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ABSTRACT

The introduction of three-dimensional (3D) printing scaffolds has emerged as an effective approach to
achieving satisfactory revascularization for bone tissue engineering (BTE). However, there is a notable
absence of analytical and descriptive investigations concerning the trajectory, essential research di-
rections, current research scenario, pivotal investigative focuses, and forthcoming perspectives. Hence,
the objective of this research is to offer a thorough overview of the advancements achieved in 3D
printing structures for vascularized BTE within the last 10 years. Information extracted from the Web of
Science repository spans from January 1, 2014, to April 1, 2024. Utilizing advanced analytical instruments,
we conducted comprehensive scientometric and visual analyses. The findings underscore the predom-
inant influence of China, representing 59.62 % of the overall publications and playing a pivotal role in
shaping research within this field. Notable productivity was evident at various institutions, including
Shanghai Jiao Tong University, Chinese Academy of Sciences, and Sichuan University. Wang Jinwu and Wu
Chengtie stand out as the most prolific contributors in this domain. The highest number of publications
in this area was contributed by the journal Advanced Healthcare Materials. In this study, osteogenesis
imperfecta, osteosarcoma, fractures, osteonecrosis, and cartilage diseases were identified as the most
significant disorders investigated in this research area. By providing a comprehensive scientometric
assessment, this study benefits both experienced researchers and newcomers alike, offering prompt
access to essential information and fostering the extraction of innovative concepts within this specific

field.
© 2024 The Author(s). Published by Elsevier BV on behalf of The Japanese Society for Regenerative
Medicine. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
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1. Introduction

Bones, as load-bearing tissues with varying mechanical prop-
erties, exhibit diverse geometry and mechanical characteristics
along different axes. The human body contains 206 bones, and the
mechanical properties of each bone vary based on its location and
age [1,2]. Bone tissue possesses inherent regenerative abilities,
facilitating self-repair following fractures under normal circum-
stances [3]. However, complex large segmental bone
defects—exceeding 2 cm in length or 2 to 2.5 times the long bone
diameter—may arise from severe trauma, infection, or tumor
resection, leading to delayed healing and permanent shape and size
alterations [4,5]. With failure rates reaching up to 50 %, bone repair
failures pose significant societal and familial burdens [6,7]. Inade-
quate bone healing may result in tissue ischemia, osteonecrosis,
and nonunion, necessitating stent implantation. The introduction
of scaffold transplantation techniques has revolutionized bone
defect treatment through advancements in bone tissue engineering
(BTE). These scaffolds, made from various materials like autologous
or allogeneic bones, metals, and synthetics, address limitations of
conventional repair materials such as donor scarcity, singular
structure, and limited functionality. For example, autologous bones
may have limited availability, whereas synthetic materials may lack
biological activity. Moreover, due to its high vascularity, bone
regeneration requires a well-established vascular network for
proper development and repair post-injury, highlighting the crit-
ical role of blood vessel formation and maturation [8—11].

In recent years, three-dimensional (3D) printing technology has
rapidly advanced as an appealing alternative approach, extensively
used to produce functional tissue structures with intricate geom-
etries [12—14]. In the field of vascularized BTE, 3D printing tech-
nology presents novel research prospects compared to traditional
methods and offers several advantageous characteristics: (1) the
capability to manufacture intricate 3D shapes with spatially orga-
nized multiple materials; (2) a comprehensive fabrication platform
addressing most essential requirements outlined by bone-healing
mechanisms; (3) streamlined processing simplifying elaborate
procedures involving numerous experimental steps; (4) consistent
reproducibility across all production batches; (5) automation and
cost-effectiveness for large-scale manufacturing; and (6) height-
ened flexibility and adaptability to tailor each fabrication process to
specific patient needs [15—22]. These attributes align closely with
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the requirements of vascularized osteogenesis, reducing compli-
cations from inadequate blood supply [23,24], thus positioning 3D
printing scaffolds for vascularized BTE as a significant research area
[25]. Scholars from developmental biology, tissue engineering,
regenerative medicine, and materials science are increasingly
contributing to advancements in this field.

While many reviews have explored the application of 3D
printing scaffolds for vascularized BTE from various perspectives
[22,26—33], they frequently lack empirical support with objective
visualized data, relying heavily on researchers' subjective in-
terpretations. Consequently, these evaluations display variability
and subjectivity, impeding comprehensive analysis and the estab-
lishment of the current research landscape. To address these limi-
tations, this study utilizes scientometric analysis to visually depict
various aspects of publications, nations/regions, authors, organi-
zations, keywords, references, fields, and journals over the past
decade. The objectives of this comprehensive analysis include
analyzing the current distribution of research output, recognizing
major contributors, identifying hotspots, assessing the current
status, and exploring frontiers, all of which facilitate a deeper un-
derstanding of 3D printing scaffolds for vascularized BTE. Estab-
lishing such a systematic and comprehensive knowledge base not
only assists researchers from diverse fields in navigating the
breadth of the domain but also serves as a valuable reference for
newcomers, guiding them toward promising research trajectories.
To the best of our knowledge, no prior scientometric investigations
have been conducted on this specific subject.

2. Materials & methods
2.1. Data source & retrieval strategy

The Web of Science Core Collection (WoSCC) was chosen as the
primary source for scientometric statistics for several key reasons.
First, BTE is a multidisciplinary field that includes materials science,
medicine, chemistry, pharmacy, and biology. Therefore, it is
essential to use integrated databases to ensure comprehensive
analysis. Second, the WoSCC dataset includes cited references,
which are invaluable for knowledge mapping [34]. This helps
deepen our understanding of the connections within the BTE field.
Third, WoSCC offers citation reports as a validation tool to ensure
the accuracy and credibility of scientometric analysis results.
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Fourth, WoSCC, as a key platform, offers scientometric tools for
general statistics and provides higher accuracy in classifying
document types compared to other databases [35,36]. This pre-
vents issues like data corruption or missing fields, ensuring the
integrity of the analysis. Fifth, the WoSCC database includes the
Science Citation Index Expanded, enabling tracking of scientific
frontier evolution and facilitating comprehensive analysis of pub-
lication trends [35,37—39]. This ensures stringent quality control
for journals and publications. Finally, the journal selection in
WoSCC follows Bradford's and Garfield's Laws [34]. This ensures
that scientometric analyses capture core publications and minimize
potential omissions. Thus, WoSCC is the most frequently used
database in scientometric studies.

For this study, an extensive online search was conducted using
WoSCC to explore original research and reviews on the application
of 3D printing scaffolds for vascularized BTE. The search included
articles published between January 1, 2014, and April 1, 2024, using
a combination of Medical Subject Heading terms and free words for
data collection. The retrieval methodology underwent multiple
revisions, guided by a team of three researchers, with the goal of
improving sensitivity and precision, as extensively described in the
Supplementary Materials.

2.2. Inclusion & exclusion standards

Special attention was given to studies and reviews published in
English, focusing on the application of 3D printing scaffolds for
vascularized BTE. Exclusions comprised dissertations, letters,
comments, editorials, conference abstracts, and duplicate research
published under identical titles across multiple journals. In-depth
discussions regarding the inclusion and exclusion criteria were
conducted among team members and peer groups.

2.3. Scientometric visualization & data analysis

Data from the WoSCC database were collected and imported
into Microsoft Excel (Office 365, Microsoft). Subsequently, analysis
was conducted using VOSviewer 1.6.18 (Leiden University,
Netherlands), Citespace version 6.3. R1 (Chaomei Chen, China),
Pajek version 5.16 (University of Ljubljana, Slovenia), Scimago
Graphica version 1.0.35 (https://www.graphica.app/, USA), and the
chorddiag R package (R Studio, version 4.2.0).

We employed the chorddiag R package in combination with
VOSviewer to create visual representations depicting collaboration
at national or regional levels and graphs analyzing published
works. Co-occurrence analyses encompassing countries/regions,
institutions, authors, journals, research fields, and keywords were
performed utilizing VOSviewer, Scimago Graphica, and Pajek. Data
on countries/regions, institutions, authors, journals, co-citations,
and keywords were visually represented and analyzed using Cite-
space. Additionally, the evolving popularity of keywords over time
was examined via Scimago Graphica.

Data on illnesses was gathered from the Citexs Data Analysis
Platform (https://www.citexs.com). This platform streamlines the
process of creating informative visualizations, facilitating compre-
hensive analysis of the present status, main areas of interest, and
forthcoming trends within this particular research domain.

3. Results & discussion
3.1. Scientific output
The process of retrieving and collecting data is depicted in

Fig. 1A. The progress of research can be gauged by the number of
scientific reports it generates over a specified timeframe [40,41].
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Between 2014 and 2024, a total of 426 relevant scientific reports on
“3D printing scaffolds for vascularized BTE” were compiled. This
compilation consisted of 370 original articles and 56 reviews,
leading to an average yearly publishing rate of 42.6. This highlights
the substantial attention and interest directed towards this field. In
2021, the annual number of pertinent publications surpassed 50,
hitting its peak at 98 by 2023. The diagram depicts a remarkable
increase of over 49-fold since 2014, indicating a substantial surge in
research endeavors in this field and emphasizing its significant
research importance. The exponential equation (y = 4.8683x? -
13.574x + 12.321) effectively represents the yearly trend, with x
denoting the year and y denoting the number of publications,
achieving a high R? value of 0.9915. This illustrates the precision
and thoroughness applied in data analysis, resulting in a well-fitted
curve (Fig. 1B). The graph indicates an anticipated increase in
annual research activities, indicative of an expanding interest in
utilizing 3D printing scaffolds for vascularized BTE. Consequently,
substantial advancements are anticipated in this field in the coming
years.

These findings highlight the importance and relevance of re-
searchers’ work in the field. The growing number of publications
signifies an expanding pool of knowledge and insights available for
researchers to progress their studies. The precision and thorough-
ness displayed in data analysis, as indicated by the well-fitted curve
of the exponential equation, inspire confidence in the accuracy and
reliability of the identified research trends. For industry practi-
tioners, the increasing interest in employing 3D printing scaffolds
for vascularized BTE suggests promising prospects for innovation
and commercialization. The expected increase in research activities
implies a rising market demand for technologies and products
associated with vascularized BTE. With significant progress antic-
ipated in the field in the near future, industry practitioners can take
advantage of emerging trends and developments, potentially
resulting in the development of innovative therapeutic approaches
and medical devices for tissue regeneration and repair. Overall,
these findings emphasize the transformative potential of 3D
printing scaffolds for vascularized BTE and underscore the collab-
orative efforts of researchers and industry stakeholders in
advancing regenerative medicine.

3.2. Countries/regions

Globally, research on utilizing 3D printing scaffolds for vascu-
larized BTE involves 39 countries/regions. Fig. 2A and B depict
national collaboration networks, providing tangible representa-
tions of the importance of each country or region in the field, with a
minimum publication count of one from each. This offers valuable
insights for strategic collaborations and knowledge exchange.
Particularly noteworthy is China's leadership with 254 publica-
tions, constituting 59.62 % of the total research output, under-
scoring its crucial role in advancing knowledge in the utilization of
3D printing scaffolds for vascularized BTE. Subsequently, the USA
and Germany make significant contributions, representing 19.95 %
(85 publications) and 6.57 % (28 publications) of global research on
the utilization of 3D printing scaffolds for vascularized BTE. The
peripheral curve segments in the chord diagram visually represent
countries and regions. The length of each segment corresponds to
the publication volume of the respective country or region. The
levels of collaboration among nations are reflected in their con-
nectivity levels. In terms of global cooperation, China demonstrates
the highest frequency, mainly participating in collaborations with
the USA (link strength = 17) and Germany (link strength = 9)
(Fig. 2B). This information is of immense value to researchers
seeking potential collaborators and industry practitioners aiming to
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Fig. 1. (A) Schematic representation outlining the methodology used for literature search and selection. (B) Temporal trend analysis depicting the evolution of research focused on
the application of 3D printing scaffolds for vascularized bone tissue engineering from 2014 to 2024.
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Fig. 2. (A) Global distribution of research on the application of 3D printing scaffolds for vascularized bone tissue engineering (BTE). Each sphere represents a country, with the
thickness of connecting lines indicating the level of collaboration between nations. The size of each sphere corresponds to the number of publications from that country. (B) Chord
diagrams illustrating international collaborations, where each outer curve represents a country, and the thickness of the lines denotes the strength of collaboration between
countries. (C) Research output on the application of 3D printing scaffolds for vascularized BTE from the top 10 countries (highlighted in red, indicating increased document

production).

stay informed about international collaborations that may impact
clinical practices [42].

Research on “3D printing scaffolds for vascularized BTE” has
expanded rapidly, with China emerging as the leading contributor.
China's dominance can be attributed to several factors: 1. Research
Infrastructure and Funding: China's 59.62 % contribution to global
research output in 3D printing scaffolds for vascularized BTE is
largely due to its strong research infrastructure and significant
government funding for science and technology. The Chinese gov-
ernment's heavy investment in biomedical engineering, regenera-
tive medicine, and advanced manufacturing, including 3D printing,
has positioned China as a global leader in this field. 2. National
Science and Technology Policies: Initiatives like “Made in China
2025” and “Healthy China 2030” focus on technological innovation
and healthcare advancement, aligning with 3D printing scaffold
research in tissue engineering. These initiatives promote cross-
disciplinary collaboration, foster innovation, and provide in-
centives to researchers and institutions, driving China's dominance
in this field. 3. Focus on Regenerative Medicine: Regenerative
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medicine and tissue engineering have been strategic priorities in
China's broader healthcare reforms. Chinese research institutions
have heavily invested in 3D printing to develop cutting-edge so-
lutions for healthcare challenges, particularly in tissue regeneration
and bone repair. This focus on a rapidly growing field further ex-
plains China's significant research output. 4. International Collab-
oration and Talent Recruitment: China has developed strong
international collaborations with leading countries like the USA
and Germany. Its research exchange programs and talent recruit-
ment initiatives (e.g., the “Thousand Talents Plan”) have attracted
global experts in biomedical engineering, further enhancing
China's contributions to the field. These collaborations also
enhance the global impact of Chinese research. 5. Reflecting Global
Trends: While China's dominance may seem disproportionate, it
reflects the country's substantial investment in infrastructure and
human resources, resulting in a significant research output. How-
ever, the USA and Germany, which also make significant contri-
butions, remain influential in advancing cutting-edge technologies.
Therefore, China's contribution aligns with global trends while
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Fig. 3. (A) Clustering networks of pertinent research institutions are illustrated, with distinct colors denoting different clusters identified through the literature co-citation network
among these institutions. Institutions with robust co-citation relationships are clustered, generating a hierarchical diagram to depict these associations. The thickness of lines
between circles indicates the strength of cooperation among institutions, while the size of each circle positively correlates with the number of documents issued by the institution.
(B) Diagram depicting the intensity of institutional cooperation, where the thickness of connecting lines between circles represents the level of cooperation between institutions.
Additionally, the size of each circle is proportional to the number of documents issued by the respective institution. (C) Citation bursts at the top 10 institutions are represented by

red bars, indicating periods of increased citation activity for each institution.

showcasing its emerging leadership. 6. Role of Key Institutions:
China's research output is heavily influenced by key institutions
such as Shanghai Jiao Tong University and the Chinese Academy of
Sciences, which lead research in this field. Their large-scale pro-
jects, well-funded labs, and access to advanced technology foster
innovation in 3D printing scaffolds. The concentration of research
in these institutions explains China's substantial share of publica-
tions. While China's large share of research output reflects its
leadership in the field, global trends in 3D printing scaffolds for
vascularized BTE are shaped by contributions from multiple
countries. China's dominance is significant, but it must be
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considered alongside contributions from the USA, Germany, and
other nations to gain a balanced understanding of global ad-
vancements in this field. Some regions, particularly in Europe and
developing countries, may be underrepresented due to limitations
in resources or research infrastructure. Future studies incorpo-
rating more diverse geographical contributions may offer a more
comprehensive view of global trends, highlighting the impact of
smaller or emerging research hubs.

Identifying publications that have experienced substantial in-
creases in citations over a designated time frame is crucial, and this
is achieved through the recognition of citation bursts. Fig. 2C
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Fig. 5. (A) A density visualization map illustrating journal citations. The color intensity directly corresponds to publication volume. (B) Distribution of journals based on average
publication year (blue: earlier, yellow: later). Each circle and its label form a node, where circle size correlates with keyword frequency. The color gradient of each circle in the lower
right corner indicates average publication year. (C) Top 20 journals with the most significant citation bursts. (D) A dual-map overlay depicting journals relevant to 3D printing
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demonstrates the citation spikes for the top 10 countries/regions
with the most significant citation bursts, illustrated by the intensity
of each spike shown by the red line. Notably, there was a substantial
increase in publication citations observed in the USA
(strength = 5.1) from 2014 to 2016, closely followed by Austria
(strength = 1.42) and Brazil (strength = 1.36). Among the top 10
countries, the USA first appeared in citation bursts in 2014, indi-
cating its early attention to this field and its high academic influ-
ence in the early stages of research, whereas the time periods of
citation bursts for most of the top 10 countries were between 2017
and 2019.

Several factors may explain the citation burst: 1. Technological
Advancements: The 2014~2016 citation burst, especially in the USA,
is likely tied to major advancements in 3D printing technology
during this time. Refinements in biocompatible materials and
advanced printing techniques likely spurred interest in applying 3D
printing to scaffold fabrication, resulting in a surge of publications
and citations as the technology became more viable for medical
applications. 2. Early Adoption and Funding: The USA's early
involvement, reflected by a 2014 citation burst, suggests early
government and private-sector funding initiatives. Strong funding
support for biomedical research in the USA likely accelerated early-
stage research. Pioneers in the field likely published ground-
breaking work, attracting significant attention and contributing to
the citation burst. 3. Academic Collaborations: Global collaboration
likely contributed to citation bursts. The USA's academic influence
and international partnerships likely facilitated knowledge ex-
change, leading to concentrated publication output. Subsequently,
countries like Austria and Brazil followed from 2017 to 2019,
reflecting the global spread of 3D printing scaffold research as in-
ternational collaborations expanded. 4. Clinical Applications and
Interest: The rapid progress in regenerative medicine and the po-
tential for 3D printing to create vascularized bone tissue scaffolds
likely fueled the citation surge. As the field advanced toward clin-
ical practice, researchers and industry professionals focused on the
practical applications of scaffolds in improving patient outcomes,
driving increased citation activity in both academic and industry
sectors. 5. Increased Global Awareness: The delay between the
USA's citation burst and those of other countries, notably from 2017
to 2019, may reflect growing global awareness and interest in 3D
printing scaffolds for BTE. As the field matured, researchers
worldwide began recognizing the potential of 3D printing scaffolds,
resulting in global adoption and a surge in citations. This surge may
also be linked to new research directions and integration with other
biomedical advances.

For both researchers and industry practitioners, understanding
global cooperation patterns and emerging research trends is crucial
for staying informed about international collaborations that may
impact clinical practices. The identification of citation bursts and
the associated temporal trends provide insights into evolving
research areas and potential areas for application in clinical set-
tings. By leveraging these insights, industry practitioners can
anticipate and adapt to changing trends in the utilization of 3D
printing scaffolds for vascularized BTE, ultimately enhancing pa-
tient care and treatment outcomes.

3.3. Institutions
Over the last ten years, 621 academic organizations have

collaborated on studies regarding the application of 3D printing
frameworks for vascularized BTE. This underscores the significant
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interest and effort directed towards advancing this area of study.
The identification of Shanghai Jiao Tong University (n = 57, 13.38
%) as the most prolific institution highlights its leadership role in
driving research output in this field. It is closely followed by other
prominent institutions such as the Chinese Academy of Sciences
(n = 35, 8.22 %) and Sichuan University (n = 28, 6.57 %). This in-
formation is crucial for researchers and industry practitioners as it
helps them identify key collaborators and potential research
partners. By setting a minimum publication threshold of 3 and 5
documents per institution, we created maps illustrating cooper-
ation relationships and clustering patterns among research in-
stitutions (Fig. 3A and B). Each color-coded region in the maps
indicates a unique clustering pattern. The strength of collaboration
between institutions is reflected in the thickness of the lines
connecting them, while the size of each circle corresponds to the
number of documents published by that institution. Among the
various institutions, Shanghai Jiao Tong University stood out as a
key player in collaboration, showing a strong interest in partner-
ing with other organizations. This is evident from the significant
connections between Shanghai Jiao Tong University and numerous
highly regarded scholarly institutions. Interestingly, most of these
institutions prefer domestic collaborations over international
ones.

Organizations displaying significant citation spikes were
distinguished using CiteSpace (Fig. 3C). This pertains to the leading
10 establishments experiencing notable surges in citations within a
specific timeframe, highlighted by the red regions representing the
periods of heightened citation activity for each institution. From the
figure, it can be observed that during this period, Southern Medical
University experienced a surge from 2020 to 2022, with a burst
intensity of 3.64. The University of Maryland had the longest
duration of burst, indicating that the research published by this
institution has had academic influence in the field for a longer
period of time. Over the last couple of years, Wenzhou Medical
University, Queensland University of Technology, and Chongqing
Medical University have seen a significant increase in citations,
suggesting that their published works have garnered more interest
within the field recently. The majority of the top ten institutions
with the most significant citation surges witnessed these bursts
between 2018 and 2024, illustrating a focused research period that
attracted increased attention within the past decade.

Several factors may explain the causes of the citation burst: 1.
Institutional Leadership: Southern Medical University's citation
burst from 2020 to 2022, with a burst intensity of 3.64, suggests its
leadership in advancing 3D printing scaffolds for vascularized BTE
during this period. This may result from high-impact research,
breakthrough discoveries, or innovative methodologies that gained
global attention and citations. 2. Long-term Academic Influence:
The University of Maryland's extended citation burst indicates
sustained academic influence over time. The institution likely
contributed foundational research, methods, or reviews that
became key references for later studies. The burst's longevity sug-
gests consistent production of impactful research that remains
essential to the field. 3. Recent Focus and Innovation: Wenzhou
Medical University, Queensland University of Technology, and
Chongqing Medical University have recently shown notable cita-
tion bursts. These institutions likely produced cutting-edge
research or introduced innovative 3D printing scaffold applica-
tions in vascularized BTE, drawing attention for novel techniques or
clinical potential, thus increasing citations. 4. Geographical Shifts in
Research: The top ten institutions experiencing citation surges are

paths provide insights into interdisciplinary relationships and illustrate citation inception and progression. (E) Analysis of research subject areas, with colored spheres representing

distinct converging fields.
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Top 20 References with the Strongest Citation Bursts
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Fig. 6. (A) Co-citation analysis chart illustrating the application of 3D printing scaffolds for vascularized bone tissue engineering. Circle sizes, akin to those on annual rings,
represent citation counts. Purple denotes earlier citations, while yellow denotes later ones. Overlapping colors signify citations in the same years. Lines connecting circles depict co-
citation patterns, with magenta nodes highlighting critical nodes possessing a centrality exceeding 0.1. (B) Top 20 references with the highest citation bursts.

distributed across regions like China, Australia, and the USA,
reflecting the globalization of research in this field. This geographic
diversity indicates growing international collaboration and interest
in 3D printing scaffolds from institutions beyond traditional
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biomedical powerhouses, contributing to broader academic
engagement and citation activity. 5. Focused Research Period: The
concentration of citation bursts between 2018 and 2024 marks an
active phase in the field, likely driven by technological
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advancements in 3D printing and biomedical engineering. As the
technology matured, research became more application-driven,
increasing its relevance to clinical practice, which likely attracted
greater interest from academia and industry, amplifying citation
activity. 6. Research Synergy: Citation bursts from multiple in-
stitutions may reflect synergistic advances, where research from
different universities builds on each other, collectively increasing
citation activity. Collaboration between institutions, either directly
or through cited work, may have created a feedback loop of
recognition and citation, as different groups advanced the research
together.

Professionals in the field can leverage these findings to identify
potential research partners or institutions that demonstrate sig-
nificant bursts in research activity. When assessing partnerships, it
is important to consider not only the volume of publications but
also the lasting impact and adaptability of research initiatives over
time. Recognizing top institutions and their collaborative strategies
provides opportunities for knowledge exchange, joint research
projects, and the development of innovative ideas by combining
expertise from diverse organizations. Overall, understanding the
performance, collaboration dynamics, and trends among leading
research institutions in the application of 3D printing scaffolds for
vascularized BTE provides valuable insights for both researchers
and industry experts. These findings inform strategic collaboration
decisions, highlight influential institutions, and emphasize the
importance of continuous innovation and flexibility to maintain
sustained research impact.

3.4. Authors

By identifying leading experts and analyzing their collaborative
networks, the study facilitates knowledge exchange and fosters
collaborative research endeavors. Experts with exceptional citation
rates and consistent publication records provide valuable insights
that shape the direction of future research. Through a compre-
hensive analysis of authorship in the field of utilizing 3D printing
scaffolds for vascularized BTE, a total of 2,629 scholars were iden-
tified as significant contributors, highlighting the breadth and
depth of expertise within the field. Among them, six researchers
stood out for their prolific work, each authoring at least ten papers.
These scholars possess significant expertise and abilities, making
their contributions crucial for researchers in the field. To further
investigate collaboration patterns, VOSviewer software was utilized
to generate visual diagrams, enabling researchers and practitioners
to identify potential collaborators and explore interdisciplinary
research opportunities. These diagrams were created with the
requirement of four publications per author. The visual represen-
tations depict the sizes of nodes, representing the publication count
for each author, with various colors indicating different author
categories. The strength of the connections between nodes reflects
the level of collaborative interactions. Remarkably, 73 authors
surpassed the publication threshold. Notably, Wang Jinwu and Li
Tao exhibited the strongest collaborative relationships, as illus-
trated in Fig. 4A. Additionally, Wang Jinwu and Wu Chengtie have
the highest number of publications, each with 13 papers (3.05 %);
followed by Zhang Xingdong and Zhou Xiaojun, tied for second
with 12 papers (2.82 %), highlighting their significant contributions
to this scientific field.

Studying citation bursts is a significant metric that reveals how
frequently authors receive citations within a specific field of study
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during a designated timeframe [43,44]. In Fig. 4B, the top ten au-
thors with the highest number of citations in the field of utilizing
3D printing scaffolds for vascularized BTE are ranked. From the
figure, it is evident that Zhang Xingdong experienced a citation
burst from 2022 to 2024, with the highest burst strength value of
3.63. Citation bursts for the top 10 authors mostly occurred after
2020, indicating a heightened research interest in this field since
that year. Authors who experienced a surge in citations in the past
two years include Zhang Xingdong, Fan Yujiang, Tu Xiaolin, and
Zhou Xiaojun, suggesting that their research achievements have
garnered significant attention in this field during the same period.
This information can inform strategic decision-making in research
collaboration and funding allocation, ultimately advancing the field
of 3D printing scaffolds for vascularized BTE.

3.5. Journals & related fields

By employing a visualization of journal publication data, in-
sights into the scholarly communication landscape are provided
through 149 journals featuring articles on the utilization of 3D
printing scaffolds for vascularized BTE. A heatmap graph was
generated, indicating that each journal must have a minimum of
two papers to display how documents are distributed among
different journals. The color depth on the graph represents the
number of papers published in each journal (Fig. 5A), assisting re-
searchers in selecting appropriate journals for their publications.
Leading the rankings with the highest quantity of published doc-
uments is Advanced Healthcare Materials (n = 18), followed by
Frontiers in Bioengineering and Biotechnology (n = 16), and Bio-
fabrication (n = 15). The identification of top journals and their
citation rates offers valuable information for researchers assessing
the impact of their work and selecting potential outlets for
publication.

In Fig. 5B, journals of varying emergence years are depicted with
different colors. Circular nodes represent each journal, with the size
of the circle positively correlated with the number of articles
published by the journal. The color of each circle indicates the
average publication year, with blue representing earlier publica-
tions and yellow representing the most recent ones. From the
figure, it can be observed that among the top ten journals with the
highest number of publications, Biomaterials had an earlier average
publication year, in 2019, indicating that this journal has focused on
research in this field earlier. Among the journals with an average
publication year after 2022, Frontiers in Bioengineering and
Biotechnology and International Journal of Bioprinting have pub-
lished a larger number of articles in the utilization of 3D printing
scaffolds for vascularized BTE, suggesting that research in this field
has been a recent hotspot and focus for these journals over the past
two years.

The overlay of dual-maps in journals offers a valuable method to
showcase the changing locations of scientific research centers and
the distribution of journals across various fields [45]. The research
areas covered in all papers are shown by the labels on the map.
Journal citations are visible to the right of the citation map, while
citations from other sources are located on the left. Colorful lines
starting from the citation map and ending visually illustrate the
citation pathways. The intensity of these connections is determined
by the frequency of citations, assessed via a z-score scale [35]. This
visualization facilitates the identification of emerging trends and
shifts in scientific focus, guiding researchers in directing their

The sizes of the circles overlaid on the annual rings are proportional to the frequency of keywords. Lines between keywords represent co-occurrence. Purple indicates relatively
early appearance times of keywords, while yellow represents later appearances, with overlapping colors denoting keywords appearing in corresponding years. Magenta nodes,
positioned centrally, denote nodes with relatively strong centrality, acting as hubs. Keywords within the same cluster are aligned on a horizontal line. The top of the view shows the

first appearance time of keywords, progressing towards the right.
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efforts effectively. Fig. 5D shows that studies related to the utili-
zation of 3D printing scaffolds for vascularized BTE are mainly
focused on five major areas: physics, materials science, chemistry,
molecular biology, and genetics.

Utilizing the VOSviewer software, the domain categories of 426
articles were visually analyzed, resulting in the categorization of
these papers into five primary fields. This classification allows for a
deeper understanding of research domains and their interrelations,
providing valuable insights for both researchers and industry pro-
fessionals seeking to navigate the evolving landscape of the utili-
zation of 3D printing scaffolds for vascularized BTE. The clustering
is visualized in Fig. 5E, with spheres of various colors representing
different domains. The findings indicate that a noteworthy per-
centage of relevant studies center around the field of “Chemistry
and Physics”, with a large number of papers falling into categories
such as “Materials Science”, “Biomaterials”, “Multidisciplinary”,
and “Nanoscience & Nanotechnology".

The findings contribute to advancing knowledge in the field,
informing research directions, and guiding decision-making for
both academia and industry, ultimately driving innovation and
progress in the utilization of 3D printing scaffolds for vascularized
BTE.

3.6. Co-cited references

It is crucial for researchers to recognize the significance of
identifying the most frequently referenced and impactful publica-
tions to enhance their understanding and contribute to the pro-
gression of their respective fields. The network diagram in Fig. 6A
illustrates the connections among scholarly articles focusing on the
application of 3D printing scaffolds for vascularized BTE from
January 1, 2014, to April 1, 2024, as analyzed using CiteSpace. The
circles' sizes combined across each year indicate their co-citation
occurrences, with the color scale representing the chronological
age of citations, ranging from purple for older citations to yellow for
more recent ones. When colors merge on circles, it signifies
consistent citations throughout the designated years. The connec-
tions represented by circles symbolize the co-citation relationships
among different publications. Nodes highlighted in a pink hue
signify crucial points within the network, determined by a cen-
trality exceeding 0.1. One of the highly cited works is the original
research titled ‘Vascularized 3D printed scaffolds for promoting
bone regeneration’, authored by Yufei Yan et al. and published in
Biomaterials in 2019, with the highest co-citation count (n = 40)
[46]. Fig. 6A depicts a network diagram of co-citations, illustrating
connections within research literature and highlighting key pub-
lications and their influence over time. Researchers can leverage
this information to explore emerging trends and prioritize areas for
further investigation.

CiteSpace was employed to analyze and identify citation bursts
in the application of 3D printing scaffolds for vascularized BTE
research within the time frame of January 1, 2014, to April 1, 2024.
Fig. 6B illustrates the impact of the top 20 references, demon-
strating significant scholarly attention. The majority of papers
among the top 20 references experienced notable increases in
citation counts from 2016 to 2022, indicating heightened interest in
the research field during this period. Susmita Bose et al.'s paper had
the highest citation burst intensity, reaching 6.41, during the period
of 2016~2018, signifying its significant impact on the field [47].
Angel E. Mercado-Pagan et al.'s paper had the longest citation burst
duration, spanning 5 years from 2015 to 2020, indicating its sus-
tained impact on the field [48]. Researchers can use this informa-
tion to stay informed about the evolving landscape of 3D printing
scaffolds for vascularized BTE research, identify collaboration op-
portunities, and guide future research directions. Industry
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practitioners can leverage these insights to inform decision-making
processes, such as investment strategies and product development
initiatives, aligning their efforts with emerging research trends and
priorities in the field.

3.7. Keywords

The VOSviewer software was utilized for clustering analysis
based on keyword co-occurrence to identify thematic clusters,
with a minimum threshold of three instances. This enables re-
searchers to discern prevalent research themes and track how
they have evolved over time. The visualization included only
keywords meeting this requirement from a pool of 945 unique
keywords (excluding duplicates). A selection of 80 keywords was
curated for network representation in Fig. 7A. The graph in the
figure depicts temporal trends in word frequency, with each node
represented by a circle and label. In the visual representation, the
frequency of a keyword is reflected in the size of a circle. Addi-
tionally, the intensity of connections between circles reflects the
level of their co-occurrence relationships. The color of each circle
located in the lower right corner serves to indicate the average
year of occurrence. Keywords appearing in earlier years are
denoted by blue, while those appearing in later years are denoted
by yellow. Analysis of the data presented in Fig. 7A shows that
‘stem cells' were subjects of earlier research, while ‘magnesium’
and ‘Wnt signaling' have become recent focal points of study and
exploration. By identifying prevalent keywords and their tempo-
ral patterns, researchers can better understand the shifting
landscape of research interests and prioritize areas for further
investigation.

Fig. 7B exhibits the detection of keyword bursts, especially
those experiencing significant citation surges. This highlights the
topics that have attracted considerable academic interest.
Analyzing the temporal patterns of keyword bursts can inform
researchers, funding agencies, and industry stakeholders
regarding investment and collaboration opportunities, facilitating
alignment with prevailing research trends and fostering strategic
partnerships. Fig. 7B displays the keyword with the strongest
citation burst intensity as “stem cells”, with a burst intensity value
of 1.8, occurring during the period of 2019~2020. Among the top
10 keywords, “bone scaffolds” and “vascularized bone” experi-
enced early citation bursts, indicating early attention to these
research hotspots in the field. Keywords appearing in citation
bursts after 2022, as identified in the analysis, include “macro-
phage polarization”, indicating that in recent years, this has
emerged as a key focus area in the field.

CiteSpace examines metrics like Modularity (Q) and Mean
Silhouette (S) to evaluate network structures and clustering quality.
Nodes with a Q value greater than 0.3 display significant clustering,
whereas those with an S value over 0.5 show clear and effective
clustering. Upon evaluation, we obtained a Modularity (Q) value of
0.8603 and a Mean Silhouette (S) value of 0.9876, validating the
existence of strong and united clustering patterns in the network.
The examination revealed 10 unique clusters, labeled as #1 bone
tissue engineering, #2 3D printing, #3 additive manufacturing, #4
3D printed scaffold, #5 bone defect, #6 gelatin methacrylate, #7
mechanical properties, #8 angiogenesis and osteogenesis, #9
osteogenic differentiation, #11 calcium phosphates, as illustrated in
Fig. 7C. This clustering approach facilitates knowledge organization
and enhances the understanding of research trends and priorities.

Examining the evolving patterns and key research areas in the
application of 3D printing scaffolds for vascularized BTE is essential
for informing decisions regarding funding, collaborations, and
alignment with current research priorities. Fig. 7D presents a
timeline illustrating clustering of keyword frequencies in
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significant areas of study. The diagram displays circles of varying
sizes, with each circle's size corresponding to the frequency of the
keywords in each year. Connections between keywords represent
their co-occurrence. Nodes highlighted in rose color emphasize
important keywords with central relevance, highlighting their
pivotal position as focal points within the network. Keywords in
each cluster are organized in a horizontal alignment, with the
placement starting from the first occurrence on the left and pro-
gressing chronologically to the right. This graphical representation
assists in understanding the distribution of keywords within clus-
ters, with larger sizes indicating higher group significance.
Furthermore, it illustrates the temporal distribution of keywords
within each cluster. The keywords have been classified into 11
separate clusters: #0 tissue regeneration, #1 bone tissue engi-
neering, #2 3D printing, #3 additive manufacturing, #4 3D printed
scaffold, #5 bone defect, #6 gelatin methacrylate, #7 mechanical
properties, #8 angiogenesis and osteogenesis, #9 osteogenic dif-
ferentiation, #10 calcium phosphates.

By providing clear visualizations of clustering patterns and the
temporal distribution of keywords within clusters, this research
facilitates collaboration and funding decisions. Stakeholders can
identify key research areas, prioritize funding allocations, and fos-
ter strategic partnerships to advance vascularized BTE. Overall, the
comprehensive analysis presented in this research enhances our
understanding of the current state of the field and provides
actionable insights for driving future research directions, facili-
tating collaboration, and maximizing the impact of research efforts
in vascularized BTE.

3.8. Related diseases

By gaining insight into the illnesses most closely associated with
the utilization of 3D printing scaffolds in vascularized BTE studies,
scientists can concentrate their efforts on specific health condi-
tions. This focused strategy holds the promise of hastening the
progress of medications and therapies tailored to combat these
illnesses, ultimately enhancing the chances of more effective
treatments. The Citexs Data Platform detected 308 illnesses from
426 documents, necessitating a minimum of two documents
mentioning each illness for consideration. These illnesses that met
the criteria were displayed in a heatmap produced with VOSviewer,
demonstrating the frequency and connections of illnesses linked to
the utilization of 3D printing scaffolds in vascularized BTE studies
(Fig. 8A). The most frequently mentioned top five diseases are
osteogenesis imperfecta, osteosarcoma, fractures, osteonecrosis,
and cartilage diseases. Furthermore, a cluster analysis based on co-
occurrence was conducted, with each disease requiring at least two
instances, using VOSviewer (Fig. 8B). In this representation, the size
of the circles and labels representing nodes is determined by dis-
ease occurrence. The thickness of the connections between dis-
eases can be seen through the lines connecting the circles. Unique
clusters related to specific disease groupings are identified by
different colors.

The research trends of the above-mentioned diseases may be
attributed to the following reasons: 1. Clinical Demand and Disease
Prevalence: Osteogenesis imperfecta and osteosarcoma are key
areas in bone pathology. Osteogenesis imperfecta is a genetic dis-
order weakening bone strength, while osteosarcoma is a severe
bone cancer primarily affecting adolescents. The high mortality and
morbidity of these diseases drive research toward effective treat-
ments. Fractures, osteonecrosis, and cartilage diseases are common
in orthopaedics. Fractures are widespread, osteonecrosis causes
severe pain and disability, and cartilage diseases like osteoarthritis
affect millions globally, emphasizing the need for innovative
treatments. 2. Technological Advancements: Advances in 3D
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printing, especially in fabricating complex tissue scaffolds with
precise control over shape and architecture, are crucial. These
technologies enable custom scaffolds tailored to the complex
anatomy of bone and cartilage. The development of novel bio-
materials that promote bone and cartilage regeneration, while
being biocompatible, biodegradable, and mechanically robust, has
driven significant research interest. 3. Research Funding and In-
vestment: Despite their rarity, conditions like osteosarcoma and
osteogenesis imperfecta often receive research funding due to their
severity and the young age of affected patients, attracting both
public and private interest. Common conditions like fractures and
osteoarthritis impose a significant economic burden, driving sub-
stantial funding for innovative solutions to reduce long-term
healthcare costs. 4. Academic and Industrial Collaborations: The
field benefits from interdisciplinary research among biologists,
material scientists, and engineers. Collaborations between
academia and industry are vital for translating research into prac-
tical applications and clinical trials. The growing interest from the
biomedical device industry in 3D printing technologies fuels
research into diseases where these innovations can be effectively
applied.

The findings presented in the paragraph have significant im-
plications for both researchers and industry practitioners in the
field of the application of 3D printing scaffolds for vascularized BTE.
Through the identification of the illnesses that are most commonly
linked with the application of 3D printing scaffolds for vascularized
BTE studies, scientists can strategically focus their attention on
comprehending and tackling particular health issues. This specific
strategy holds promise in accelerating the progress of creating
medications and treatments customized to effectively manage
these medical conditions. For industry practitioners, understanding
the landscape of the application of 3D printing scaffolds for vas-
cularized BTE research diseases can inform decision-making pro-
cesses related to drug development, treatment strategies, and
resource allocation. The visualization of disease frequency and re-
lationships through tools like VOSviewer provides valuable insights
into the prevalence and interconnections of diseases within the
application of 3D printing scaffolds for vascularized BTE domain,
aiding both researchers and industry practitioners in navigating
this complex field and fostering collaborations to advance medical
interventions.

3.9. Challenges & future vistas

Recognized as a critical milestone in BTE, achieving rapid
vascularization holds paramount importance. Bone vascularization,
unlike direct vascular tissue regeneration, poses unique challenges.
Scaffolds must not only meet the requirements for osteogenesis but
also possess sufficient mechanical properties. Utilizing 3D printing
scaffolds allows for the fabrication of customized structures
meeting these criteria, thereby accelerating the establishment of a
vascular network. Despite significant advancements in BTE facili-
tated by the application of 3D printing scaffolds [25,26], there are
still numerous challenges that need to be addressed.

1) In future investigations, the focus will be on obtaining precise
data to produce customized vascularized scaffolds and
enhancing the osseointegration capacity of these structures.
This will take into account the varied biomechanical charac-
teristics and structural layouts found in different human tissue
areas. The complexity of the tissue microenvironment presents
challenges to biofabrication printing [49].

2) Investigating future directions involves maintaining the sus-
tained release of active molecules while ensuring biosafety and
promoting early vascularization for tissue functionalization. The
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primary limitation identified is the lack of sustained release
behavior throughout the entire tissue repair process. The
assessment of the outcomes indicated that the longest sustained
release lasted for around four weeks, falling short of the
necessary duration for full tissue restoration [50].

3) Currently, the focus is on providing functional groups, cells, or
bioactive small molecules in creating vascularized 3D printing
scaffolds for tissue regeneration. Further research should
investigate techniques for preserving the function of bioactive
elements altered on or enclosed within scaffold surfaces, guar-
anteeing continuous delivery [18,51—54].

4) The periosteum, a sturdy connective tissue covering the bone
surface, plays a critical role in tissue repair by providing blood
and nutrients. Furthermore, its rich nerve supply implies that
tissue fractures may also result in nerve injury [55,56]. Research
on the integration of vascularized additive manufacturing tissue
scaffolds with nerve regeneration is anticipated to enhance
studies on biomaterials for tissue repair.

5) The delicate balance of tissue dynamics includes osteoclasts,
which are derived from hematopoietic stem cells and respon-
sible for resorbing dead tissue, along with osteoblasts that
originate from mesenchymal stem cell differentiation [57].
Further investigation is necessary to determine a fresh balance
between osteoclasts and osteoblasts in the framework of addi-
tive fabrication for vascularized bone formation.

6) Mineralization of tissues relies on the metabolism of calcium
and phosphorus, where calcium ions play a vital role in the
coagulation process. In the event of a fracture, these calcium
ions are key players in the formation of the initial blood clot and
have a substantial impact on the metabolism of both calcium
and phosphorus in the aftermath [58—61]. Researching the
application of additive manufacturing technology in controlling
calcium ions to regulate vascularized osteogenesis represents a
promising avenue for further exploration.

7) Research has shown the significant involvement of the immune
microenvironment in tissue repair. The immune, skeletal, and
vascular systems have close associations and exchange
numerous cytokines responsible for regulating the immune
microenvironment, collectively maintaining tissue microenvi-
ronment stability [62—64]. Therefore, combining immune sys-
tem regulation with vascularized additive manufacturing
structures to enhance bone formation could arise as an inno-
vative research avenue moving forward.

8) Using 4-dimensional (4D) printing for scaffold preparation
shows promise for future applications [25]. 4D printing involves
3D printed objects autonomously and programmatically
changing their shapes or functionalities in response to specific
external stimuli. These alterations can be pre-planned and
“programmable”, enabling changes to be executed in a pre-
determined manner [65]. This advancement allows for the
creation of complex structures and makes the resulting con-
structs dynamic and intelligent. This innovation is of great
importance in accelerating the bone repair process and
improving bone healing.

9) Without a precise design to replicate essential tissue qualities,
scaffolds may not fully realize their potential for cell adhesion
and tissue regeneration. Various 3D design strategies, including
those utilizing scaffold design libraries and artificial intelligence
(Al), can be employed to tackle this challenge [66]. Integrating Al
into the 3D printing process enables anticipation, adjustment,
and autonomous control of parameters, thereby reducing the
risk of errors. Furthermore, the incorporation of Al into 3D
printing facilitates the customization of patient-specific scaf-
folds to meet diverse requirements, providing feedback and
sufficient data for reproducibility, with potential for future
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improvement. These printed scaffolds can serve as an alterna-
tive to preclinical animal test models, reducing costs and
avoiding immunological interference. Ultimately, continued
advancements in 3D printing are expected to propel the field of
bone regeneration to unprecedented heights, fueled by ongoing
dedication and research efforts.

3.10. Strengths & limitations

In contrast to previous studies heavily relying on narrative re-
views, the use of scientometric tools in this study provided a more
comprehensive understanding of research focal areas and trends
across various aspects. This study is noteworthy as the first to
perform scientometric analysis in the past decade, mapping and
describing the landscape of knowledge regarding the application of
3D printing scaffolds for vascularized BTE. It acts as an in-depth and
impartial guide for forthcoming progress, despite the certain re-
strictions that are bound to be present.

The limitations encountered in this study were numerous.
Firstly, due to CiteSpace's constraints, only publications from
WoSCC were gathered, resulting in an unavoidable selection bias
[67]. Secondly, relying on citation count as a gauge of a paper's
influence is susceptible to numerous interfering variables, which
could potentially impact its precision [68]. Thirdly, the extensive
number of papers might have compromised the study’s credibility
by limiting the feasibility of conducting a comprehensive analysis
of each paper and its subfields. Fourthly, as demonstrated by pre-
vious scientometric studies, scientometric techniques heavily rely
on natural language processing, which may introduce bias [69—72].
Fifthly, although restricting the study to English texts may intro-
duce publication bias [73], it does not significantly undermine the
global relevance of our conclusions. The global dominance of
English-language research ensures that our study captures the
main trends and key contributors in the field. Future research
incorporating multilingual databases may provide more inclusive
insights. We suggest that future research expand its scope by uti-
lizing additional databases that index non-English literature (e.g.,
China National Knowledge Infrastructure and SinoMed) to evaluate
whether regional or language-specific trends differ from those in
English-language studies. Lastly, because of incomplete literature
collection, recent publications and certain key terms could have
been overlooked and omitted from the data analysis in the litera-
ture search phase.

4. Conclusion

Using scientometric methodologies, this ongoing investigation
analyzes trends in the biomedical field concerning the use of 3D
printing scaffolds for vascularized BTE over the past decade. The
main findings are as follows: 1) Scientometric evaluations have
revealed significant advancements in the utilization of 3D printing
scaffolds for vascularized BTE, highlighting key contributing
countries, institutions, researchers, and core research topics. 2)
Exploring co-citations and keywords has highlighted influential
studies, emerging patterns, and critical research areas within the
domain of 3D printing scaffolds for vascularized BTE, providing
guidance for future research directions. 3) Discussions have focused
on the significant challenges associated with the use of 3D printing
scaffolds for vascularized BTE. Overcoming these challenges en-
ables 3D printing scaffolds to realize their full potential in vascu-
larized BTE. These breakthroughs are crucial for enhancing the
scientific community's ability to identify and address existing
challenges, as well as for fostering the development of innovative
concepts. Comprehensive knowledge of the mechanisms that
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facilitate bone healing allows for the creation of effective designs
and procedures for 3D printing in order to generate functional,
clinically relevant vascularized BTE scaffolds. Ultimately, the field of
3D bioprinting, which integrates disciplines such as developmental
biology, tissue engineering, regenerative medicine, and materials
science, should endeavor to expedite its research development
objectives, achieve clinical implementation expeditiously, and
deliver greater benefits to individuals in need.
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