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Abstract

Purpose: Composite models have become commonplace for the assessment of fixa-

tion and stability of total joint replacements; however, there are no comparable models

for the cervical spine to evaluate fixation. The goal of this study was to create the frame-

work for a tunable non-homogeneous model of cervical vertebral body by identifying

the relationships between strength, in-fill density, and lattice structure and creating a

final architectural framework for specific strengths to be applied to the model.

Methods: The range of material properties for cervical spine were identified from lit-

erature. Using additive manufacturing software, rectangular prints with three lattice

structures, gyroid, triangle, zig-zag, and a range of in-fill densities were 3D-printed.

The compressive and shear strengths for all combinations were calculated in the axial and

coronal planes. Eleven unique vertebral regions were selected to represent the distribution

of density. Each bone density was converted to strength and subsequently correlated to

the lattice structure and in-fill density with the desired material properties. Finally, a com-

plete cervical vertebra model was 3D-printed to ensure sufficient print quality.

Results: Materials testing identified a relationship between in-fill densities and

strength for all lattice structures. The axial compressive strength of the gyroid speci-

mens ranged from 1.5 MPa at 10% infill to 31.3 MPa at 100% infill and the triangle

structure ranged from 2.7 MPa at 10% infill to 58.4 MPa at 100% infill. Based on

these results, a cervical vertebra model was created utilizing cervical cancellous

strength values and the corresponding in-fill density and lattice structure combina-

tion. This model was then printed with 11 different in-fill densities ranging from 33%

gyroid to 84% triangle to ensure successful integration of the non-homogeneous in-

fill densities and lattice structures.

Conclusions: The findings from this study introduced a framework for using additive

manufacturing to create a tunable, customizable biomimetic model of a cervical vertebra.
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1 | INTRODUCTION

Cervical disc replacements (CDRs) were designed with the intention

to restore natural kinematics to patients that would typically undergo

fusion surgery.1–5 This patient population is relatively young, with an

average age of 45.2 ± 5.2 years at the time of surgery, indicating that

ideally, these devices should survive beyond 30 years.6,7 While

numerous CDR designs have been introduced over the past two

decades, the majority have since been withdrawn from the market

due to a failure to meet clinical expectation, with high complication

rates such as adjacent segment degeneration, heterotopic ossification,

and mechanical failures associated with potential revision

surgeries.8–11 Specifically, many devices have migrated within the ver-

tebral bodies or loosened. In clinical studies with a minimum of

2 years of follow-up, migration and loosening rates of 2%–17% have

been reported, typically resulting in a subsequent surgery.9,12–18

Furthermore, the Food and Drug Administration website for Manufac-

turer and User Facility Device Experience (MAUDE) indicates that

25% of devices failing at 5-years are due to mechanical complications

such as migration, loosening, and subsidence.11 While numerous stud-

ies have evaluated the kinematics of the cervical spine following

CDRs, to our knowledge, no biomechanical studies have evaluated

the fixation of CDRs within the vertebra in a composite or cadaveric

model.19–24

Fixation testing of total hip and knee replacements using compos-

ite model bones have been conducted for more than three decades by

investigators world-wide.25–31 These biomimetic models utilize rein-

forced epoxy resin to simulate cortical bone and rigid polyurethane

foam to replicate cancellous bone, resulting in a highly reproducible

model that can withstand extensive cyclic loading without decay, as

well as higher loads than typical cadaver specimens.32–35 Through this

in vitro testing, invaluable knowledge of implant performance has con-

tributed to the development and understanding of fixation features

and surface modifications that enhance long-term fixation and stabil-

ity. This has resulted in decreased revisions due to loosening and

migration for joint replacements.25,26,36,37 The striking lack of biome-

chanical studies to assess fixation of CDRs may be due to the fact that

there are no standardized models or methods available to conduct

such studies. To address this gap, the availability of a biofidelic, repro-

ducible cervical vertebral body model may be useful.

Additive manufacturing (AM) techniques may provide a tangible

solution for producing replicable, cost-effective spinal models for bio-

mechanical testing. Specifically, three-dimensional (3D) printing tech-

niques have been widely adopted for surgical preparation, to create

patient specific models, or customized implants.38,39 These techniques

have also been used to create anatomical models for preoperative and

intraoperative planning and reference and for resident educa-

tion.32,40,41 Natural cellular structures have been widely studied for

their material properties and the relationship of the specific features

in these structures to strengths.42,43 These cellular structures and

relationships have been used to inform the creation of additively man-

ufactured lattice structures, such as a honeycomb or gyroid struc-

ture.44 Based on these previous findings, these lattice structures can

now be leveraged for specific applications. One such application that

has not been widely investigated is the use of 3D printing for the cre-

ation of synthetic vertebral models for the purpose of biomechanical

testing of disc replacements. Therefore, the goal of this study was to

create the framework for a tunable non-homogeneous model of a cer-

vical vertebral body by identifying the relationships between strength,

in-fill density, and lattice structure to create a final architectural

framework for specific strengths to be applied to the model.

2 | METHODS

A comprehensive literature search was performed to identify an

acceptable range of shear and compressive strength values for the

expected range of cancellous bone in the cervical spine. Two studies

reported compressive strength specifically in the cervical spine

(Table 1).45–50 However, no articles were found that identified the

modulus of elasticity or shear strength of cancellous bone in the cervi-

cal spine. Therefore, lumbar spine properties were used as a close

alternative. Specifically, one study assessed the shear strength of the

lumbar spine, and three studies assessed modulus of elasticity in the

lumbar spine (Table 1). These values were utilized to determine if the

lattice structures and in-fill densities were feasible as a cadaveric

specimen replacement.

2.1 | Strength calculations

Following a comprehensive literature review, a previous study was

identified that defined 11 unique regions for the cervical vertebra,

based on differences in bone density assessed from CT images.51 There-

fore, original calculations were made to determine the strength at spe-

cific locations in the spine, as bone properties vary by vertebral location.

Two equations that related cervical compressive strength (cs) and bone

mineral density (d) were given in Lang et al.52 and McBroom et al.53 The

specific equations were chosen since their specificity to vertebral bodies

was advantageous in this study, compared to previous equations that

related compressive strength and bone mineral density.54 However,

these equations follow similar principles from the widely accepted equa-

tions from Carter and Hayes.55 The following equations were used to

calculate the compressive strength at the 11 anatomical locations speci-

fied.51 These values were referenced for validation of best fit models

and creation of the final vertebral body model (Figure 1).

Lang et al. cs¼8:2�10�6�d2:45þ0:082:

McBroom et al. cs¼17:4�10�6�0:01d2:26:

2.2 | Print design

For the measurement of yield compressive and shear strength, speci-

mens were printed according to ASTM Standard D659 and D5729-21

using Ultimaker Cura software (UltiMaker, Zaltbommel, NL).
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Specifically, rectangular specimens of 12.7 � 12.7 � 25.4 mm were

printed on an Ultimaker S5 Pro printer in varying in-fill densities and

lattice structures (UltiMaker, Zaltbommel, NL). Three lattice structures

were selected for evaluation—triangle, zig zag, and gyroid (Figure 2).

All specimens were made from poly lactic acid (PLA) with in-fill densi-

ties ranging from 5% to 35%, increasing in increments of 5%. Follow-

ing this, in-fill densities of 60% and 100% were printed for all lattice

structures, as well.

The in-fill density refers to the amount of print material through-

out the rectangular prints, for example, 5% means the inside of the

rectangular print will only be 5% filled and 95% will be empty space

between layers and between the lattice structure. Although 100%

in-fill density implies the entire print will be the material, the results

may vary from structure to structure as the material is still printed

with the specific in-fill density and this may affect the overall

strength.

In accordance with ASTM Standard D695, N = 5 specimens were

tested with each in-fill density and lattice structure sample group, for

a total of N = 105 specimens in each testing setup. Upon completion

of successful prints, each combination of variables was tested in com-

pression and shear testing until failure to assess material strength.

One lattice structure was chosen to be further tested for anisotropic

properties, based on similarities to cancellous bone. Specifically, fail-

ure patterns and the relationship between strength and in-fill density

were evaluated to determine the most similar structure. Anisotropic

properties were tested by orienting the specimens at two different

orientations, perpendicular to each other. This ensured that the in-fill

density was being evaluated for transverse and axial properties, paral-

lel and perpendicular to the print orientation.

2.3 | Compression testing

Specimens were tested in compression using a biaxial servo-hydraulic

load frame (858 Mini Bionix; MTS Systems, Eden Prairie, MN). Axial

load was applied through a ball-and-socket joint to ensure pure com-

pression was applied uniformly across the top surface of the speci-

mens (Figure 3). Following ASTM Standard D695-15, specimens were

tested at a rate of 1.3 ± 0.3 mm/min and the load was recorded until

they failed. Failure was defined as the formation of any mechanical

defect such as buckling or cracking during testing.

2.4 | Shear testing

Custom plates were designed for shear testing to securely insert the

prints at both the top and bottom faces of the specimens (Figure 4).

Plates were then secured to the ball-and-socket joint to apply tor-

sional load. Following ASTM Standard D5729-21, specimens were

tested in torsion at a frequency of 0.01 Hz, or 3.6�/s, until the speci-

mens failed. Failure was defined as the formation of any mechanical

defect such as buckling or cracking during testing.

TABLE 1 Material strength properties used in this study.

Property measured Taken from: Author, year Part of spine Reported value

Cancellous compressive strength Feng et al., 2021 Cervical 6 MPa

Shim et al., 2005 Cervical 5.1 MPa

Cancellous shear strength Xavier et al., 2017 Lumbar 0.5–1.5 MPa

Modulus of elasticity Nicholson et al., 1997 Lumbar 165 MPa, 43 MPa

Ogurkowska and Błaszczyk, 2020 Lumbar 32.8–41.5 MPa

Wang et al., 2022 Lumbar 61.7 ± 15.9 MPa

F IGURE 1 Flow chart depicting the steps where values identified in literature were referenced and the original calculations from bone
mineral densities (BMD) identified by Anderst et al.51 and calculated with the equations from Lang et al.52 were referenced for the final selection
of in-fill density and lattice structure of a cervical vertebral body model.
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2.5 | Strength relationships

A best-fit relationship was then calculated for each lattice structure

and density. The best-fit model was validated through testing of in-fill

densities that were chosen over 35% in both compression and shear.

Specifically, the strengths calculated from Lang et al. at the 11 distinct

regions of the cervical spine were used to extrapolate a specific in-fill

density that would be required to achieve that. Those in-fill densities

were then printed and tested for further validation of the relation-

ships created following the same compression testing protocol to

ensure accuracy among the extrapolated values and the actual

mechanical properties of the chosen structures.

2.6 | Model creation

Following this, a custom 3D part was developed in nTopology with

separate regions for each anatomical location. This computer model

created the architectural framework for the customizable model. In-fill

densities and lattice structures were assigned to each section to

match the previously calculated strength values at those regions in

this study.51 This model was then exported into the Ultimaker

software. Finally, the 3D-printed model was printed to ensure a seam-

less integration of the custom in-fill densities and lattice structures

and sufficient print quality.

2.7 | Data reduction

A stress versus strain plot was created for every specimen by calculat-

ing the stress and strain at each time point, the linear portion was

manually defined, and the modulus of elasticity was calculated from

this slope. A custom MATLAB program (version: R2020a; Mathworks,

Natick, MA) was utilized to calculate the compressive strength, shear

strength, and modulus of elasticity. Compressive strength was deter-

mined by dividing the compressive yield load by the cross-sectional

area. Shear strength was determined by the following equation where

“T” is torque at failure, “c” is the distance from the center, and J is the

polar moment of inertia:

τ¼ Tc
J

Means and standard deviations were calculated for each group

and compared using analysis of variance (ANOVA). Specifically, the

F IGURE 2 Three lattice
structures and initial print densities. In
addition to the matrix above, in-fill
densities of 60% and 100% were
tested for each of the three lattice
structures.

F IGURE 3 Custom compressive testing apparatus.

F IGURE 4 Custom shear testing apparatus.
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strength was compared between each lattice structure at the tested

in-fill densities. All statistical tests were performed using SPSS Version

19.0 (IBM, Inc., Houston, TX). If a significant difference was detected

between the lattice structures with a p < 0.05, the p-value was

reported. Additionally, a power analysis was conducted to determine

if a sample size of 5, recommended by ASTM, would be sufficient in

the present experiment. The main outcome of interest for the power

analysis was considered the strength of each sample type. Given an

alpha level of 0.05 and a desired power of 80%, and a standard devia-

tion of 0.5 MPa, the experiments were able to detect differences in

strength between different lattice structures of 1 MPa or greater. This

was considered sufficient power since the standard deviations were

generally below 0.5 MPa.

3 | RESULTS

3.1 | Strength calculations

Utilizing the equations by Lang et al. and McBroom et al., strength

was calculated at 11 anatomical locations in the cervical spine using

the bone mineral densities obtained through literature. Both equa-

tions provided similar results for cervical cancellous bone strength

(Table 2). Therefore, the strengths from Lang et al. were chosen to be

compared to the strengths calculated from each in-fill density for

assignment to the specific regions.

3.2 | Compression testing

A total of 100 3D-printed specimens of known dimension were tested

successfully under axial compressive loading. The zig-zag specimens

had axial compressive strengths of 0.4 ± 0.1 MPa for 5% in-fill, 1.3

± 0.1 MPa for 10% in-fill, 3.1 ± 0.3MP for 15% in-fill, 3.0 ± 0.3 MPa

for 20% in-fill, 9.3 ± 0.4 MPa for 25% in-fill, 10.4 ± 0.8 MPa for 30%

in-fill, 14.1 ± 0.3 MPa for 35% in-fill, 27.2 ± 0.5 MPa for 60% in-fill,

and 55.5 ± 3.2 MPa for 100% in-fill (Figure 5). The gyroid specimens

with 5% in-fill densities could not be tested as the print density was

too low to form specimens capable of withstanding testing. However,

the gyroid specimens had axial compressive values of 1.5 ± 0.2 MPa

for 10% in-fill, 3.1 ± 0.1 MPa for 15% in-fill, 3.1 ± 0.1 MPa for 20%

in-fill, 5.7 ± 0.2 MPa for 25% in-fill, 7.8 ± 0.6 MPa for 30% in-fill, 9.5

± 0.5 MPa for 35% in-fill, 20.7 ± 0.5 MPa for 60% in-fill, and 60.6

± 1.2 MPa for 100% in-fill (Figure 5). Finally, triangle specimens had

axial strengths of 3.4 ± 0.3 MPa for 5% in-fill, 4.9 ± 0.8 MPa for 10%

in-fill, 4.7 ± 0.4 MPa for 15% in-fill, 7.0 ± 0.5 MPa for 20% in-fill,

13.1 ± 0.3 MPa for 25% in-fill, 14.1 ± 0.7 MPa for 30% in-fill, 19.4

± 0.6 MPa for 35% in-fill, 38.8 ± 0.3 MPa for 60% in-fill, and 57.8

± 1.5 MPa for 100% in-fill (Figure 5). Statistical differences were

found between all three lattice structures at each in-fill density fol-

lowing ANOVA testing (p < 0.01).

Failure modes were recorded for each specimen. All gyroid speci-

mens were crushed following compression loading, with a visible loss

TABLE 2 Regions of cervical cancellous bone, respective density, and strength calculations.

Region Density (mg/cc) Strength (MPa) via Lang et al. Strength (MPa) via McBroom et al.

Pedicle 630 59.3 61.2

Lamina 555 43.5 46.0

Lateral mass 550 42.5 45.1

Exterior body 455 26.8 29.4

Spinous process 430 23.3 25.8

Exterior body (posterior) 415 21.4 23.8

Uncinate process 410 20.7 23.2

Exterior body (anterior) 370 16.2 18.4

Central body (lateral) 355 14.6 16.8

Central body (posterior) 350 14.1 16.2

Central body (anterior) 295 9.3 11.0

F IGURE 5 Calculated compressive strength for each in-fill density
and specific lattice structure, calculated based on the ultimate force at
failure and the cross-sectional area of each specimen. Each lattice
structure was significantly different at the specific in-fill
densities (p < 0.01).
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in height. Both zig-zag and triangle specimens buckled in the center of

the specimen (Figure 6).

From the calculated strengths, a representative model was cre-

ated for each lattice structure, relating the in-fill density to the com-

pressive strength (Figure 7). For both triangle and zig-zag, a linear

model was best fit, whereas an exponential model was best-fit for the

gyroid structures. The following equations were extracted for gyroid,

zig-zag, and triangle, where x is the in-fill density:

Gyroid: Strength = 0.001x2 + 0.01x � 1.7.

Triangle: Strength = 0.63x � 2.9.

Zig-zag: Strength = 0.58x � 5.9.

Following axial testing, gyroid specimens were identified as the

most structurally similar to cancellous bone. Specifically, these were

chosen to be further tested as the range of cancellous bone compres-

sive strength in the cervical spine varies between 5.1 and 6 MPa and

the gyroid specimens had a low enough compressive strength to

accommodate these values.49,50 Furthermore, the final relationship

between the density and strength had a relationship more similar to

that of cancellous bone, specifically this was an exponential relation-

ship compared to the triangle and zig-zag, which were linear. Finally,

failure patterns were analyzed, and it was noted that while the zig-zag

and triangle lattice structures buckled at failure, the gyroid was the

only structure to be crushed, with a visible loss in height. This fail-

ure mode is most similar to that of cancellous bone, as well, with

the cancellous bone pores fracturing, resulting in crushing of the

whole specimen.56 Therefore, gyroid specimens were tested in cor-

onal plane compression from 10% to 35% in-fill densities. The coro-

nal compressive strengths were 0.2 ± 0.1 MPa for 10% in-fill, 1.4

± 0.1 MPa for 15% in-fill, 3.7 ± 0.2 MPa for 20% in-fill, 4.4

± 0.2 MPa 25% in-fill, 5.9 ± 0.1 MPa 30% in-fill, and 7.8 ± 0.4 MPa

for 35% in-fill (Figure 8).

3.3 | Shear testing

A new set of five specimens for each of the three lattice structures were

tested from 5% to 35% for each lattice structure in axial shear. Accord-

ingly, the zig-zag specimens had an axial shear strength of 0.17

± 0.09 MPa for 5% in-fill, 0.31 ± 0.1 MPa for 10% in-fill, 0.35 ± 0.1 MPa

for 15% in-fill, 0.64 ± 0.2 MPa for 20% in-fill, 0.58 ± 0.08 MPa for 25%

in-fill, 0.86 ± 0.1 MPa for 30% in-fill, and 1.44 ± 0.05 MPa for 35% in-fill.

Again, the gyroid specimens with 5% in-fill densities could not be tested

as the print density was too low to form testable specimens. The gyroid

specimens had an axial shear strength of 0.33 ± 0.1 MPa for 10% in-fill,

0.97 ± 0.2 MPa for 15% in-fill, 1.76 ± 0.3 MPa for 20% in-fill, 1.96

± 0.2 MPa for 25% in-fill, 2.92 ± 0.3 MPa for 30% in-fill, and 3.23

± 0.2 MPa for 35% in-fill. Finally, triangle specimens had an axial strength

of 0.67 ± 0.09 MPa for 5% in-fill, 0.75 ± 0.2 MPa for 10% in-fill, 0.64

± 0.05 MPa for 15% in-fill, 0.62 ± 0.2 MPa for 20% in-fill, 1.43

± 0.2 MPa for 25% in-fill, 1.90 ± 0.3 MPa for 30% in-fill, and 1.87

± 0.2 MPa for 35% in-fill (Figure 9). Again, all three lattice structures

were compared for statistical differences at each in-fill density and all

were found to be statistically different (p < 0.01).

F IGURE 6 Compressive failures
of the different lattice structures,
from left, zig-zag, gyroid, triangle,
showing buckling of the zig-zag and
triangle and visible loss of height in
the gyroid.

F IGURE 7 Measured axial compressive strength for each lattice
structure with best-fit model for each. The curvilinear line fit best for
the calculated gyroid strengths and was therefore used to better
model this relationship between the strength and in-fill density for
this lattice structure.
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As previously identified for structural similarity, gyroid speci-

mens were tested in the coronal plane, as well. These specimens

had a coronal shear strength of 0.4 ± 0.04 MPa for 10% in-fill, 0.9

± 0.1 MPa for 15% in-fill, 1.2 ± 0.1 MPa for 20% in-fill, 1.9

± 0.1 MPa for 25% in-fill, 2.6 ± 0.2 MPa for 30% in-fill, and 3.0

± 0.3 MPa for 35% in-fill.

3.4 | Modulus of elasticity

The modulus of elasticity was calculated for each specimen from the

load versus displacement curves under axial loading. Stress and strain

were calculated for all time points and plotted against each other. The

modulus of elasticity was calculated for each specimen and averaged

based on in-fill lattice structure and density. Despite the gyroid speci-

mens having the highest axial compressive strength, the modulus of

elasticity was the lowest for this design, between 30 and 140 MPa,

while the triangle designs had the highest, ranging from 150 to

350 MPa (Figure 10). The coronal modulus of elasticity of the gyroid

specimens ranged from 15.2 to 229.6 MPa. All lattice structures were

significantly different at each in-fill density (p < 0.01).

3.5 | Model creation

Following the mathematical relationships and comparison to the cal-

culated strength values, a final 3D-printed model was constructed

based on 11 specific anatomical locations of interest and the material

properties calculated above (Figure 11). Specimens in this study were

selected for each location based on the compressive strength of the

bone at the specific anatomical location (Table 3). The model was cre-

ated using a C5 cervical vertebral body in nTopology software with

the exact material properties, lattice structures, and in-fill densities

used in the present study. This computer model formed the final

architectural framework to be able to use the results from the

strength testing and create completely customizable models, with

varying strengths in these eleven distinct locations, calculated from

Lang et al.

Finally, one model, using the strength values of a normal cervical

spine (Table 2) was then printed using the same melting temperature

and print speed to ensure a seamless non-homogeneous model of the

cancellous bone in the cervical spine (Figure 11).

4 | DISCUSSION

In this study, we introduced a framework for using additive

manufacturing to create a tunable, customizable biomimetic model of

any given cervical vertebral body. Ranges of compressive and shear

strength for the cervical spine were precisely replicated using 3D

printer technology. Significant differences were measured among

strengths of specimens with different in-fill densities and lattice struc-

tures, as expected. Using this range, the appropriate lattice structure

and density for a given strength could be selected for each of the

unique 11 cervical vertebral regions. When combined, the 11 specific

F IGURE 8 Coronal compressive strength of gyroid specimens
calculated based on ultimate force at failure and cross-sectional area.

F IGURE 9 Average shear strength for each specimen calculated
based on ultimate load at failure and cross-sectional area. Each lattice
structure was significantly different at the specific in-fill
densities (p < 0.01).

F IGURE 10 Average modulus of elasticity for each specimen
based on calculated stress and strain at all time points throughout
testing. All lattice structures were significantly different at each in-fill
density (p < 0.01).
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regions could be defined to create a vertebra. It is important to recog-

nize that the current model mimics that of a healthy, intact cervical

spine. This specific model may not be appropriate when comparing

treatments for patients with osteoporotic bone. However, due to the

nature of AM, it may be possible to personalize this model for a spe-

cific patient's bone pathology, such as osteoporosis ranging from very

serious to more moderate.

Unfortunately, there is a paucity of in vitro biomechanical studies

assessing the material and structural properties of the cervical spine.

In contrast, numerous studies have assessed these properties in other

human cadaveric bones.47,57–62 Many of these studies report on long

bones. Furthermore, some authors have recently studied the lumbar

spine for material and structural properties.45,47,63 Although this pro-

vides valuable knowledge to identify a range of material strength

values that a biofidelic model should fall into, the architecture of the

cervical spine differs significantly to that of long bones and even

the lumbar spine.50,64,65 Specifically, the cervical spine is considerably

more porous and anisotropic than cancellous bone in other bones,

making the selection of materials for a biofidelic model more challeng-

ing and, at the same time, more critical.66

Furthermore, material properties of cervical spine differ heavily in

various locations in the cervical vertebral body itself.51,67,68 This adds

to the complexity of making an accurate biomechanical model for

in vitro testing. Previous literature using CT scans was used in this

study to identify different anatomical locations, and various material

properties of each location were calculated using information

obtained from these scans.51 These values further show the incredibly

complex architecture of the cervical vertebral body and emphasize

the importance of future studies elaborating on these values and

obtaining a range of strengths in the vertebral body. To our knowl-

edge, no previous studies have biomechanically evaluated the com-

pressive and shear strength in two different planes of various cervical

cancellous locations for comparison. Despite this, the model in this

study utilized values from CT scan calculations and various other

F IGURE 11 (A) Final model created with altering in-fill densities, with each section assigned specifically to in-fill densities extrapolated from
calculated strengths and the best-fit relationships. (B) Final 3D-printed models with 11 altering in-fill densities printed together.

TABLE 3 Compressive strengths used in the final model.

Region Strength (MPa) via Lang et al. Chosen structure + density Strength (MPa) via Wahbeh et al.

Pedicle 59 Gyroid 100 60.6

Lamina 43 Gyroid 80 38.3

Lateral mass 43 Gyroid 80 38.3

Exterior body 27 Gyroid 70 26.3

Spinous process 23 Gyroid 60 20.7

Exterior body (posterior) 21 Gyroid 60 20.7

Uncinate process 21 Gyroid 60 20.7

Exterior body (anterior) 16 Gyroid 50 15.5

Central body (lateral) 15 Gyroid 50 15.5

Central body (posterior) 14 Gyroid 40 11.7

Central body (anterior) 9 Gyroid 35 9.5
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cadaveric specimens to create a model that may be similar to that of

the cervical spine. With the emergence of more data on the properties

at specific anatomical locations, these values can be altered and the

tunability of this model becomes increasingly advantageous to poten-

tial future applications and use by independent parties.

This study identified the gyroid lattice structure as the most simi-

lar to cancellous bone, due to the final relationship between density

and compressive strength, the failure modes, and the calculated

strength values. Perhaps of most importance is the similarity of the

relationship between the gyroid in-fill density and resultant compres-

sive strengths. The gyroid structure was the only one to produce an

exponential relationship, mimicking the widely accepted relationships

between cancellous bone compressive strength and apparent den-

sity.55 This further supports the gyroid structure being an adequate

replacement for cancellous bone.

Furthermore, the failure mechanisms seen in the gyroid speci-

mens were most similar to that of cadaveric bone. In compression,

the gyroid specimens had a considerable amount of height loss,

whereas the zig-zag and triangle specimens buckled at failure. In

shear testing, the gyroid maintained a small amount of structural sta-

bility and was visibly twisted following failure with some cracks,

whereas the zig-zag and triangle specimens split at the print line.

These findings are consistent with previous AM studies that have

confirmed the feasibility of creating a lattice structure similar to the

composition of cancellous bone.69 Not only is this failure pattern

more similar to that of cadaveric bone, but it also represents a higher

level of printing precision. Furthermore, the gyroid specimen, with

PLA material, matches the majority of the cervical spine compressive

strengths identified in the literature. The range of compressive

strengths of the gyroid specimen were between 1.5 and 9.5 MPa

and a shear strength of 0.3 and 3.2 MPa. Comparatively, the

strength values of cancellous bone in literature were identified in the

range of 5.1–6 MPa and a shear strength of 0.5–1.5 MPa.48–50 The

triangle and zig-zag specimens would require a very low in-fill den-

sity to replicate these features, which may compromise some of the

structural properties.

Previous literature has identified gyroid lattices as a mechanically

stable structure for lattice-based implants. This structure is favorable

due to a high surface area to volume ratio, smooth transitions

between unit cells, high toughness, and its ability to withstand

stress.70,71 Furthermore, the gyroid structure awards the highest level

of microporosity and can be altered based on the desired strengths.72

Therefore, gyroid was selected for the overall porosity and was

expected to be the least strong, but perform similar to cancellous

bone. As expected, the gyroid produced failure patterns similar to can-

cellous bone and lower strengths.

In contrast, diamond structures have been identified as a possible

structure for producing anisotropy in metal implants and further being

a suitable structure for implants as the porous structure mimics that

of cancellous bone, promoting bony ingrowth.73,74 For the present

purposes, the similarity to cancellous bone is of the most importance.

Both the triangle and zig-zag designs are based of the diamond-like

structure. However, the triangles provide higher structural stability,

while the zig-zag pattern is less uniform, which may better mirror the

natural pattern of cancellous bone. As expected, in this study, both

the triangle and zig-zag were found to be significantly stronger than

the gyroid structure. However, for the purposes of replicating cancel-

lous cervical spine, this may not be an advantageous feature. There-

fore, the triangle structure was only selected for areas of high

strength in the final model.

Currently, no composite models have been validated for biome-

chanical testing of the cervical spine. Additive manufacturing tech-

niques, such as 3D-printing, have been used to create surgical

planning and training models of the cervical spine, but have not yet

been validated for biomechanical testing.75–77 Furthermore, these

techniques have begun to surface in the creation of an additively

manufactured lumbar in vitro model.33,78,79 Moreover, current com-

mercially available models of the thoracic and lumbar spine are com-

posed of a rigid epoxy resin and polyurethane foam creating a

homogenous, isotropic model and biomechanical testing of the verte-

bral bone itself would not yield similar results to cancellous cervical

bone, as this material does not represent cancellous bone strength in

the cervical spine.31,80–82 Therefore, this composite model is typically

used for kinematic testing to evaluate range of motion under applied

pure moments.83,84 Such bone models have been highly effective for

long bones, which rely heavily on diaphyseal cortical bone for struc-

tural strength; however, due to the difference in strengths and prop-

erties of cancellous bone and epoxy resin, these models could not be

used for testing beyond range of motion such as initial fixation and

migration testing.

The difficulties surrounding creation of the spine model may, in

part, be due to the non-homogenous nature of the cancellous

bone.85,86 This, and the complex structure of the cancellous bone

leading to a highly anisotropic cancellous core. Therefore, AM tech-

niques and 3D printed models may be the best solution for cervical

spine models, as it allows for high degrees of precision and completely

customizable models. In this study, we introduced the first 3D-printed

model of a cervical spine with an anisotropic, non-homogenous can-

cellous composition.

However, future studies are necessary to further verify the pre-

sent model and improve upon the current design. The cortical shell is

of utmost importance in the cervical spine. Cadaveric data on the

material or structural properties of the cervical spine are scarce; how-

ever, the creation of the cortical shell is the next step in this

study.87–89 Shear properties can be improved in the current model, as

well. Through AM software, lattice designs can be further modified to

replicate certain properties and increase or decrease the strength in

any given plane.90–92 As the gyroid structure may be the most similar

to cancellous bone, other lattice structures, with similar micro-struc-

ture to gyroid, should be tested to further fine-tune this model. Previ-

ous studies have demonstrated that lattice structures can be

individually altered to change the material properties in different

planes and orientations.93–95 These methods can be applied to the

present model to further fine-tune the properties. Finally, the overall

structural strength of the model should be validated against cadaveric

cervical spine specimen.
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4.1 | Limitations

This study is not without limitations. One limitation is the lack of avail-

able material properties for cadaveric cervical bone. All data obtained

in this study were correlated with previously published data. This may

account for some variation in the calculated strength and reported

strength of identified literature. Furthermore, little data was identified

for cervical cancellous bone properties; therefore, some thoracic and

lumbar data were utilized to identify a range of properties. Although

the final model was created with cervical data, specifically the com-

pressive strength data, data from the cervical spine for coronal com-

pressive strength and shear strength should be obtained for a final

validated model.

5 | CONCLUSIONS

To our knowledge, this study introduces the first framework for using

additive manufacturing to create a tunable, customizable biomimetic

model of a cervical vertebral body. The findings of the present study

provide a foundation for the development of comprehensive preclini-

cal testing of the fixation novel or existing designs of cervical disc

replacements. One cervical vertebra model was successfully printed

emulating the average strengths of a cervical vertebral body to ensure

adequate printing capabilities with the non-homogeneous design and

demonstrate feasibility. This model may provide a useful tool for a

more comprehensive and efficient approach to the preclinical evalua-

tion of CDRs, specifically for fixation testing.
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