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Abstract

Forkhead transcription factors FoxO1/3/4 have pleiotrophic functions including anti-oxidative stress and metabolism.
With regard to glucose metabolism, most studies have been focused on FoxO1. To further investigate their hepatic
functions, we generated liver-specific FoxO1/3/4 knockout mice (LTKO) and examined their collective impacts on
glucose homeostasis under physiological and pathological conditions. As compared to wild-type mice, LTKO mice
had lower blood glucose levels under both fasting and non-fasting conditions and they manifested better glucose and
pyruvate tolerance on regular chow diet. After challenged by a high-fat diet, wild-type mice developed type 2
diabetes, but LTKO mice remained euglycemic and insulin-sensitive. To understand the underlying mechanisms, we
examined the roles of SIRT6 (Sirtuin 6) and Gck (glucokinase) in the FoxO-mediated glucose metabolism.
Interestingly, ectopic expression of SIRT6 in the liver only reduced gluconeogenesis in wild-type but not LTKO mice
whereas knockdown of Gck caused glucose intolerance in both wild-type and LTKO mice. The data suggest that both
decreased gluconeogenesis and increased glycolysis may contribute to the overall glucose phenotype in the LTKO
mice. Collectively, FoxO1/3/4 transcription factors play important roles in hepatic glucose homeostasis.
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Introduction diabetic mouse models [3,4,6,15]. Recently, two mouse genetic
studies have reported inconsistent data on the roles of FoxO1
and FoxO3 in glucose metabolism [16,17]. Haeusler and
colleagues have shown that a double deletion of hepatic
FoxO1 and FoxO3 genes in mice has similar effects on blood
glucose and glucose tolerance as compared to knockout of the
FoxO1 gene alone [17]. However, Zhang and coworkers have
found that FoxO1 and FoxO3 have significant additive effects
on glucose homeostasis [16]. Moreover, liver-specific
FoxO1/3/4 knockout mice also manifest lower serum insulin
levels and better glucose tolerance as compared to control
mice although animal ages are not specified in the report [17].
Additionally, FoxO6 is predominantly expressed in the brain
and also has a significant role in hepatic gluconeogenesis
[18,19]. However, molecular mechanisms with regard to the

Mammals have four genes encoding the O subfamily of the
Forkhead transcription factors: FoxO1/3/4/6 [1,2]. Among them,
FoxO1 has been extensively studied. It has been shown that
FoxO1 regulates  hepatic  gluconeogenesis  through
upregulation of several key genes including
phosphoenoylpyruvate carboxykinase (Pck7) and glucose 6-
phosphatase (catalytic subunit, G6pc) [3—12]. Under insulin
resistance conditions, FoxO1 becomes less phosphorylated at
the inhibitory serine/threonine residues and therefore more
active to promote expression of these gluconeogenic genes,
which may contribute to hyperglycemia in diabetes [13,14].
This notion is generally supported by the data from
overexpression and  knockout/knockdown of FoxOf1.
Overexpression of the constitutively active FoxO7 mutant

increases blood glucose levels and leads to impaired glucose
and insulin tolerance [11,12]. In contrast, knockout or
knockdown of hepatic FoxO1 lowers blood glucose levels and
improves systemic insulin sensitivity in genetic or diet-induced
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collective roles of FoxOs in hepatic glucose metabolism are still
elusive. In this work, we attempted to examine the
pathophysiological functions of FoxO1/3/4 in glucose
metabolism and the underlying mechanisms.
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Materials and Methods

Animals, blood chemistry, and metabolic analysis

Fox01/3/4 floxed mice were generated and genotyped as
previously described [20]. To generate liver-specific FoxO1/3/4
triple knockout mice, the floxed mice were crossed with a line
of Albumin-Cre mice (Jackson Lab). Animals were maintained
on a mixed genetic background (C57/BL6/129/FVB). Mice were
fed either regular chow diet or a high-fat diet (HFD, 60%
calories from fat, Harlan Teklad). Adenovirus injections were
performed via tail vein as previously described [21]. Blood
glucose levels were measured using a glucose meter (Contour
from Bayer) under ad libitum (non-fasted) or overnight 16-hour
fasting conditions. Plasma insulin was measured using a
commercial assay kit (ALPCO). Glucose, pyruvate and insulin
tolerance tests were performed as previously described [4],
with 2 g glucose or pyruvate per kg body weight and 0.75-1 U
insulin (humulin R, Lilly) per kg body weight, respectively. Body
composition was analyzed by dual-energy  X-ray
absorptiometry (DEXA). As males and females had similar
phenotype, only male data were presented here.

Ethics statement

All procedures were performed in accordance with the Guide
for Care and Use of Laboratory Animals of the National
Institutes of Health and were approved by the Institutional
Animal Use and Care Committee of Indiana University School
of Medicine (study 10322).

Adenovirus preparation

SIRT6 and GFP overexpression adenoviruses were
prepared in an AdEasy system (Agilent) following the
manufacturer's manual. The cloning PCR primers for the
human SIRT6 coding sequence are: SIRT6-forward, 5'-
ACTTCCGATATCGCCACCATGTCGGTGAATTACGCGGC-3',
and SIRT6-reverse, 5'-
AAGGAACTCGAGGCTGGGGACCGCCTTG-3'. Gek and GFP
shRNA adenoviruses were made in a BLOCK-T system
(Invitrogen). The target MRNA sequences are described in the
following: mGck, 5-GCTGGTAGAGGAGAATCTTCT-3', and
GFP, 5'-GCATCAAGGTGAACTTCAAGA-3'".

Protein analysis

Liver tissue was homogenized in the lysis buffer (50 mM
Hepes, pH 7.5, 150 mM NaCl, 10% Glycerol, 1% Triton X-100,
1.5 mM MgCl,, 1 mM EGTA, 10 mM Sodium Pyrophosphate,
100 mM Sodium Fluoride, and freshly added 100 yM Sodium
Vanadate, 1 mM PMSF, 10 pg/ml Aprotinin, and 10 pg/ml
Leupeptin). Proteins were resolved on an SDS-PAGE gel and
were transferred to nitrocellulose membrane. The membrane
was incubated with the following specific antibodies: SIRT6
(Sigma), Gek and Actinin (Santa Cruz Biotechnology). Protein
signals were detected by incubating with HRP-conjugated
secondary antibodies and subsequent ECL detection reagents
(Thermo, Fisher Scientific).
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RNA analysis

RNA isolation was performed using TRI reagent (Sigma) as
described previously [4]. Then cDNA was synthesized using a
kit (Applied Biosystems Inc.) and real-time PCR was performed
using GoTaq qPCR Mix (Promega). Primer sequences of the
mouse genes used in this work are described as follows: Pck1
forward 5- AGAAGGAGTACCCATTGAG-3’, Pck1 reverse 5-

CTGAGGGCTTCATAGACA-3'; G6pc forward 5-
ATGGTCACTTCTACTCTTGC-3, G6pc reverse 5'-
CAAGATGACGTTCAAACAC-3’; Gck forward 5-
AAGGACAGGGACCTGGGTTCCA-3', Gck reverse 5'-
TCACTGGCTGACTTGGCTTGCA-3;  Pkir  forward 5'-
TAGGAGCACCAGCATCATTG-3, PKlr reverse 5'-

CATCCCTGCCTTGATCATCT-3’; Pdk2
TGTGGTGAAAGACGCCTATG-3, Pdk2 reverse 5-
GTGGCATTGACTTCCTGGAT-3; Ppia forward 5’-
CACCGTGTTCTTCGACATCA, Ppia reverse 5-
CAGTGCTCAGAGCTCGAAAGT-3'. Real-time PCR data were
presented as relative values over an internal control—Ppia.

forward 5-

Statistical analysis

Data were presented as means + SEM. Two-tailed unpaired
Student’s t-test was used to assess the difference between two
groups, and P < 0.05 was considered as significant.

Results

Deletion of FoxO1/3/4 genes in mouse liver significantly
alters glucose metabolism

Since some previous reports have shown that FoxO1/3/4
have a significant extent of functional redundancy in vivo
[16,17,20,22], here we investigated their collective roles in
glucose homeostasis by deletion of all 3 genes in mouse liver
(LTKO) using floxed alleleles and an Albumin-Cre transgene.
Although there was no significant difference in body weight
between wild-type and LTKO mice (Figure 1A), deletion of
FoxO1/3/4 in the liver resulted in a decrease in blood glucose
levels by 38% and 15% in male adult mice under overnight
fasted and non-fasted conditions, respectively (Figure 1, B and
C). Since FoxO1 has been shown to regulate hepatic
gluconeogenesis [3-12,16], we examined this process in
control wild-type and LTKO mice using pyruvate tolerance
tests, which measure the rate of de novo glucose synthesis
using pyruvate as a substrate. As expected, after the pyruvate
injection, blood glucose rose to a much lower level in the LTKO
mice compared to the control mice, and the area under the
curve (AUC) was 37% less than that in the control mice (Figure
1, D and E). Glucose tolerance tests were also performed to
assess changes in glucose disposal, and the results showed
that exogenous glucose was cleared much faster in LTKO mice
than that in control mice (Figure 1F). The AUC of the overall
glucose tolerance was decreased by 35% in the LTKO mice
(Figure 1G).

Insulin levels are decreased in LTKO mice

To assess insulin sensitivity, we first performed insulin
tolerance tests in 3-month old mice. Since the basal blood
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Figure 1. Glucose metabolism in the liver-specific Fox01/3/4 knockout mice (LTKO) fed chow diet. (A) Body weight of
control and LTKO male mice (n=6) at age of 4 months. (B) Blood glucose levels in 2-month male control and LTKO mice (n=6) after
an overnight 16-hour fasting. (C) Non-fasting blood glucose levels in 4-month control and LTKO male mice (n=6). (D, E) Pyruvate
tolerance tests (PTT) in 4-month male control and LTKO mice (n=6-7) after an intraperitoneal injection of 2 g pyruvate solution per
kg body weight. The areas under the curve (AUC) in the PTT graph were also presented. (F, G) Glucose tolerance tests (GTT) in 3-
month male control and LTKO mice (n=6) after an intraperitoneal injection of 2 g glucose solution per kg body weight. The areas
under the curve in the GTT graph were also presented. Data represent mean + SEM. * indicates a significance with P<0.05 in
control vs. LTKO mice.

doi: 10.1371/journal.pone.0074340.g001
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Figure 2. Insulin sensitivity in LTKO mice fed chow diet. (A) Insulin tolerance tests (ITT) in 3-month male control and LTKO
mice (n=6) after 3-hour fasting and an intraperitoneal injection of 0.75 U human regular insulin (humulin R, Lilly) per kg body weight.
(B) The data in Panel A were replotted as percentage of basal blood glucose as a function of injection time. (C) Plasma insulin
levels in 4-month male control and LTKO mice (n=12) after an overnight 16-hour fasting. (D) Plasma insulin levels in 4-month male
control and LTKO mice (n=6) under ad libitum conditions. Data represent mean + SEM. * indicates a significance with P<0.05 in

control vs. LTKO mice.
doi: 10.1371/journal.pone.0074340.g002

glucose levels were already low in the LTKO mice, an
exogenous insulin bolus did not reduce glucose as much as in
the control wild-type mice (Figure 2A). This phenomenon could
also be seen after glucose levels were normalized to the basal
for the ITT data (Figure 2B). In addition, plasma insulin levels
were 4 fold lower in the LTKO mice as compared to control
wild-type mice under both fasting and non-fasting conditions
(Figure 2, C and D).

Hepatic deficiency of FoxO1/3/4 protects mice from
developing high-fat diet-induced diabetes

Since LTKO mice had lower glucose levels relative to wild-
type mice on regular chow diet, we went on to test whether
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deletion of hepatic FoxO1/3/4 might protect mice from
developing high-fat diet-induced diabetes. Control wild-type
and LTKO mice were fed a high-fat diet (HFD) and they were
subsequently monitored for up to 5 months. At the end of the
HFD treatment, there was no significant difference in body
composition parameters, including body weight, body length,
body fat, and bone mineral density between wild-type and
LTKO mice (Figure 3, A-D). As early as 3 months after the HFD
treatment, the control mice developed hyperglycemia; however,
the LTKO mice remained euglycemic under both fasted and
non-fasted conditions (Figure 4, A and B). Systemic glucose
tolerance in the LTKO mice was much better than that in the
control mice during the GTT tests, and the AUC was 55% lower
in the LTKO mice (Figure 4, C and D). At molecular levels,
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Figure 3. Body composition of LTKO mice fed a high-fat diet. (A, B) Body weight and length measurements of control and
LTKO mice (n=6) after a high-fat diet (HFD) treatment for 5 months, respectively. (C, D) Body fat and bone mineral density (BMD)
analyses of the above HFD treated mice by DEXA, respectively. Data represent mean + SEM.

doi: 10.1371/journal.pone.0074340.g003

expression of gluconeogenic genes including Pck1, G6pc and
Pdk2 was decreased in the LTKO livers as compared to the
controls while expression of the glycolytic gene Gck went up
(Figure 4, E and F). In addition, fasting insulin levels were 3-
fold lower in the LTKO mice as compared to the control mice,
and homeostatic model assessment (HOMA) also showed 4-
fold decrease in insulin resistance in the LTKO mice (Figure 5,
A and B). Moreover, LTKO mice had better insulin tolerance
than the control mice and the AUC was decreased by 23% in
the LTKO mice (Figure 5, C and D).

The role of SIRT6 in FoxOs-regulated hepatic
gluconeogenesis

Previously, SIRT6 has been reported to suppress both
hepatic glycolysis and gluconeogenesis through epigenetic

PLOS ONE | www.plosone.org

regulation of the related genes such as Gck, Pkir, Pck1, and
G6pc [23,24]. Here we attempted to explore whether SIRT6
might play a role in the FoxO-regulated glucose metabolism.
We used adenovirus-mediated gene transfer approaches to
specifically overexpress control GFP or human SIRT6 in wild-
type or LTKO mouse livers (Figure 6A). Glucose tolerance
tests were performed 7 days post-injection. SIRT6
overexpression improved glucose tolerance in the wild-type
mice but not LTKO mice (Figure 6B), suggesting that
FoxO1/3/4 may be needed for this metabolic regulation by
SIRT6. Gene  expression analysis revealed that
gluconeogenesis (Pck1 and G6pc) but not glycolysis (Gck and
Pkir) genes were suppressed by SIRT6 in the wild-type livers
only (Figure 6C).
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Figure 4. LTKO mice maintain euglycemic and glucose tolerant on a high-fat diet. (A) Fasting glucose levels in 4.5-month
male control and LTKO mice (n=8) after the treatment with a high-fat diet for 3.5 months. (B) Non-fasting blood glucose levels in 4-
month male control and LTKO mice (n=8) after the treatment with the high-fat diet for 3 months. (C, D) Glucose tolerance tests and
the AUC analysis in 4.5-month male control and LTKO mice (n=8) after the treatment with the high-fat diet for 3.5 months,
respectively. (E, F) Expression of genes involved in glucose metabolism was analyzed in the liver of control and LTKO mice (n=4)
treated with the high-fat diet for 5 months by real-time PCR. Pck1, phosphoenoylpyruvate carboxykinase 1; G6pc, glucose-6-
phosphatase, catalytic; Pdk2, pyruvate dehydrogenase kinase 2; Gck, glucokinase; Pkir, pyruvate kinase, liver and red blood cell
type. Data represent mean + SEM. * indicates a significance with P<0.05 in control vs. LTKO mice.

doi: 10.1371/journal.pone.0074340.g004
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The role of hepatic Geck in FoxOs-modulated glucose
metabolism

In addition to gluconeogenesis, FoxOs have been implicated
in glycolysis in the liver [12,16,17,25-27]. Indeed, Western blot
analysis showed that Gck protein was increased more than 2-
fold in the LTKO livers (Figure 7A). To test the extent of the
elevated Gck expression to glucose metabolism in LTKO mice,
we knocked down hepatic Gck gene using adenovirus-
mediated shRNAs (Figure 7B). Seven days post-injection, we
performed glucose tolerance tests, and the results showed that
knockdown of the Gck gene led to glucose intolerance in both
wild-type and LTKO mice (Figure 7C). Two days later, we also
performed insulin tolerance tests. No difference was observed
regardless of genotypes or gene knockdown (Figure 7D).
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These data suggest that Gek mediated hepatic glycolysis also
plays a significant role in FoxOs-regulated glucose metabolism.

Discussion

FoxO family members have been shown to regulate a
number of common target genes including those involved in
metabolism [3,9,13,17,20-22,28-36]. In this study, we
demonstrate that combined deletion of FoxO1/3/4 exerts a
strong impact on hepatic glucose metabolism. LTKO mice
manifest lower blood glucose levels under both fasting and
non-fasting conditions as compared to control mice. One of the
major contributing factors may be the attenuated hepatic
gluconeogenesis since pyruvate tolerance is much better in the
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LTKO mice and expression of gluconeogenic genes including
Pck1, Gépc, and Pdk2 is lower in the LTKO livers as compared
to controls. Additionally, while there is no significant alteration
in Pkir gene expression, Gck gene expression is significantly
increased in the LTKO mice. Remarkably, knockdown of
hepatic Gek gene reduces glucose tolerance in the LTKO mice.
These data suggest that increased glycolysis also significantly
contributes to the rapid glucose clearance in hepatic FoxO1/3/4
deficient mice. This conclusion is consistent with previous
reports using liver-specific Gck transgenic and knockout mice
[37—-42]. Although an increase of the Gck gene copy may
protect mice from developing severe diabetes [43], long-term
overexpression of Gck in the liver also causes fatty liver and
insulin resistance [44]. With regard to LTKO mice, although

PLOS ONE | www.plosone.org

they have better insulin sensitivity after 5 months of high-fat
treatment, those mice also developed hepatic steatosis as we
previously reported [22]. Thus, it is likely that LTKO mice may
eventually develop insulin resistance under obesity-prone
conditions.

It is also possible that FoxOs may regulate glucose
metabolism through their impact on insulin signaling.
Previously, it has been shown that constitutively nuclear FoxO1
mutant can enhance Akt (S473) phosphorylation through
suppression of the inhibitory pseudokinase Trib3 gene
expression [45]. However, no differences in Trib3 gene
expression and insulin-stimulated Akt (S473) phosphorylation
are observed between control and LTKO livers (data not
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shown), raising a question as to whether Trib3 is involved in
the FoxO-regulated glucose metabolism.

Recently, Sirt6 has been implicated in the regulation of
hepatic glycolysis and gluconeogenesis [24]. Although
expression of Gck and Pkir genes has been shown to be
upregulated in the liver of hepatic Sirt6 knockout mice [24],
overexpression of Sirt6 does not suppress Gck and Pkir gene
expression in either wild-type or LTKO livers. This suggests
that additional factors may be needed to achieve the
suppression of glycolytic genes. Nevertheless, Sirt6
overexpression reduces gluconeogenic gene expression in the
liver of wild-type but not LTKO mice, implying that Sirt6 might
coordinate with FoxOs in the regulation of gluconeogenesis.
PGC-1a, a target gene of FoxO1 and also a coactivator of
FoxO1, has been shown to be regulated by SIRT6 through
control of the GCN5 acetyltransferase activity [23]. Thus, it is
possible that SIRT6 modulates hepatic gluconeogenesis
through both PGC-1a and FoxO1.

Significantly, LTKO mice remain euglycemic and insulin-
sensitive on high-fat diet for at least 5 months in this study.
This phenotype is consistent with a previous report that hepatic
deletion of FoxO1 and FoxO3 also improves glucose and
insulin tolerance in diabetic db/db mice [16]. Also individually,
FoxO1 and FoxO6 have been shown to exert significant impact
on glucose metabolism, particularly  on hepatic
gluconeogenesis. Overexpression of FoxO71 or FoxO6 in
mouse liver causes elevated fasting blood glucose levels and
impaired glucose tolerance [11,12,19]. Conversely, knockdown
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