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Personalized medicine has become increasingly relevant to many medical

fields, promising more efficient drug therapies and earlier intervention. The

development of personalized medicine is coupled with the identification of

biomarkers and classification algorithms that help predict the responses of

different patients to different drugs. In the last 10 years, the Food and Drug

Administration (FDA) has approved several genetically pre-screened drugs

labelled as pharmacogenomics in the fields of oncology, pulmonary medicine,

gastroenterology, haematology, neurology, rheumatology and even psy-

chiatry. Clinicians have long cautioned that what may appear to be similar

patient-reported symptoms may actually arise from different biological

causes. With growing populations being diagnosed with different psychiatric

conditions, it is critical for scientists and clinicians to develop precision

medication tailored to individual conditions. Genome-wide association

studies have highlighted the complicated nature of psychiatric disorders

such as schizophrenia, bipolar disorder, major depression and autism spec-

trum disorder. Following these studies, association studies are needed to

look for genomic markers of responsiveness to available drugs of individual

patients within the population of a specific disorder. In addition to GWAS,

the advent of new technologies such as brain imaging, cell reprogramming,

sequencing and gene editing has given us the opportunity to look for more

biomarkers that characterize a therapeutic response to a drug and to use all

these biomarkers for determining treatment options. In this review, we discuss

studies that were performed to find biomarkers of responsiveness to different

available drugs for four brain disorders: bipolar disorder, schizophrenia,

major depression and autism spectrum disorder. We provide recommen-

dations for using an integrated method that will use available techniques for

a better prediction of the most suitable drug.
1. Introduction
The application of personalized medicine for disease diagnosis and treatment

is accelerating, enabling targeted therapies for various illnesses. The FDA has

approximately 260 drugs with a label of pharmacogenomics, some of which

include specific actions to be taken depending on biomarker information such

as gene expression differences and chromosomal abnormalities. Personalized

medicine is often called precision medicine or genomic medicine, but personalized

medicine should be a more generalized term, because genomics is only one way to

pre-determine the best medication for a specific patient with a history, symptoms

and disease development that are unique to them. Using a variety of biomarkers,

an algorithm weighing all these factors into a treatment decision should direct the

physician to the best medicine for that specific patient, because although the

symptoms experienced by that patient may seem similar to those reported by

others, the cause or origin of a disease may be different. A simple example for

how a different medication would be better in different cases presenting with simi-

lar symptoms is a viral versus a bacterial throat infection. Both diseases present
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with a sore throat accompanied by fever, but physicians know

how to diagnose the best treatment for each of these cases, and

the treatment is different.

When dealing with diseases that are more complex in

nature, the diagnostic tools become more complex. Psychiatric

disorders have been shown to be polygenic; usually the pene-

trance of a single variant is low and so is its added effect on the

overall phenotype. Therefore, providing precision medication

requires more sophisticated algorithms. We live in an era in

which computational capabilities double every two years [1];

dealing with this reality, accompanied by the outburst of avail-

ability of genomic, neuroimaging and other new techniques

such as cell reprogramming and gene editing, it is to be

expected that the task of finding the most suitable medication

will be based on diagnoses and predictions derived from all

of these available techniques.

The prevalence of various psychiatric disorders among the

population is estimated to be an astonishing number, about

30–40% [2–4]. It is only quite recently, however, that we started

realizing the complexity and heterogeneity of the genetics

underlying these disorders [5–11]. For example, genome-wide

association studies (GWAS) analyses revealed a large number

of single nucleotide polymorphisms (SNPs) with a significant

association with disease but low penetrance in a diseased popu-

lation. It may be that a certain amount of variation needs to

accumulate or that these variations act as a network to cause

the symptoms that we associate with these disorders. It is inter-

esting to note that, in some psychiatric disorders such as autism,

less than 3% of the cases are caused by a small number of rare de

novo mutations with a high impact [12,13], such as Smith

Magenis syndrome [14] (where a deletion occurs on the short

(p) arm of chromosome 17 at a p11.2), Rett syndrome (mutation

in MECP2 gene) [15] and fragile X syndrome (inherited or de

novo mutations in FMR1 gene) [16]. While all share features

typical of autism, the cause of each syndrome is very different,

and each has been labelled as a sub-category.

By contrast to genetic heterogeneity in complex disease,

there is also the other side of the coin: when the same (or simi-

lar) genes cause different disorders, pleiotropy. For example,

disrupted in schizophrenia 1 (DISC1), neuregulin 1 (NRG1)

and CACNA1C mutations and polymorphisms are known to

be associated with schizophrenia, bipolar disorder and major

depression [17–20]. Another example is the gene dystrobre-

vin-binding protein 1 (DTNBP1), which has been implicated

in schizophrenia, bipolar disorder and major depression

[21–24]. There are additional genes implicated in schizo-

phrenia, bipolar disorder and autism spectrum disorder such

as NRXN1, CACNA1C, CACNB2 and CNTNAP2 [25–27]. It

is possible that some genes are more vulnerable to environ-

mental stress. It also could be that, in order for a phenotype

to show, a network of genes acting together is needed; there-

fore, each gene by itself is not strongly selected against, and

they can be well transmitted without loss of fitness in most

cases but, with enough accumulation of mutational burden,

disease will occur. The main conclusion when it comes to treat-

ment selection is that the origin of each disorder is so complex

that no single treatment is best for these disorders; the whole

genetic, epigenetic and environmental background should be

taken into account.

The diversity of available drugs today for psychiatric

disorders alone shows the difficulty of finding the right treat-

ment for the right patient. The mechanism by which these

drugs act is usually not well understood. Each drug carries a
long list of side effects, so when an ineffective drug is pre-

scribed, not only is it a waste of time for the patient whose

symptoms do not improve, but there are also the side effects

that act on other systems, sometimes causing long-lasting

and irreversible damage. For schizophrenia, for example,

there are over 30 suggested drugs, including antipsychotics

[28,29]. While 30% of the patients will not respond to the

drugs at all, about 30–40% will have a partial response and

approximately 30% of the responders will relapse [30]. For

bipolar disorder, lithium is currently considered the first-line

treatment, but only 30% of bipolar disorder patients will

fully respond to it [31,32]. Other drugs used to treat bipolar dis-

order include mood stabilizers, antipsychotics, a combination

of antidepressants and antipsychotics, and anti-anxiety medi-

cation [33–35]. For major depression, around 30–50% of the

patients have full remission of symptoms with treatment

[36–38]. The treatments include selective serotonin reuptake

inhibitors (SSRIs), which are prescribed first (e.g. Prozac,

Sertraline), norepinephrine–dopamine reuptake inhibitors

such as bupropion, and older classes of antidepressants such

as tricyclic antidepressants and monoamine oxidase inhibitors

[39]. These antidepressants are sometimes combined with

mood stabilizers such as lithium and valproic acid [40]. For

autism spectrum disorder, drug treatment is used to reduce

irritability and aggression. Two drugs have been approved

for treatment in children, risperidone and aripiprazole; other

drugs include clozapine, haloperidol and sertraline [41]. Yet

other drugs are used to treat attention deficit hyperactivity dis-

order (ADHD) or sleep disturbance; SSRIs are sometimes used

to treat anxiety or depression.

In this review, we summarize studies aiming to find predic-

tive biomarkers for the drug that is the most suitable

medication for patients with one of the following psychiatric

disorders: bipolar disorder, schizophrenia, autism spectrum

disorder and major depression. For each disorder we present

previous associations and even prediction attempts of treat-

ment outcome using clinical data, GWAS, neuroimaging and

other techniques. Currently, the field of prediction of drug out-

come is in its infancy, and much work needs to be done.

Developing a good predictor will be extremely rewarding

because the burden of these diseases on world finances is

very large and, more importantly, finding the right drug for

the patient will often allow patients to lead normal lives.
2. Prediction of drug treatment for bipolar
disorder

The first-line treatment for bipolar disorder is lithium, which

has the strongest evidence of long-term relapse prevention

[42,43]. Lithium reduces mania episodes by 38% and

depression episodes by 28% [44]. Other first-line treatments,

with weaker evidence of effectiveness, include lamotrigine,

valproate, olanzapine, quetiapine, aripiprazole and risperi-

done [45]. People with managed bipolar disorder can often

regain social and occupational functioning; therefore, finding

an effective treatment is very important. Early intervention

and providing the right treatment early in the progression of

the disease have been shown to be very important to the overall

outcome of the patient’s psychosocial functioning [46,47].

While lithium works very well for some patients, it has adverse

side effects such as long-term renal damage, tremors, oedema

and weight gain [48–50]. Therefore, predicting the patient’s
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response to the drug both protects the patient from these side

effects and allows the clinician to search for a different drug

that will stop the mood episodes as soon as possible.

2.1. Clinical data
A number of behavioural studies have tried to predict the out-

come of lithium treatment. Calkin et al. [51] showed that a

lower body mass index (BMI) was correlated with a good out-

come for treatment but did not show a prediction performance

assessment. Sportiche et al. [52] studied a large cohort of 754

patients and showed that mixed episodes and alcohol abuse

appeared in more than 20% of patients with a partial response

or non-response to lithium ( p , 0.02), and a family history of

bipolar type I was associated with a good response (38% in

the good response group and 18% in the non-responsive

group, p � 0.05); there was also a trend ( p ¼ 0.06) that bipolar

type II was associated with a non-response. Kleindienst et al.
[53] tried to predict a good outcome according to behavioural

aspects. They performed a meta-analysis of 43 previous studies

and calculated the correlations of 42 clinical features. The data

for each feature were available from hundreds of patients.

A significant correlation was found with the following features:

(1) an episodic pattern of mania–depression interval (positive

correlation); (2) a high age of illness onset (positive corre-

lation); (3) a high number of previous hospitalizations

(negative correlations); (4) an episodic pattern of depression–

mania interval (negative correlation); and (5) continuous

cycling (negative correlation).

More clinical data [54] provided the Temperament Scale of

Memphis, Pisa, Paris and San Diego–Autoquestionnaire

(TEMPS-A) scores that are associated with lithium respon-

siveness in 71 bipolar disorder patients. A hyperthymic

temperament was significantly positively correlated with a

good outcome in response to long-term (5 years) lithium carbon-

ate treatment. Depressive, cyclothymic oranxious temperaments

were significantly negatively correlated with responsiveness to

lithium treatment. Many more behavioural studies have shown

that progression of disease, the pattern at which episodes

appear, rapid cycling and the number of depression episodes

are significantly associated with lithium response/non-response

[54–58]. Therefore, clinical data are important parameters when

building a response-to-lithium predictor and they should be

combined with newer methods for prediction.

2.2. Genetics and GWAS
There seems to be a strong genetic component in the response

to a certain drug, and specifically to lithium [59,60]. A few

studies showed that a good response to prophylactic lithium

is a familial trait [59,61–64], pointing more and more in the

direction of genomic association. Several genomic studies

were used to correlate specific loci with lithium responsive-

ness. Turecki et al. [65] studied a cohort of 247 individuals

from 31 families; 106 were considered affected. They were

able to map two specific loci associated with responsiveness

to lithium with a low p-value. The best association was seen

in the locus 15q14 (31.46 cM), which had the strongest associ-

ation, followed by 7q11.2 (84 cM), 6p23 (42.27 cM) and

22q11.2 (4.06 cM). Another study by Perlis et al. [66] reported

on two cohorts, one with 1177 bipolar disorder type I and

type II patients and another with 359 bipolar disorder type

I or II patients. With the first cohort, they mapped one
strong association locus on chromosome 10p15 and a few

other less strong loci (21q21, 12q22 and 6p21). When compar-

ing the two datasets, five loci showed the same direction of

effect (8q22, 3p22, 11q14, 4q32 and 15q26). However, no

loci met the threshold for genome-wide association. Another

study by Turecki et al. [67] on 136 excellent lithium respon-

ders, 163 controls and 32 families, ascertained through

lithium-responsive bipolar probands, showed that poly-

morphisms in the gene PLCG1 were at a significantly

higher frequency in the lithium responder bipolar disorder

cohort. A follow-up study [68] with a Norwegian population

had similar findings.

Another association [69] was found with a sample of 52

bipolar disorder patients in the Sardinian population. This

study found the strongest associations in four SNPs for

rs2811332 (intron 4 of the TMCC1 gene), rs1390913 (192953-

bp downstream of the GNPDA2 gene), rs869156 (intron 4 of

the RASSF4 gene) and rs11869731 (intron 1 of the ACCN1

gene), with p-values ranging from 1024 to 1025. The ACCN1

association remained significant even after enlarging the data-

set to 204 patients. ACCN1 encodes for a cation channel that is

mainly permeable to Naþ and to a lesser extent to Liþ and Kþ,

and it is largely expressed in neurons. Another SNP was

found by Masui et al. [70], Asn796Ser, a SNP in the BCR

gene, when genotyping 161 bipolar disorder patients. The

allele frequency of the Asn796Ser SNP was significantly

higher in non-responders.

A very strong association was shown by Chen et al. [71].

Using a discovery cohort of 294 bipolar disorder I Han

Chinese-descent patients, they performed a GWAS and

found two SNPs in the GADL1 gene introns that associated

with a good lithium response with p ¼ 5.50 � 10237 and p ¼
2.52 � 10237. Repetition in another cohort composed of 100

bipolar disorder patients type I had similar results, with p ¼
9.19 � 10215 in each of the SNPs. Prediction based on these

SNPs gave a 93% sensitivity. Interestingly, a follow-up study

in an Indian population could not replicate these results [72].

Furthermore, Birnbaum et al. [73] reported minimal expression

of GADL1 in autopsy brains (including those from bipolar dis-

order patients) and suggested the need to search for lithium

effects on kidney function in patients, where this gene is

expressed.

Another strong study by Hou et al. [74] included 1162

patients in the first GWAS and 1401 in a second GWAS. They

found a few SNPs appearing in both datasets, with the most

significant ones occurring on four loci on chromosome 21

with p-values in the range of 1028–1029. None of the SNPs

were in protein-coding gene areas. Two long non-coding

RNAs resided in the area; two of these SNPs were located in

an intronic region of a long non-coding RNA and the other

two were located between these long non-coding RNAs.

A study of 170 bipolar disorder patients who had been fol-

lowed for 27 years [75] found that patients carrying the T allele

for the rs2314339 SNP were 3.5 times more likely to show no

improvement for lithium prophylaxis or to experience wor-

sened symptoms with treatment. In another recent study, the

International Consortium on Lithium Genetics et al. [76] per-

formed a GWAS on 2586 bipolar disorder patients,

approximately 90% of European ancestry and 10% Asian.

Using the Alda scale, Duffy et al. [77] assessed the outcome

response of these patients to lithium treatment. They first

built a polygenic score for schizophrenia (PGS) using discovery

GWAS outcome estimates from 36 989 schizophrenia patients.
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They then performed a cross-trait meta-analysis and pathway

analysis based on the GWAS of the schizophrenia patients

and on treatment response in the bipolar disorder patients.

They found that a high polygenic score for schizophrenia

was inversely associated ( p , 0.05) with a good response to

lithium treatment. This finding concurs with evidence that

bipolar disorder patients who have a family history of schizo-

phrenia show poorer response to lithium compared with those

with a family history of bipolar disorder [78].

Polymorphisms related to the serotonin regulatory

regions were also found to be associated with a good or

poor response to lithium treatment. Serretti et al. [79] studied

the genetics of 201 patients (167 with bipolar disorder and 34

with major depressive disorder) and showed that the variants

in the upstream regulatory region of the serotonin transporter

gene (5-HTTLPR) were related to the response of the patient

to lithium. Subjects with the s/s variant showed a worse

response compared to both l/s and l/l variants. Serretti

et al. [80] followed up this study with a new cohort of 83 bipo-

lar disorder patients and were able to replicate their findings

of the better response of l/s carriers, but could not confirm a

poor efficacy in subjects with the s/s genotype. Similar

results were obtained by Rybakowski et al. [81] with a

group of 67 patients; in the lithium non-responders, the gen-

otype s/s and the allele s were significantly more frequent

than in excellent and partial responders.

GSK-3b polymorphisms have also been shown to play a

role in a few studies. Benedetti et al. [82] studied the

polymorphisms in the promoter of the gene encoding for

GSK-3b, a known target of lithium [83], in 88 bipolar disorder

type I patients. Variants in this gene have already been

shown to contribute to the risk for bipolar disorder [84]. Ben-

edetti et al. [82] found that patients with a T/T polymorphism

improved less than patients with a T/C or a C/C. Follow-up

studies did not confirm their results in a different cohort of 89

bipolar disorder patients [85] or in another study [86].

2.3. Neuroimaging
Another promising prediction method is imaging. Just

recently, Fleck et al. [87] used functional magnetic resonance

imaging (fMRI) and proton magnetic resonance spectroscopy

to perform a prediction of outcome to lithium treatment on a

group of 20 bipolar disorder patients. They trained an algor-

ithm called genetic fuzzy tree (GFT), which builds logic

statements according to the neuroimaging training data,

and they were able to predict on the test data (80% train

data, 20% test data) whether the patient would have a good

outcome to lithium therapy.

Another interesting imaging predictor was built by

Kruger et al. [88], who performed a regional cerebral blood

flow measurement using positron emission tomography

(PET); patients were tested during induced sadness by

reading a script describing a sad event from the patient’s

past. The researchers scanned nine patients who were

good lithium responders and nine patients who were good

valproate responders. For both the lithium and valproate

groups, induced sadness resulted in changes in several

areas such as the premotor cortex, dorsal anterior cingulate

and anterior insula. Comparison of the change patterns

in the lithium responders and valproate responders

showed differences in the rostral anterior cingulate and the

dorsolateral prefrontal cortex.
2.4. Other methods
Electrophysiology: using whole-cell patch clamp, we previously

built a naive Bayes classifier for prediction of lithium response

[89]. We measured the physiology of neurons derived from

bipolar disorder patients and characterized them using electro-

physiological features. We observed, for example, that bipolar

disorder neurons from both lithium responders and lithium

non-responders shared a larger fast after-hyperpolarization,

which is a property that correlates with excitability in other dis-

orders as well [90]. Interestingly, we found several features that

distinguished between the neurons that were derived from

lithium responders and lithium non-responders. A naive

Bayes classifier was built to predict which of the patients

from whom the neurons were derived would respond to

lithium therapy. Our classifier trained on electrophysiological

features from a training set (from known patients) and then

used features from a test set (of an unknown patient) to predict

whether the test patient would respond to lithium. This was

done recursively, each time taking a different patient as the

test set and the remaining patients as the training set. We

showed that it was possible to predict with an error rate of

approximately 5% which of the patients in our cohort would

respond to lithium, using features from five patch-clamped

neurons. The low error rate provides great promise for develop-

ing techniques that will be easier to implement and will be able

to provide a good prediction. Our data and those of others

[89,91–93] suggest the presence of two sub-disorders in bipolar

disorder with very distinct features, and therefore different and

distinguishable pre-treatments.

Thyroid function: Cole et al. [94] studied a group of 65 bipolar

disorder type I patients treated with lithium carbonate (57) or

divalproex (3) or both (4) and one patient who was treated

with carbamazepine. Forty-four of the patients did not respond

to monotherapy and also received an antidepressant in addition

to the main mood stabilizer. The thyroid tests included thyroid-

stimulating hormone (TSH), thyroxine (T4), triiodothyronine

(T3) resin uptake and free thyroxine index (FTI). They found

that lower FTI values and higher TSH values were significantly

associated with a poorer response to lithium. Conversely, the

combination of lower TSH and higher FTI was associated with

a markedly more rapid remission of depression.
3. Prediction of drug treatment for major
depression

Major depression is the most prevalent of psychiatric disorders,

posing a heavy burden of disease. SSRIs are the most

commonly prescribed class of antidepressants. However,

approximately 30–40% of patients fail to respond to SSRI treat-

ment entirely, and in those who do respond, weeks of

treatment are required before therapeutic effects can be seen.

Owing to a limited understanding of the pathophysiology of

the disorder, treatment options follow a trial-and-error strat-

egy. Thus, early prediction of treatment–response status may

significantly improve the choice of treatments and shorten

the time required for achieving remission.

3.1. Clinical data
Using clinical data, Chekroud et al. [95] predicted the response

to citalopram of patients with depression. They studied 25
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behavioural features of their patients, such as employment

status, years of education, insomnia measures and suicidal

thoughts, and predicted with cross-validation the outcome of

164 patients with an accuracy of approximately 65%. They

then used their prediction on another validation of escitalo-

pram treatment group of 151 patients. Their predictor gave

an accuracy of approximately 60%. They used this model to

further predict the response to a combined treatment of escita-

lopram and buproprion in 134 patients, with an accuracy of

approximately 60%. However, the model failed when they

used it on a group of 140 patients treated with venlafaxine–

mirtazapine (accuracy of approximately 51%, p ¼ 0.5),

suggesting that the model is specific for mechanisms that are

associated with escitalopram.

Mulder et al. [96] studied clinical data from 175 patients

with depression treated with fluoxetine or nortriptyline and

observed an improvement after six months. They found

that behavioural features that were associated with a good

response were early response and a lower number of schizoid

personality disorder symptoms. A poor response was associ-

ated with a higher harm avoidance (HA) score, late response

and a higher number of schizoid personality disorder symp-

toms. Following up their work, Mulder et al. [97] assessed

164 of these patients after 18 months. Of the 123 patients

who were not depressed at six months, 57 (46%) relapsed.

Patients who relapsed were more likely to have a history of

recurrent depression, have residual depressive symptoms,

have a less sustained response to initial treatment, and

have avoidant personality disorder symptoms, schizotypal

personality disorder symptoms, higher HA scores and lower

self-directedness (SD) scores. Of the 38 patients who were

depressed at six months, 13 (34%) recovered after 18 months,

but no associated features were found.

3.2. GWAS
A GWAS association study was performed by Ising et al. [98] on

a total of 339 inpatients with major depression (85%) or bipolar

disorder (15%), and a further 361 inpatients with depres-

sion and 832 outpatients with major depression. They found

associations with a few SNPs such as the rs6989467 on 8q22

(early partial response to antidepressants, genotypic model,

p ¼ 7.6 � 1027) or rs1502174 (dominant-recessive model, p ¼
8.5 � 1025) located in the 30 flanking region of the EPHB1

gene on 3q22. However, no effect withstood correction for mul-

tiple testing. They then pooled the data with another

independent cohort and performed another GWAS. The high-

est association found was for rs1912674 (early partial response

to antidepressants, p ¼ 8.9 � 1027), located in the region

between the AK090788 and PDE10A genes on 6q21. No

effect remained significant after correction for multiple testing.

Next they performed another GWAS for the last cohort and

found SNPs that were common with all three cohorts; none

of them withstood correction for multiple testing, but 46

SNPs were in the same direction and significant before correc-

tion. When they performed a multi-locus analysis in two of the

cohorts, they found a significant association of the number of

response alleles (high versus low) to response to treatment.

Patients with a comorbid anxiety disorder in combination with

a low number of response alleles showed the least favourable

outcome. The authors stressed the importance of combining

information about multiple genetic factors and of also using

clinical features in predicting antidepressant response.
A large study [99] involving 1790 major depression disorder

patients of European ancestry could not find a single common

genetic polymorphism that could significantly predict response

to SSRIs and noradrenaline reuptake inhibitors, and no bio-

logical pathways were significantly over-represented in the

results. No associations were found in a meta-analysis with

another large cohort of 2897 individuals. Polygenic scoring

found no convergence among multiple associations among

the two cohorts.

A sample of 186 major depression patients received 8

weeks of duloxetine treatment in a study performed by

Maciukiewicz et al. [100]. They used the MADRS score [101]

to categorize the responders and non-responders to the treat-

ment. They performed genome-wide logistic regression to

find variants related to duloxetine response and extracted the

most promising predictors using LASSO regression [102].

They applied support vector machines (SVMs) to construct

models, using ten-fold cross-validation. Their classifier per-

formed significantly better than chance (accuracy p . 0.1) for

response. For remission, it achieved moderate performance

with an accuracy ¼ 0.52 and a sensitivity ¼ 0.58. The authors

commented that inclusion of additional non-genetic variables

might improve prediction.

Observing genetic data that might be associated with

response to citalopram, Garriock et al. [103] evaluated

430 198 SNPs for association with antidepressant response

and remission: for response, 1491 (608 non-responders; 883

responders) subjects; for remission, 1351 (608 non-responders;

743 responders) subjects. Interestingly, they found significant

differences in the ethnicity of responders/non-responders,

and remitters/non-remitters. They also found significant

differences between the responders and non-responders in

clinical measures such as employment status and clinical co-

morbidities. Association of genotyping results with response

to citalopram gave 39 SNPs and 41 SNPs with p-values ,

1.0 � 1024 for the response and remission phenotypes,

respectively. The top two results for response and remission

were the same SNPs, rs6966038 and rs6127921, with p-values

for response of 4.65 � 1027 and 3.45 � 1026. However, none

of the SNPs met a genome-wide threshold for significance.

A large cohort study [104] performing a meta-analysis

of three datasets and a total of 2394 subjects was performed

looking for genomic association with outcomes of four

weeks of treatment with SSRIs using the 17-item Hamilton

Rating Scale for Depression (HRSD-17) score. No associations

were found to be significant at the genome-wide level. The

top association to SSRI response found included SNPs in

the HPRTP4 (hypoxanthine phosphoribosyltransferase

pseudogene 4) and VSTM5 (V-set and transmembrane

domain-containing 5) region, which approached genome-

wide significance ( p ¼ 5.03 � 1028), and SNPs 50 upstream

of the neuregulin-1 gene ( p ¼ 1.2 � 1026). The top associ-

ations that were previously published [105,106] with two of

the three datasets were not reproduced.

3.3. Imaging
A study showing a very strong correlation between neuro-

imaging by fMRI and the outcome of drug response in

major depression disorder was performed by Kozel et al.
[107] on a cohort of 17 patients. The authors found that

connectivity of both subcallosal cortices to the left anterior

cingulate gyrus was strongly correlated with outcome of
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treatment with the antidepressant. The authors commented

that the subcallosal cortical region had been shown to be

implicated in outcome of treatment with drugs and other

types of treatment. The cohort was not very large, and

more work should follow with a larger sample size.

Generally fMRI is well tolerated by patients, but it is still a

relatively expensive form of treatment, which should be

taken into consideration.

Using PET, McGrath et al. [108] looked for predictors of

the response to escitalopram or behavioural therapy in 38

major depression disorder patients. Right anterior insula nor-

malized metabolism was shown to have the most significant

correlation. Insula hypometabolism was associated with

remission of symptoms after cognitive behaviour therapy

and poor response to escitalopram, whereas insula hyper-

metabolism was associated with remission of symptoms

after escitalopram treatment and poor response to cognitive

behaviour therapy.

Gong et al. [109] used high-field MRI and built an SVM

classifier. Sixty-one patients and 42 healthy volunteers were

scanned using structural magnetic resonance imaging.

Patients then received standard antidepressant medication

(tricyclic, typical serotonin–norepinephrine reuptake inhibi-

tor or typical SSRI). SVM applied to grey matter images

correctly distinguished between responders (23) and non-

responders (23) with an accuracy of approximately 70%

( p ¼ 0.006). SVM applied to white matter images predicted

clinical outcome with an accuracy of approximately 65%

( p ¼ 0.02).

In a large meta-analysis, Fu et al. [110] analysed 20 studies

for functional neuroimaging (MRI and PET) of 15 independent

samples and nine studies on a different set of six independent

samples for structural MRI. Using functional neuroimaging,

they found a significantly increased activation associated

with higher likelihood of good response to treatment in the

anterior cingulate and medial prefrontal cortices, with a cluster

in the left pregenual anterior cingulate and smaller clusters in

the right pregenual anterior and right subgenual cingulate/

medial orbitofrontal cortex. For the amygdala, some reports

were of increased activity and some of decreased activity

associated with a positive therapeutic outcome. In the anterior

cingulate, a few studies reported that greater baseline acti-

vation in the subgenual region was predictive of a poorer

response. In the structural studies, voxel-based morphometry

showed an association between a decrease in grey matter

volume in the dorsolateral prefrontal cortex [109,111–113]

and a poor response to antidepressants, but this finding was

insignificant after false discovery rate multiple comparisons

correction. A significant association was revealed between

decreased right hippocampal volume and lower likelihood

of benefit from treatment ( p ¼ 0.0038). One of the studies

also linked reduced response with lower caudate nucleus

volumes [114].

Little et al. [115] used fluorine-18 deoxyglucose PET as a

biomarker for six weeks of bupropion or venlafaxine monother-

apy on never-hospitalized patients with unipolar depression.

They found that, compared with control subjects, responders

(n ¼ 11) but not non-responders (n ¼ 9) to both drugs demon-

strated frontal and left temporal hypometabolism. Bupropion

responders (n ¼ 6) also had cerebellar hypermetabolism com-

pared with controls, whereas venlafaxine responders (n ¼ 7)

showed bilateral temporal and basal ganglia hypometabolism

compared with controls.
3.4. Other methods
Electroencephalography (EEG): Bares et al. [116] predicted the

treatment outcome of several antidepressants on a cohort of

87 patients with similar baseline clinical conditions. They

used three parameters to predict the outcome of the response

after five weeks: (1) reduction of prefrontal theta cordance

value measured by EEG; (2) reduction of symptoms accord-

ing to the Montgomery and Åsberg Depression Rating Scale

after one week; and (3) reduction of the symptoms after

two weeks. A combination of these three parameters resulted

in an area under the curve (AUC) of 0.91 using the receiver

operating characteristics (ROC). This is a strong result with

a reasonable cohort size; therefore, EEG measurements may

be another promising direction for prediction of treatment.
4. Prediction of drug treatment for
schizophrenia and schizoaffective
disorder

A large meta-analysis [117] with 65 trials involving 6493

patients showed the superiority of treatment with antipsy-

chotics compared with placebo. The antipsychotics reduced

the relapse rate to less than half and readmission rates to

less than half. Treatment needed to be maintained, and

relapse rates did not change after a few years of treatment.

Outcome of treatment is a further good predictor of whether

a patient will have a functional impairment after the hospital-

ization period [118]. Specifically, positive and negative

symptoms during the drug treatment period were good pre-

dictors of future functioning of the patient, and symptoms

during the drug-free period were not. Therefore finding

and maintaining the right treatment is crucial for better

functioning of schizophrenia patients.

4.1. Clinical data
Kinon et al. [119] tested whether an early good response to ris-

peridone (two weeks) predicted the response at 12 weeks with

a large cohort of 628 patients diagnosed with schizophrenia or

schizoaffective disorder. The early responders had a signifi-

cantly better outcome after 12 weeks, and the non-responders

benefited significantly from switching to olanzapine. Similar

results were obtained by Correll et al. [120], with 95 patients

with acute schizophrenia after four weeks of fluphenazine

treatment. They observed that the patients who had a bigger

improvement after one week were also more likely to have an

improvement after four weeks, with approximately 70% pre-

dictive power. Kinon et al. [121] also looked at how an early

response predicted a later response. They studied 1077 moder-

ately affected schizophrenia patients (84% diagnosed with

schizophrenia and the rest with schizophreniform, or schizoaf-

fective disorder). A total of 325 were early responders. The

study predicted according to the response at two weeks what

the response would be at three months, with an AUC of 0.75.

Similarly, Stauffer et al. [122] looked at the early response

as a predictor of the later response to olanzapine or haloper-

idol in 168 schizophrenia patients with their first psychotic

episode. The early response at two weeks predicted the

later response at 12 weeks with approximately 74% specificity

and approximately 80% negative predictive value. Another
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study showing this early prediction phenomenon [123]

examined response to ziprasidone or olanzapine in 94 schizo-

phrenia or schizoaffective disorder patients. Improvement at

two weeks predicted further improvement at six months with

an AUC of 0.85.

Kohler-Forsberg et al. [124] sought possible predictors

of the outcome of clozapine treatment in 502 clozapine-

treated schizophrenia patients. The main predictor of a

good outcome in their study was living with a partner.

4.2. Genome-wide association studies
Arranz et al. [125] performed a study on 200 schizophrenia

patients (133 patients were classified as responders and 67 as

non-responders) and looked for associations with outcome of

drug response. They found 19 polymorphisms with prediction

power of the drug response. The prediction levels were calcu-

lated by logistic-regression analysis, with the response to

clozapine as the dependent variable and the polymorphisms

studied as independent variables. The positive predictive

value for these results was 0.76, and the negative predictive

value was 0.82.

Reynolds et al. [126] performed a GWAS for 117 schizo-

phrenic Chinese Han patients who were first episode and

drug-naive, followed by a 10-week antipsychotic treatment, pri-

marily with risperidone or chlorpromazine. They specifically

looked at the dopamine D3 receptor ser9gly, the dopamine

D2 receptor Taq IA and the 5-HT2C receptor promoter—

759C/T polymorphisms. The D3 receptor ser9gly polymorph-

ism was significantly associated with improved symptoms

and also associated with initial behavioural symptoms on

admission. The 5-HT2C receptor 759C/T was also associated

with improvement after treatment but was not associated

with a baseline score.

McClay et al. [127] genotyped 738 patients with schizo-

phrenia and looked for associations with response to

treatment with the antipsychotics olanzapine, quetiapine, ris-

peridone, ziprasidone and perphenazine. One SNP passed

their threshold criterion of less than 10% false discovery; it

was located in an intergenic region on chromosome 4p15. In

addition, SNPs in ankyrin repeat and sterile alpha motif

domain-containing protein 1B (ANKS1B) and in the contac-

tin-associated protein-like 5 gene (CNTNAP5) were very close

to the threshold.

Another study [127] with 738 subjects with schizophrenia

looked at genetic variation underlying individual differences

in response to treatment with the antipsychotics olanzapine,

quetiapine, risperidone, ziprasidone and perphenazine. The

top finding was a SNP rs17390445 on chromosome 4p15,

which mediated the effect of ziprasidone on positive symptoms

with a q value of a little less than 0.05 ( p ¼ 9.8 � 1028). Another

SNP rs11722719, residing 1.6 kb from this SNP, had a q-value of

less than 0.15 ( p ¼ 5.4 � 1027) and it also mediated ziprasi-

done-positive symptoms. SNP rs7968606 in the ANKS1B gene

showed a q-value of 0.16 ( p ¼ 3.2 � 1027) for mediating the

effect of olanzapine on negative symptoms. The finding for

SNP rs17727261 in the CNTNAP5 gene, mediating the effects

of risperidone on negative symptoms, had a q-value of 0.13

( p ¼ 5.4 � 1027). Another interesting SNP, rs17815774 in the

TRPM1 gene, mediated the effects of risperidone on negative

symptoms, with a q-value of 0.4 ( p ¼ 3.3 � 1026).

Zhang et al. [128] looked at the DRD2 (dopamine D2

receptor) locus that was associated with risk of schizophrenia
by a large-scale GWAS from the Psychiatric Genomics

Consortium [129]. They studied whether the SNP rs2514218

could predict an antipsychotic response in a cohort of

patients with a first episode of psychosis treated with either

risperidone or aripiprazole for 12 weeks. Data were collected

from 100 subjects, approximately half treated with risperi-

done and half with aripiprazole. Linear mixed model

analysis showed that the homozygotes for the risk (C) allele

had significantly greater reduction in positive symptoms

during 12 weeks of treatment compared with the T allele

carriers ( p ¼ 0.044). The DRD2 gene has previously been

shown to be associated with responsiveness to antipsychotics.

Ikeda et al. [130] also showed that a SNP in DRD2 was a sig-

nificant predictor of the response to risperidone along with a

SNP in TaqIA and two SNPs in AKT1.

4.3. Imaging
Kapur et al. [131] have studied the response to haloperidol of

22 patients with moderate to severe symptoms. Of these, 21

were classified with schizophrenia and one with delusional

disorder. The responders showed significantly higher dopa-

mine D2 receptor occupancy, as determined with raclopride

and PET [132], after two weeks of treatment (mean ¼ 73%,

s.d. ¼ 9%) than the non-responders (mean ¼ 60%, s.d.¼

12%), p , 0.009. Using it as a predictor with a cutoff at 65%,

D2 occupancy provided optimal separation: 80% of the respon-

ders were above it whereas 67% of the non-responders were

below it ( p ¼ 0.04, Fisher’s exact test).
5. Prediction of drug treatment for autism
spectrum disorder

Only two drugs (risperidone and aripiprazole) have been

approved by the FDA for treatment of children with autism

spectrum disorder, and these two drugs mainly target irritabil-

ity. The ability to predict a benefit from drug treatment is very

important in autism spectrum disorder, because the patients

are often young children, and the total effects of drug treatment

on their development are often hard to foresee. Very little has

been done in terms of predicting positive outcomes from

drugs; however, a few studies suggest the association of clinical

data and GWAS with drug treatment outcome.

5.1. Clinical data
Using the aberrant behaviour checklist (ABC) [133] irritability

test subscale score, Arnold et al. [134] have observed several

moderators and mediators that may affect the outcome of the

response to risperidone. In the moderator list, a high baseline

ABC irritability subscale was associated with a larger decrease

in irritability compared with a low baseline. Other predictors

showing the association of a good outcome included a higher

parent education level, a higher income of parents and a

lower baseline level of prolactin, but these were correlated

with an improvement both in the drug treatment and the pla-

cebo groups. A negative association was found with higher

levels of anxiety, an accompanying bipolar disorder, opposi-

tional defiant symptoms (hostile, disobedient and defiant

behaviours), high hyperactivity and high stereotypic behav-

iour. In the mediator group, a weight gain with treatment

was negatively correlated with a decrease in irritability but it



Figure 1. Recent studies are focusing on finding genomic markers for predicting the outcome of treatment using specific drugs. A simple blood test can be used for
DNA sequencing. Prediction based on DNA sequencing shows great promise, and there are quite a few recent studies using this technique. However, this technique
alone may be insufficient for an excellent prediction of drug outcome and should be accompanied by other methods.
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was positively correlated with a decrease in irritability in the

placebo group. The dose of risperidone was also positively

correlated with a decrease in irritability.

5.2. Genome-wide association studies
Correia et al. [135] performed a study on 31 children with

autism spectrum disorder after a one-year treatment with

risperidone, and their improvement was assessed by the

Autism Treatment Evaluation Checklist (ATEC). A few poly-

morphisms were found to be associated with improvement.

The HTR2A c.-1438G . A, DRD3Ser9Gly, HTR2C c.995G .

A and ABCB1 1236C . T polymorphisms were predictors of

clinical improvement with risperidone therapy. The HTR2A
c.-1438G . A, HTR2C c.68G . C, HTR6 c.7154–2542C . T

and BDNF c.196G . A polymorphisms influenced prolactin

elevation. HTR2C c.68G . C and CYP2D6 polymorphisms

were associated with a risperidone-induced increase in BMI

or waist circumference.

5.3. Transcriptome
Lit et al. [136] studied peripheral blood gene expression in 42

patients with autism spectrum disorder before treatment

with risperidone and then looked at the eight-week treatment

outcome. They identified 89 exons that have a strong associ-

ation with treatment outcome and separate responders from

non-responders using unsupervised hierarchical cluster analy-

sis. Among the genes were GBP6, RABL5, RNF213, NFKBID

and RNF40.
6. Discussion
The field of precision medicine for psychiatric disorders is in

its initial phase. Accurate prediction attempts of treatment

efficacy are rare. There are, however, quite a few studies

showing associations and correlations of different biomarkers

with a good outcome of drug treatment. The methods used

include neuroimaging, electrophysiology, GWAS studies, be-

havioural studies, animal models, EEG, transcriptomics and

others. Importantly, to accomplish the task of assigning the

best drug to each patient, the studies that are most relevant

are those that predict outcomes of specific drugs. To build

precision medication tools, it is important to identify the
features that will direct the clinician to the drug that is

most suitable for a specific patient.

Building a large dataset requires the repository of data from

thousands of people. Ethical questions such as who would

have access to these data or tests required by insurance compa-

nies should be addressed [137,138]. An important question that

needs to be asked when getting a suggestion of treatment from

a computer program is: what is the minimal accuracy that we

should request before prescribing a patient with a drug? This

is probably where the physician’s experience and knowledge

would be useful. Medicine with adverse side effects should

be given only if the error rate of the prediction is very low,

and also then monitored closely. With medicine with fewer

side effects, the accuracy requested from the algorithm can be

relaxed. A good algorithm should also give multiple treatment

options with a list of preferences.

Reviewing previous studies of associations between

drug response and genomic and biological markers, a

major downside that is very evident is the lack of replication.

Work needs to be repeated, sometimes in a larger cohort, to

make sure that these markers for drug response outcomes

are reproducible. Despite the fact that a repeated study

makes smaller headlines, it is our responsibility to check for

reproducibility and robustness. Markers that were found to

robustly associate with a good drug response can then be

used for robust predictions.

A relatively large amount of work has been done in GWAS,

with quite a few associations. The genomic revolution

now allows for fast and cheap DNA sequencing, and may

bring great promise to the prediction of optimal treatment

(figure 1). But are these predictions good enough, and do

they have a high enough prediction power? The path from var-

iants and SNPs to neuronal function is long and mainly

unresolved. SNPs and variants work very well with the cell

machinery, but can a computer program imitate the cell’s abil-

ity to know how these small changes to the DNA sequence

would translate into amounts of RNA and proteins, and even-

tually a phenotype? A study that shows a response in the

function of neurons [89,139] provides a lot of information

that can be used when building a predictor, because scientists

can now associate variants with drug response with a much

higher likelihood, even if this variant is not seen in larger popu-

lations. It is therefore worthwhile to work backwards from

functional assays such as electrophysiology to identify bio-

markers that correlate with the functional measurements.



Figure 2. Using multiple available techniques may improve prediction greatly. We have reviewed here studies aiming at predicting the right treatment using
morphology, electrophysiology, imaging, genomics, transcriptomics, epigenomics and clinical data. The ultimate classifier should incrementally add features
from different techniques. Using cross-validation, the classifier would conditionally add a new feature to the training set, and then check whether this new feature
improves the prediction on the test set. After cross-validating the entire dataset, only if a new feature indeed improves prediction results would it be added
permanently to the feature set for prediction. This way the classifier would use features extracted from multiple methods, weigh them and provide an optimal
prediction based on features that improve its performance.
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Common genetic features that associate with these biomarkers

can then be identified and used for predictions.

It is also important to note that different genomic changes

may lead to similar results. In performing GWAS with a

large number of patients, different genomic variants that con-

verge to a similar phenotype may be lost in the analysis and

appear insignificant. While each of these genomic changes

may appear in a small population of the disease, they may all

eventually cause similar phenotypes (different small genomic

changes converging to the same phenotype). We hypothesize

that RNA expression may be more closely and immediately

associated with the final phenotype; therefore, looking at

RNA expression or protein levels will give us much better

clues as to how cell function will be altered by genomic

changes. One problem is that we collect blood samples from

the patients, not neurons, which is where the disease is

expected to manifest. The use of induced pluripotent stem

cells to study disease allows for differentiation followed by

transcriptomics, but this is a long process. The question is

whether any of these transcriptomic changes could be

observed in blood cells. Epigenomics may give us the

answer, because genes that are repressed may be in a more

compact area of the chromatin. We believe that more transcrip-

tomic and epigenomic studies should be performed to identify
changes that play a role in the response to specific drugs to

complement the large number of GWAS studies.

Importantly, when building classification algorithms,

features extracted from different methods can be used together

for prediction, and an algorithm does not need to be restricted

to a specific method (figure 2). The methods should be easy

to implement in order to minimize the time needed to find

the right treatment, and they should preferably not be very

expensive. For example, sequencing of blood in combination

with behavioural assessment is easy, and may provide a

quick and relatively inexpensive prediction. Figure 2 shows

a general plot of an algorithm that would use features extracted

from measurements using different methods for a prediction of

the best drug. Much work needs to be put into finding these

biomarkers that distinguish populations and make patients

drug-responsive or non-responsive. The computational

power exists and so do the tools, and we need to use this oppor-

tunity to develop tools to help psychiatric patients and their

families regain their quality of life.
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