem-
bered ring-substituted derivatives 13–18 were only medium
potency – weak inhibitors (in contrast to what observed for
the first isoform, BsuCA1, as mentioned above). The most
effective BsuCA2 inhibitors were 2, 8 and 10, with KIs in the
range 62–97 nM. It may be observed that these three sulfona-
mides are 3–5 times better BsuCA2 inhibitors compared to
acetazolamide, and these are indeed relevant data. As for
BsuCA1, small changes in the scaffold of the inhibitor lead to
drastic differences of activity. For example, introduction of Cl
in the para position of the phenyl moiety of 1 led to an
increase in the inhibitory power of 13.9 times for the sul-
phonamide 2, the best BsuCA2 inhibitor detected so far
(Table 1).

iii. Most of the investigated sulphonamides were weak hCA I
and II inhibitors12 (Table 1) making them of great interest for
more detailed inhibition of growth studies of the pathogen,
ex vivo and possible also in vivo.

4. Conclusions

We have investigated in this article the inhibition of the two b-CAs
present in the pathogenic bacterium Brucella suis, BsuCA1 and
BsuCA2, for their inhibition profile with a series of pyridine-3-sul-
fonamide derivatives incorporating 4-heterocyclic/heteroaryl moi-
eties, originally reported as inhibitors of the tumour-associated
human isoforms hCA IX and XII. BsuCA1 was effectively inhibited by
these sulphonamides with inhibition constants ranging between 34
and 624 nM. BsuCA2 was less sensitive to these inhibitors, with KIs
in the range of 62 nM -> 10 mM. The nature of the 4-substituent
present on the pyridine ring was the main factor influencing the
inhibitory profile against both isoforms, with 4-halogenophenylpi-
perazin-1-yl and 3,4,5-trisubstituted-pyrazol-1-yl derivatives show-
ing the most effective inhibition. Some of these sulphonamides
were most effective bacterial CA than human (h) CA I and II inhibi-
tors, making them selective for the prokaryotic enzymes.
Investigation of bacterial CA inhibitors may be relevant for finding
antibiotics with a new mechanism of action compared to the clinic-
ally used agents for which substantial drug resistance emerged.
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