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ABSTRACT

We have previously shown that the curcumin derivative 3,5-bis(3,4,5-trimethoxybenzylidene)-1-methylpiperidine-4-one 
(RL71), when encapsulated in styrene maleic acid micelles (SMA-RL71), significantly suppressed the growth of MDA-
MB-231 xenografts by 67%. Univariate statistical analysis showed that pEGFR/EGFR, pAkt/Akt, pmTOR/mTOR and 
p4EBP1/4EPBP1 were all significantly decreased in tumors from treated mice compared to SMA controls. In this study, 
multivariate statistical analyses (MVAs) were performed to identify the molecular networks that worked together to drive 
tumor suppression, with the aim to determine if this analysis could also be used to predict treatment outcome. Linear 
discriminant analysis correctly predicted, to 100% certainty, mice that received SMA-RL71 treatment. Additionally, results 
from multiple linear regression showed that the expression of Ki67, PKC-α, PP2AA-α, PP2AA-β and CaD1 networked 
together to drive tumor growth suppression. Overall, the MVAs provided evidence for a molecular network of signaling 
proteins that drives tumor suppression in response to SMA-RL71 treatment, which should be explored further in animal 
studies of cancer.
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INTRODUCTION

Multivariate statistical analyses (MVAs) have been widely applied to 
cancer genomics and proteomics in humans but rarely in the context of 
experimental cancer studies in animal models. In this study, we sought 
to investigate their value in the context of understanding the tumor 
suppressive actions of a 2nd-generation curcumin (diferuloylmethane) 
analogue, 3,5-bis(3,4,5-trimethoxybenzylidene)-1-methylpiperidine-4-one 
(RL71) [1-9], encapsulated in styrene maleic acid (SMA) micelles 
(SMA-RL71; [10-13]), in animals expressing a xenograft model of triple 
negative breast cancer (TNBC). In this model of TNBC, SMA-RL71 
(10 mg/kg, iv.) was previously shown to decrease tumor growth by 
67% and modulated the expression of EGFR, Akt, mTOR, and 4EBP1 
[13]. However, only univariate statistical analyses were conducted on 
this data set. The mechanism of action of SMA-RL71 is more likely 

to involve complex interactions amongst various pathways. Therefore, 
in this current study, the range of proteins examined was extended and 
multivariate statistical and data mining analyses were used, in order to 
identify a network of signaling proteins involved in tumor suppression 
[14]. We employed a combination of multiple linear regression (MLR), 
linear discriminant analysis (LDA), random forest classification (RFC) 
and cluster analyses (CA) to achieve this aim. The specific objective 
of using LDA and RFC was to determine whether a combination of 
measurements of tumor-related independent variables could be used to 
correctly classify animals as having received drug treatment or not. This 
type of classification analysis is useful in the development of biomarkers 
for cancer and drug-responsiveness in the treatment of cancer [15]. The 
specific objectives of using MLR and CA were to determine whether a 
combination of measurements of similar independent variables could 
be used to predict the value of a continuous variable, such as tumor 

How to cite this article: Martey ONK, Greish K, Smith PF, Rosengren R. A multivariate statistical analysis of the effects of styrene maleic 
acid encapsulated RL71 in a xenograft model of triple negative breast cancer. J Biol Methods 2019;6(4):e121. DOI: 10.14440/jbm.2019.306



2� J Biol Methods  | 2019 | Vol. 6(4) | e121
POL Scientific

Article

growth, in the case MLR, or to reveal the association between differ-
ent continuous variables, in the case of CA. Again, such multivariate 
statistical methods have been used in the field of clinical cancer, but 
rarely in animal studies of cancer.

MATERIALS AND METHODS

The MVAs reported here are based on data partly reported previously 
[13]. Below is an abbreviated description of those methods. Analyses 
were based on n = 11 mice in the vehicle control group and n = 11 mice 
in the drug-treated group.

Preparation of SMA-RL71 micelles and xenograft model 
of TNBC

SMA-RL71 micelles were prepared as described previously [11]. 
SMA was used as a vehicle control by dissolving in NaOH and ad-
justing the pH to 7.4.

Female SCID mice (7–8 weeks old, 8/group) were inoculated s.c. into 
the rear flank with MDA-MB-231 cells (1 × 106/0.1 ml Matrigel 50%). 
Once tumors reached 100 mm3, the mice were randomly allocated into 
treatment groups. The mice received SMA-RL71 (10 mg/kg, iv) or SMA 
control twice a week for 3 weeks via the tail vein. Two independent 
measurements of tumor volume were performed bi-weekly using 
electronic calipers. The mice were euthanized 24 d after treatment 
began and full necropsies were performed.

Immunohistochemistry of tumor sections
Tissue sections were analyzed for both microvessel density (MVD) 

via CD105 staining and apoptosis via the ApopTag kit as previously 
described [13]. Briefly, tumors were embedded in cryomatrix, sectioned 
(6 µm), and fixed in acetone. When slide preparation was complete, 
the slides were scanned with an Aperio Image ScanScope System 
(Leica, Chicago, IL) and analyzed by an individual who was blinded 
to the treatment groups. The microvessel analysis algorithm was 
used to quantify the MVD at a dark- and light-staining threshold of 
185 and 210, respectively. The nuclear image analysis algorithm was 
used to quantify apoptotic stained cells as the percentage of positively 
stained nuclei.

To add more proteins to the data set, proliferation was quantified 
by determining the number of cells with positive Ki67 nuclear stain-
ing. Sections were pre-treated with antigen retrieval solution (10 mM 
citrate buffer with 0.05% Tween 20, pH 6.0) for 20 min at 95°C in a 
pre-heated jar after blocking endogenous peroxidases. Sections were 
then incubated with the blocking buffer in a humidified chamber for 
1 h and stained with a monoclonal mouse anti-human Ki67 antibody 
(1:100) containing biotin, overnight at 4°C in a humidified chamber. 
Sections were then treated with polyclonal goat anti-mouse IgG (11 
mg/L) secondary antibody for 30 min at room temperature. Negative 
controls were generated by substituting antigens with PBS. Sections 
were counterstained with haematoxylin QS, dehydrated, and DPX 
mounting medium was used to mount cover slips. The nuclear image 
analysis algorithm of the system was used to quantify the percentage 
(Pi) and classify the intensity (i) of positively stained proliferative 
nuclei and expressed as HScore = ∑Pi (i+1) [16].

Detection of plasma thymidine kinase 1 by dot-blot 

assay and tumor lysate preparation and immunoblot 
analysis

Plasma thymidine kinase 1 (Tk1) levels in mice were measured by 
the enhanced chemiluminescent dot blot assay. Three µl of serum from 
control and SMA-RL7 treated mice as well as the recombinant human 
TK1 protein (rHTK1) standard (0.00056–0.18 µM), were applied to a 
nitrocellulose membrane and allowed to air dry. Membranes were then 
blocked with 10% non-fat milk in TBS for 1 h and washed 3× with 
TBS for 5 min. Membranes were incubated with anti-TK1 monoclonal 
antibody (1:500 in 5% BSA) at room temperature for 2 h. Membranes 
were then incubated (1 h) with biotinylated anti-mouse secondary anti-
body (1:1000) at room temperature, washed with TBST (5×) followed 
by streptavidin-conjugated HRP for 30 min and washed 5× with TBST. 
Membranes were then developed with SuperSignal substrate. Signal 
intensity was visualized on radiographic film and quantified with a GS-
710 densitometer (Bio-Rad). PlasmaTK1 was determined using linear 
regression as a function of intensity and concentration of rHTK1. Protein 
extracts from tumors were prepared as previously described [13,16]. 
The density of each band was normalized to a β-tubulin loading control.

MVAs
MLR: Backward MLR was used to predict tumor volume. The 

validity of the MLR was based on an adjusted R2, which indicated the 
strength of the prediction [17-19]. In backward MLR, independent 
variables (IVs) are removed one at a time, in descending order of sig-
nificance, to determine how the adjusted R2 changes. Backward MLR 
is preferred over some other methods because it allows for the exam-
ination of the interaction between variables. Therefore, the interaction 
between IVs was investigated. MLR is prone to artifacts, one being 
that the adjusted R2 increases with the number of IVs, even if they are 
not meaningful. The use of an ‘adjusted R2’ partly controls for this, but 
nonetheless, too many IVs and excessive correlation amongst them can 
lead to overfitting and multicollinearity [14,20-23]. Multicollinearity 
was tested using a variance inflation factor and autocorrelation using 
the Durban-Watson statistic [14,20-23].

Because MLR is part of the general linear model (GLM), it does 
assume that the data conform to multivariate normality, homogeneity 
of the covariance matrices and are independent. Diagnostic plots in 
the R program were used to assess these assumptions. The overall 
significance of the MLR was tested using the regression ANOVA, and 
the significance of the individual predictors was tested using t tests [17-
19,22]. All MLR analyses were performed using the programs SPSS 
25 and R (version 3.6.1).

LDA: LDA is used to predict categorical variables, and was used 
here to predict whether the animals had received drug treatment. LDA is 
also part of the GLM, and therefore assumes that the data are normally 
distributed and are independent [14]. A form of LDA was used in which 
the IVs were entered together, since stepwise LDA is prone to artifacts 
[24]. The analysis yielded a specific LDA and a standardized canonical 
discriminant function that indicated which IVs are important in their 
relationship to the dependent variable. The statistical significance of 
the LDA was tested using Wilk’s λ and its validity was tested using 
cross-validation. Cross-validation for the LDA in this study was con-
ducted using a leave-one-out (LOO) procedure. Simulation studies by 
Zavorka and Perret [25] suggest that, with k = 4 predictor variables, as 
was the case here, and low-moderate bivariate correlation, sample sizes 
in the range of n1 = n2 = 7−14 are sufficient (see also Lachenbruch [26]).
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RFC: Decision trees have been routinely used in data mining [27-
29]. Their underlying principle is that a flow-like series of questions is 
applied to each variable, subdividing the sample into groups that have 
maximal similarity by minimizing the within group variance. In the 
case of random forests, hundreds or thousands of decision trees can be 
generated simultaneously and their results combined to increase the 
precision of the prediction. RFC can predict a categorical variable, such 
as whether animals received drug treatment, from other IVs, where each 
tree provides a “vote” for the categorical membership, and the major-
ity vote “wins”. RFC is largely assumption-free, and therefore it is a 
powerful alternative to LDA when the GLM assumptions are violated 
[27-30]. Furthermore, simulation studies have demonstrated that RFC 
can provide robust classification even with high dimensional data with 
small sample sizes [31]. We used RFC with 500 trees generated using 
4 variables at each split. Although Breiman et al. [27] have suggested 
that RFC does not overfit, this view has been challenged (e.g.,[32]). 
We tried to avoid over-fitting by increasing the number of trees to 500 
as well as by optimizing “m”, the number of variables at each split, 
by testing a range of values for “m”. We chose m = 4, the √p [29], as 
the optimal value. We used cross-validation by splitting the data into 
training and test data sets (70:30) and calculated out-of-bag (OOB) 
error based on observations that were excluded from a subset of the 
training data (the ‘bag’) used to produce the decision trees, and also a 
classification matrix in which the model based on the training data was 
used to predict group membership in the test data set, blind to their actual 
membership. The test error was not greater than the training error, which 
further convinced us that our model did not overfit. All RFC analyses 
were performed using R and the R package, Rattle [30]. In R (version 
3.6.1), RFC analyses provide graphs of error as a function of the number 
of trees, a list of predictor variables in order or importance, as well as 
OOB receiver-operating characteristic (ROC) curves.

Cluster analyses
CA is a type of non-parametric analysis that is used to determine 

associations between variables, with no pre-determined dependent 
variable [14]. It does not make assumptions about the normality of the 
data or homogeneity of the covariance matrices; CA uses measures of 
‘distance’ between variables in order to group them according to their 
degree of association, which is usually shown on a ‘dendrogram’ in 
which similarity increases as an inverse function of the y axis value 
[14]. The squared Euclidean distance was used with a hierarchical, 
Ward minimal linkage algorithm, in which clusters are formed based 
on the minimization of variance [14]. The data were transformed into 
z scores first, in order to minimize the effects of differences in scales 
of measurement for the different IVs.

RESULTS

Effect of SMA-RL71 on tumor proteins
Previous work showed that SMA-RL71 decreased MVD, as shown 

by CD105 staining, and also increased Apoptag-TUNEL staining and 
cleaved caspase-3 protein expression in tumors from treated mice [13]. 
However, immunohistochemical (IHC) staining of tumor sections with 
Ki67, a nuclear antigen expressed in proliferating cells, showed no 
significant difference compared to SMA controls (Fig. 1A and 1B). 
This was confirmed following examination of TK1 levels in the plasma, 
where there was no difference between the treatment groups (Fig. 1C 
and 1D). Thus, univariate analysis showed no difference in cell prolif-
eration in the tumor between SMA-RL71 treatment and controls, even 
though tumor volume was decreased 68% [13].

Figure 1. Effect of SMA-RL71 micelles on cell proliferation in tumors from treated mice. A. Representative photomicrographs of Ki67-positive 
proliferative cells by immunohistochemistry staining. B. Quantification using IHC nuclear image algorithm. C. Representative ECL dot blot of plasma TK1 
and rHTK1 proteins. D. Scanning densitometry quantification of plasma TK1 and concentration determined from a linear regression of rHTK1 proteins. 
Results represent the mean ± SEM of 8 mice per group. None were significantly different.
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While we had previously reported the role of EGFR, Akt, mTOR, 
and 4EBP1 proteins [13], as individually contributing to drug-mediated 
tumor suppression, more proteins were examined in tumors from treated 
mice in order to conduct MVA. The results showed that treatment with 
SMA-RL71 had no significant effect on the expression of Wnt between 
the treatment groups (Fig. 2A and 2B) but caused a 60% decrease in 

the expression of β-catenin (Fig. 2A and 2C). Further investigation 
showed that SMA-RL71 caused a 78% decrease in the expression of 
PKC-α in tumors (Fig. 2A and 2D), but had no significant effect on 
CaD1 (Fig. 2A and 2E), and PP2AA (Fig. 2A, 2F and 2G) compared 
to vehicle control.

Figure 2. Tumor protein expression levels of WNT5a/b, β-catenin, PKC-α, CAD1 and PP2AA following drug treatment. A. Representative western 
blots of the various proteins from individual mice. Scanning densitometry of western blots of Wnt5a/b (B), β-catenin (C), PKC-α (D), CaD1 (E), and PP2AA 
(F and G). Bars represent the mean ± SEM from 8 mice per group. Significance was determined with a one-way ANOVA coupled with a Bonferroni post-
hoc test. *Significantly different compared to SMA control, P < 0.05.

MLR
The MLR adjusted R2 for the prediction of tumor growth was 0.896, 

which was significant according to an ANOVA (F(13,8) = 14.98, P ≤ 
0.0001). The Durban-Watson statistic was 2.12, which indicated a lack 
of autocorrelation [23]. Multicollinearity becomes a concern when the 
tolerance value is < 0.1 [23]. Significant predictor variables that had a 
tolerance ≥ 0.1, and were therefore not likely to generate multicollinearity, 
were drug treatment (P ≤ 0.001), Ki67 (P ≤ 0.009), PKC-α (P ≤ 0.0001), 
PP2AA-α (P ≤ 0.0001), PP2AA-β (P ≤ 0.0001) and CaD1 (P ≤ 0.001). 
The validity of this regression model was checked independently using 
best subsets regression and the results were similar, with R2 values in 
the range of 86%–90% with multi-collinearity controlled for using the 
Mallow’s Cp index.

LDA
An LDA with a canonical correlation value of 0.88 was obtained, 

which was significant (Wilk’s λ (4,17) = 14.86, P ≤ 0.0001). The stan-
dardized canonical discriminant function coefficients were tumor volume 
0.56, pAkt/Akt, 0.83, pEGRF, 0.71 and β-catenin, 0.57. Cross-validation 
demonstrated that this linear discriminant function was100% successful 
in classifying the animals to the correct treatment group (Table 1). The 
analysis was repeated using stepwise regression and similar results 
were obtained.

RFC
RFC was used as an alternative to LDA to predict the classification 

of the animals to the correct treatment groups. Five hundred trees with 
4 variables at each split were used. The OOB estimate of error was 



J Biol Methods  | 2019 | Vol. 6(4) | e121� 5
POL Scientific

Article

only 6.25% and the error became reasonably stable after the first 400 
trees. The ROC curve showed a good hit versus false alarm rate with an 
area under the curve (AUC) value of 0.95 (Fig. 3). In terms of variable 

importance, the most important variables for classifying the animals 
into treatment groups were pEGFR, PKC-α, PP2AA-β, pAkt, pAkt/
Akt, Apoptag, β-catenin and tumor volume (Fig. 4).

Figure 3. Area under ROC curve from the random forest model, predicting group membership. The diagonal line represents a random classifier, 
showing ROC curve above and an AUC > 0.5. RFC of signaling protein expression was performed using R3.4.3 and the R package Rattle.

Figure 4. Rank order of the specific proteins important to tumor suppression by the random forest model. The OOB estimation method was 
used to classify the rank list in order of highest score of relative importance. RFC of signaling protein expression was performed using R3.4.3 and the 
R package Rattle. Mean decrease accuracy: average measure of obstruction in classification if the variable is removed from the model. Mean decrease 
Gini: average measure of the difference in split nodes from individual variables over all trees in the model to predict variable importance.
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Cluster analysis
Hierarchical cluster analysis showed that pEGFR clustered closely 

with tumor volume and Ki67, pAkt with CD105, NF-κB with PKC-α 
and β-catenin, and PP2AA-α with PP2AA-β, EGFR and Wnt5ab. The 

two largest clusters were of pEGFR, tumor volume, Ki67, pAkt and 
CD105 on the one hand, and Apoptag, CaD1, NF-κB, PKC-α, β-catenin, 
PP2AA-α, PP2AA-β, EGFR, Wnt5ab and Akt, on the other (Fig. 5).

Figure 5. Dendrogram of clustered signaling proteins involved in tumor suppression. The hierarchically clustered variables were calculated by an 
agglomerative Ward’s linkage method and using squared Euclidean distance. Clustering was performed by SPSS 24.

Table 1. Classification of treatment groups by linear discriminant analysis.

      Predicted group membership   

    Treatment SMA SMA-RL71 Total

Originalb Count SMA 11 0 11

    SMA-RL71 0 11 11

  % SMA 100 0 100

    SMA-RL71 0 100 100

Cross-validateda Count SMA 9 2 11

    SMA-RL71 0 11 11

  % SMA 81.8 18.2 100

    SMA-RL71 0 100 100

aCross validation is conducted only for those cases in the analysis. In cross validation, each case is classified by the functions derived from all cases other 
than that case. b100% of original grouped cases correctly classified.

DISCUSSION

Most animal studies investigating the role of cancer-related proteins 
only perform univariate analyses. As useful as this can be, differences 
in related proteins which function as a network, can be missed. In 
this study, we adopted a different approach, using MVAs to identify a 
network of proteins critical to growth suppression of TNBC tumors.

Using MLR, the growth of the tumor itself was strongly predicted 

by whether the animals had received treatment with SMA-RL71, as well 
as the expression of Ki67, PKC-α, PP2AA-α, PP2AA-β and CaD1. The 
adjusted R2 of 0.896 indicated that these variables accounted for almost 
90% of the variation in the growth of the tumor. The prediction potential 
of this group of proteins was interesting given that Ki67 (P = 0.4175), 
CaD1 (P = 0.2178) PP2AA-α (P = 0.1295) and PP2AA-β (P = 0.3901) 
were not significantly changed when analyzed by univariate methods.

It is important to note that although studies have established a 
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relationship between Ki67 and overall survival (OS) and disease-free 
survival (DFS) [33-35], the predictive value of Ki67 as an indicator 
of chemotherapy benefit is controversial. For example, in the BR9601 
adjuvant chemotherapy trial, 8 cycles of CMF (cyclophosphamide, 
methotrexate and fluorouracil) or epirubicin-CMF (4 cycles of epirubicin, 
followed by four cycles of the same CMF regimen) were administered 
to patients every 21 d. The primary end point was relapse-free survival 
(RFS) (HR = 0.36) and OS (HR = 0.30). However, Ki67 levels did not 
significantly interact with OS (P = 0.247) and RFS (P = 0.736) and 
therefore did not predict treatment outcome [36]. Similarly, in a study 
by the International Breast Cancer Study Group (IBCSG) IX, patients 
were randomly assigned to receive three 28-day courses of adjuvant 
CMF chemotherapy (cyclophosphamide on days 1–14, methotrexate on 
days 1 and 8; and 5-fluorouracil on days 1 and 8), followed by tamoxifen 
(57 months) or tamoxifen alone (60 months) [37,38]. CMF-tamoxifen 
resulted in a 5 year DFS and OS (87% and 89%) while tamoxifen also 
resulted in a 5 year DFS and OS (69% and 81%) [37-38]. However, 
there was no interaction between Ki67 levels and the response to the 
treatment [36,38]. Thus, Ki67 as an independent prognostic factor does 
not always reflect the response to treatment. However, our MVA results 
show that they form a biological network of molecular targets in the 
prediction of treatment outcome.

The role of CaD1 as a cancer metastasis associated protein was con-
firmed by Hou et al. [39]. Notably, CaD1 was less expressed based on 
IHC staining intensity and Western blotting in metastasis gastric (MKN7 
and AZ521) cells compared to primary cancer cells (AGS and FU97) 
[39]. Additionally, IHC staining of gastric cancer tissues supported the 
in vitro expression of CaD1 and showed a significant decrease in CaD1 
staining in lymph node metastasized tissues compared to the primary 
gastric tumors [39]. Furthermore, siRNA knockdown of CaD1 in AGS 
cells elicited an ~150% and ~50% increase in migration and invasion, 
respectively. In contrast, overexpression of CaD1 in AZ521 resulted in 
a ~50% decrease in both migration and invasion [39]. Similarly, low 
expression levels are found in colon cancer HCA7 cells and human 
breast cancer MB435S cells and a 4-fold and 7-fold increased invasion 
following siRNA-CaD1 treated cells compared to control cells was ob-
served [40]. Thus, it is possible that if other studies had performed MVA, 
CaD1 would likely have contributed to a tumor suppressor network.

Using LDA to predict which animals had received SMA-RL71 
treatment, we found a linear discriminant function that was statistically 
significant and 100.00% successful in correctly classifying the animals. 
The most important variables appeared to be tumor volume, the ratio 
of pAkt/Akt, pEGFR and β-catenin. A different form of classification 
analysis, RFC, found that pEGFR, PKC-α, PP2AA-β, pAkt, pAkt/
Akt, Apoptag, β-catenin and tumor volume, were the most important 
predictor variables of the treatment group, although it is notable that 
pEGRF, pAkt/Akt and tumor volume were common to these two forms 
of analysis. For the RFC, the OOB estimate of error was only 6.25% 
and the AUC for the ROC curve, showing the hit versus false alarm rate, 
was 0.95. Thus, the expression of these signaling proteins was able to 
accurately distinguish tumor bearing mice receiving drug from those 
receiving vehicle with a specificity and sensitivity of 95%.

PKC-α may also be an important therapeutic target for SMARL71 
in TNBC, as it was identified in the prediction of the SMA-treatment 
outcome during interaction with other signaling proteins in the MVAs 
and when analyzed as a single protein via univariate analysis. Inhibition 
of PKC phosphorylates Wnt/β-catenin signaling through direct phos-

phorylation of β-catenin at Ser45 and promotes β-catenin degradation 
[41]. In the present study, PKC-α was decreased by 78% following 
SMA-RL71 treatment in vivo. Similarly, the curcumin analogue, J1, 
inhibited the phosphorylation of PKC-theta in MDA-MB-231 and 
MCF7 cells by approximately 89% and 91%, respectively after 12 h 
[42]. Studies have also shown that the presence of heat shock protein 
105 recruits PP2A, which in turn prevents the phosphorylation of the 
β-catenin degradation complex and subsequently activates Wnt-signaling 
that leads to cell proliferation and inhibition of apoptosis [43,44]. Shieh 
et al. [45] reported a time-dependent suppression of PP2A signaling by 
demethoxycurcumin in MDA-MB-231 cells with complete suppression 
at 48 h. Similarly, curcumin decreased the expression of PP2A by 50% 
in human rhabdomyosarcoma after 24 h, which led to an activation of 
mitogen-activated protein kinases and death in tumor cells [43]. Thus, 
there is evidence to suggest that the protein network identified does 
work in concert to modulate tumor growth.

CA are ‘unsupervised’ (i.e., there is no specific dependent variable 
to be predicted) but they explore the natural groupings of the signaling 
proteins. In a study by Dieninger et al. [46], 28 statistically significant 
m/z species were differentially expressed from 15 metastasized and 
17 non-metastasized Barrett’s adenoma cases. Hierarchical clustering 
was performed on 10 of the most significant m/z species of the tumor 
tissues, which distinguished Barrett’s adenocarcinoma with lymph 
node metastasis from those without lymph node metastasis with 81% 
accuracy, following a specificity and sensitivity of 77% and 94%, 
respectively [42]. Also, hierarchical clustering of mass spectra of pro-
teins identified by matrix-assisted laser desorption ionization imaging 
correctly separated gastric cancer and non-neoplastic mucosa [42]. CA 
in our studies showed that pEGFR clustered closely with tumor volume, 
which is consistent with the results of the LDA and RFC analyses. Also, 
Ki67 (anti-proliferation) clustered closely with tumor volume, which 
also confirmed its important role in tumor suppression. Overall, pAKT 
clustered with CD105 (anti-angiogenesis) while CaD1 clustered closely 
with Apoptag (pro-apoptosis).

We were concerned to ensure that the MVAs were valid and were 
not undermined by the relatively small sample size (n = 22), multicol-
linearity or overfitting. For the MLRs, the Durban-Watson statistic was 
2.12, which indicated a lack of autocorrelation [23]. Multicollinearity 
becomes a concern when the tolerance value is < 0.1 [23]; however, all 
of the significant variables had a tolerance ≥ 0.1. We tested the validity 
of the MLR by repeating the analysis using a best subsets regression, 
which generated similar results. The validity of the LDA was tested 
using a ‘leave-one-out’ (LOO) cross-validation procedure, which makes 
over-fitting less likely, and simulation studies suggest that the sample 
sizes should have been sufficient given the number of predictor variables 
[25,26]. We tested the validity of the LDA by repeating the analysis 
using stepwise regression and similar results were obtained. For RFC, 
simulation studies have demonstrated that RFC can provide robust 
classification with small sample sizes [31]. We tried to avoid over-fit-
ting by increasing the number of trees to 500 as well as by optimizing 
‘m’, the number of variables at each split, by testing a range of values 
for ‘m’. Finally, we chose m = 4, the √p, which is recommended [29].

Statistical analysis is an integral part of drug efficacy studies, but 
research investigating the role of signaling pathways usually reports 
analysis of one protein at a time. Given the complexity of the cell sig-
naling network in cancer, changes in one protein may not accurately 
reflect treatment outcome. Additionally, the interactions between sig-
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naling proteins may be missed. In this study, the MVAs have identified 
biological networks that drive tumor growth suppression mediated by 
SMA-RL71. These results should encourage others to include MVA as 
part of their data analysis when using in vivo cancer models.
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