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Background: Clear cell renal cell carcinoma (ccRCC) is the most frequent and terminal

subtype of RCC. Reliable markers associated with the immune response are not available

to predict the prognosis of patients with ccRCC. We exploited the extensive number of

ccRCC samples from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus

(GEO) repository to perform a comprehensive analysis of immune-related genes (IRGs).

Methods: Based on TCGA data, we incorporated IRGs and their expression profiles of

72 normal and 539 ccRCC samples. Univariate Cox analysis was used to evaluate the

relationship between overall survival (OS) and IRGs expression. The Lasso Cox regression

model identified prognostic genes used to establish a clinical immune prognostic model.

The TF–IRG network was used to study the potential molecular mechanisms of action

and properties of ccRCC-specific IRGs. Multivariate Cox analysis established a clinical

prognostic model of IRGs.

Results: We found a significant correlation among 15 differentially expressed IRGs

with the OS of patients with ccRCC. Gene function enrichment analysis showed that

these IRGs are significantly associated with response to receptor ligand activity. Lasso

Cox regression analysis identified 10 genes with the greatest prognostic value. A clinical

prognostic model based on six IRGs, which performed well for predicting prognosis,

revealed significant associations of patients’ survival with age, sex, stage, tumor, node,

and metastasis. Moreover, these findings reflect the infiltration of tumors by various

immune cells.

Conclusion: We identified six clinically significant IRGs and incorporated them into a

clinical prognostic model with great significance for monitoring and predicting prognosis

of ccRCC.

Keywords: clear cell renal cell carcinoma, TCGA, GEO, immune-related genes, clinical prognostic model, tumor
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INTRODUCTION

Renal cell carcinoma (RCC) is a frequent cause of mortality of
patients with urinary cancer, accounting for 2% of malignant
tumors of adults (1). Annually, there are ∼350,000 new cases
of RCC worldwide, leading to ≥140,000 annual fatalities (2).
Clear cell renal cell carcinoma (ccRCC) is the most frequent
and lethal subtype, accounting for 75% of RCCs (3). Although
the treatment of ccRCC has significantly improved during the
past 10 years, there are limitations to its diagnosis, treatment,
and prognosis. Distant metastasis occurs in 30% of patients
with ccRCC who undergo surgery during the early stages
of disease (4). Further studies of the mechanisms of ccRCC
occurrence and development are therefore required, as well
as efforts to develop new diagnostic methods and to identify
potential biomarkers.

FIGURE 1 | Differentially expressed immune-related genes. Heatmap (A) and volcano plot (B) showing genes differentially expressed between clear cell renal cell

carcinoma (ccRCC) and normal tissues. Green, red, and black dots represent genes expressed at relatively lower, higher, or equal levels. The differentially expressed

immune-related genes (IRGs) are shown in a heatmap (C) and volcano plot (D). Green, red, and black dots represent genes expressed at relatively lower, higher, or

equal levels.

The components of the tumor microenvironment, which

contribute to the development of tumors, include immune cells,

stromal cells, extracellular matrix molecules, cytokines, and

chemokines (5). These components reflect the evolutionary

nature of tumor progression, which promotes immune

escape, tumor growth, and metastasis (6). Moreover, new

therapeutic targets have been identified through studies

of these components and their complex interactions (5).

For example, Li et al. (7) investigated the prognostic value

of immune-related genes (IRGs) to establish an individual’s

immune characteristics and to improve predictions of the

prognosis of patients with non-small cell lung cancer (7).
Thus, understanding the molecular and cellular composition and
function of the ccRCC tumor microenvironment is required to
improve prognosis and to identify new biomarkers (8, 9).
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Publicly available gene expression datasets and the emergence
of related platforms such as The Cancer Genome Atlas (TCGA)
database provide readily accessible and convenient platforms for
rapid and accurate identification of biomarkers for monitoring
tumors (10, 11). For example, Yoshihara et al. (8) studied the
tumor microenvironment by analyzing the expression of specific
molecular biomarkers of immune and stromal cells using an
estimation algorithm employing stromal and immune scores.
Such estimation algorithms evaluate the prognosis of many
tumors and identify biomarkers (8, 9, 12, 13). However, there
is no definitive threshold to aid studies of the associations of
clinical correlates and prognostic significance with the tumor
microenvironment and ccRCC.

Here we aimed to comprehensively study the possible clinical
efficacy of IRGs in the ccRCC tumor microenvironment to
stratify prognosis, as well as their potential value as biomarkers
for targeted therapy. For this purpose, we combined the
expression profiles of IRGs with clinical information to

evaluate overall survival (OS). We systematically analyzed
the expression of ccRCC IRGs and their associations with
prognosis to develop personalized prognostic markers.
Furthermore, bioinformatics analysis was used to identify
potential regulatory mechanisms. The results of this study
will provide the basis for research related to immunization
and provide a theoretical basis for the development of
individualized therapy.

MATERIALS AND METHODS

Data Collection and Clinical Samples
We acquired ccRCC transcriptomic sequencing data from TCGA
data (https://portal.gdc.cancer.gov/), including 539 ccRCC and
72 normal samples. Patients’ clinical information was extracted as
well. Gene expression matrix files and clinical information from
the GSE29609 dataset were obtained from the Gene Expression
Omnibus (GEO) repository. The list of IRGs was exported

TABLE 1 | Gene function enrichment of differentially expressed immune related genes.

Ontology ID Description p.adjust Count

BP GO:0002460 Adaptive immune response based on somatic recombination of

immune receptors built from immunoglobulin superfamily domains

3.78E-106 138

BP GO:0002449 Lymphocyte mediated immunity 8.76E-106 136

BP GO:0002429 Immune response-activating cell surface receptor signaling pathway 1.69E-94 137

BP GO:0002768 Immune response-regulating cell surface receptor signaling pathway 1.76E-93 140

BP GO:0016064 Immunoglobulin mediated immune response 1.76E-93 105

BP GO:0019724 B cell mediated immunity 2.81E-93 105

BP GO:0006959 Humoral immune response 3.63E-92 126

BP GO:0002455 Humoral immune response mediated by circulating immunoglobulin 3.63E-92 91

BP GO:0006958 Complement activation, classical pathway 3.20E-90 87

BP GO:0050900 Leukocyte migration 1.36E-85 137

CC GO:0009897 External side of plasma membrane 1.98E-83 118

CC GO:0042571 Immunoglobulin complex, circulating 2.96E-59 52

CC GO:0019814 Immunoglobulin complex 2.99E-59 53

CC GO:0042611 MHC protein complex 4.97E-26 21

CC GO:0043235 Receptor complex 1.18E-24 64

CC GO:0072562 Blood microparticle 7.47E-21 37

CC GO:0071556 Integral component of lumenal side of endoplasmic reticulum

membrane

7.61E-17 17

CC GO:0098553 Lumenal side of endoplasmic reticulum membrane 7.61E-17 17

CC GO:0042613 MHC class II protein complex 8.96E-16 13

CC GO:0012507 ER to Golgi transport vesicle membrane 2.60E-11 18

MF GO:0003823 Antigen binding 9.43E-163 140

MF GO:0048018 Receptor ligand activity 7.44E-75 124

MF GO:0034987 Immunoglobulin receptor binding 2.39E-57 52

MF GO:0005125 Cytokine activity 6.65E-54 75

MF GO:0005126 Cytokine receptor binding 3.96E-45 75

MF GO:0004896 Cytokine receptor activity 6.41E-36 42

MF GO:0004252 Serine-type endopeptidase activity 4.44E-35 62

MF GO:0008236 Serine-type peptidase activity 9.84E-33 62

MF GO:0017171 Serine hydrolase activity 2.15E-32 62

MF GO:0008083 Growth factor activity 2.70E-29 47
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from the immunology database and analysis portal (ImmPort)
database that provides immunology data (14). Moreover, the
database provides a list of IRGs associated with processes that
mediate the immune response.

TABLE 2 | The top 10 most significant Kyoto Encyclopedia of Genes and

Genomes pathways (KEGG).

ID Description P.adjust Count

hsa04060 Cytokine-cytokine receptor

interaction

1.88E-67 117

hsa04061 Viral protein interaction with

cytokine and cytokine receptor

1.41E-35 52

hsa04650 Natural killer cell mediated

cytotoxicity

2.82E-25 49

hsa04612 Antigen processing and

presentation

4.09E-21 35

hsa04640 Hematopoietic cell lineage 4.17E-18 36

hsa04658 Th1 and Th2 cell differentiation 1.93E-16 33

hsa04062 Chemokine signaling pathway 1.97E-15 46

hsa04659 Th17 cell differentiation 3.35E-15 34

hsa04514 Cell adhesion molecules (CAMs) 5.70E-13 37

hsa04630 JAK-STAT signaling pathway 1.31E-11 37

TABLE 3 | First reported immune microenvironment- related genes in ccRCC.

Gene symbol logFC p-value FDR

AEN 1.39002 <0.001 <0.001

ANGPTL7 −1.06387 <0.001 <0.001

APLN 2.486788 <0.001 <0.001

AZGP1 −1.75511 <0.001 <0.001

BLNK −1.15577 <0.001 <0.001

BMP5 −1.27325 <0.001 <0.001

BMP8A 1.442843 <0.001 <0.001

C3AR1 1.909827 <0.001 <0.001

CARD11 2.086722 <0.001 <0.001

CKLF 1.085822 <0.001 <0.001

CSF3R 2.789211 <0.001 <0.001

EBI3 2.313785 <0.001 <0.001

FAM3B −4.0026 <0.001 <0.001

FCGR2B 2.001925 <0.001 <0.001

FPR1 1.584903 <0.001 <0.001

HCST 1.980888 <0.001 <0.001

HSPA6 2.069337 <0.001 <0.001

IGHA2 2.137115 <0.001 <0.001

IGHJ2 2.46991 <0.001 <0.001

IL2RA 2.276302 <0.001 <0.001

INPP5D 1.711738 <0.001 <0.001

PPARA −1.00738 <0.001 <0.001

RAET1E −1.80059 <0.001 <0.001

TNFSF14 3.76326 <0.001 <0.001

logFC, log fold change (tumor tissues vs. normal tissues); FDR, false discovery rate.

Analysis of Differentially Expressed Genes
The edgeR package was used to screen IRGs differentially
expressed between ccRCC and normal samples (15). Log2
transformation was used to standardize the raw data. We
applied differential gene expression (DGE) analysis using cut-
off values of |log2 fold change| > 1 and FDR <0.05. Then,
we extracted the differentially expressed IRGs from all DEGs.
The molecular mechanisms potentially responsible for the
differential expression of IRGs were investigated using functional
enrichment analysis of the GO and KEGG pathways (16–18)
using the clusterProfiler package (19).

Survival Analysis
Clinical information were acquired from TCGA data and the
GEO database. To analyze OS, we used the R survival and
survminer packages. We conducted single-variable Cox analysis
using the R survival package to identify survival-related IRGs.

Molecular Characteristics of
Prognosis-Related IRGs
Analyses of the differential expression of IRGs related to the
prognosis of patients with ccRCC may have clinical value. To
investigate functional interactions, we constructed a protein–
protein interaction (PPI) network using the STRING database
(http://string-db.org) (20). PPI networks show direct or indirect
interactions of gene products. Cytoscape was used to visualize
the results of the PPI network (21). Moreover, transcription
factors (TFs) directly control gene expression. We focused on
potential target transcription factors (TFs) of these prognosis-
related IRGs. To identify the regulatory links between the TFs and
the transcriptome, we employed the Cistrome Cancer database
(http://cistrome.org/), which incorporates TCGA data with
>2,300 ChIP-seq data and analyses of chromatin accessibility.
We constructed a regulatory network of potential TFs and
current IRGs by considering TFs of clinical significance.

Construction and Verification of a
Prognostic Model
We used the Lasso method to select the main IRGs from the
important cohort of the Cox univariate regression analysis, which
identifies the subclass of IRGs associated with the prognosis
with ccRCC. This was achieved by considering lowering the
regression coefficient by suppressing the penalty score compared
with its size. Finally, a few indicators with nonzero weights
persisted, while those of most possible indicators approached
zero. Therefore, the proportional hazards regression calculated
using the Lasso method further reduced the representation of
immune-related genes.We next generated a sample of an existing
sample dataset using 1,000 iterations, selected IRGs repeated 900
times, and used the “glmnet” R package to complete the Lasso
Cox analysis. Finally, we used β coefficients of multiple regression
analysis to establish a prognostic immune correlation model.
These coefficients were multiplied by the expression level of each
immune-related gene.
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Clinical and Immune Correlations of the
Prognostic Model
The classification of patients into high- and low-risk groups

was performed according to their risk scores, and prognosis

was evaluated. The TIMER database (https://cistrome.shinyapps.

io/timer/) analyzes and visualizes the abundance of tumor-

infiltrating immune cells (22). Here we analyzed these data

for patients with ccRCC and calculated their correlations with

IRGs to establish a model of clinical prognosis and immune
cell infiltration.

Statistical Analysis
We identified the functions of the prognostic features using the
survivalROCR package to calculate survival according to the area
under the curve (AUC) of the receiver operator characteristic
(ROC) curve (23). Significant and acceptable predictive values
were defined as AUC ≥ 0.75 and AUC ≥ 0.6, respectively.

FIGURE 2 | Identification of immune-related genes with the most significant prognostic value. (A) Forest plot of hazard ratios showing the prognostic value of

survival-related immune-related genes. (B) Gene function enrichment (GO) analysis of survival-related immune-related genes. (C,D) The Lasso regression method

based on the glmnet package was used to identify the 21 most prognostic IRGs in TCGA training group.
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Statistical analysis was performed using R software, and P < 0.05
indicates a significant difference.

RESULTS

Identification of Differentially Expressed
IRGs
We extracted 7,369 genes and 611 samples from TCGA
ccRCC data, including 1,902 upregulated genes and 5,467
downregulated genes (Figures 1A,B). We extracted 681
differentially expressed IRGs from this set of genes, which
included 116 downregulated and 565 upregulated genes
(Figures 1C,D). Gene function enrichment analysis showed
that the immune response-regulating cell surface receptor
signaling pathway, the external side of the plasma membrane,
and antigen binding were the most common biological terms
among biological processes, cell components, and molecular

functions, respectively (Table 1). Furthermore, KEGG pathway
analysis revealed that these IRGs (Table 2) are significantly
involved in cytokine–cytokine receptor interactions, viral
protein interactions with cytokines, and natural killer cell-
mediated cytotoxicity. Table 3 showed the first reported IRGs
in ccRCC.

Identification of Prognosis-Related IRGs
We found a significant association of 15 IRGs with OS.
A forest hazard map shows that most of these IRGs
serve as risk factors for ccRCC (Figure 2A), and gene
function enrichment analysis revealed that these IRGs are
significantly associated with response to receptor ligand
activity (Figure 2B). Furthermore, Lasso Cox regression
analysis identified 10 genes with the highest prognostic values
(Figures 2C,D).

FIGURE 3 | Construction of a TF–immune-related gene regulatory network. Differentially expressed transcription factors (TFs) are shown in a heatmap (A) and a

volcano plot (B). Green, red, and black dots represent genes expressed at relatively lower, higher, or equal levels. (C) A regulatory network comprising TFs and IRGs.

Triangles represent TFs, and red and green indicate risk and protective factors, respectively.
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A Gene Regulatory Network Comprising
TFs and IRGs
We next analyzed the regulatory mechanisms of TF genes
and IRGs to identify the molecular mechanisms linked to

TABLE 4 | Information on IRGs used to construct clinical prognostic models.

IRGs Coef HR p-value

ANGPTL3 −0.1200 0.8870 0.0209

IL2RA 0.0577 1.0594 0.0401

PPARA −0.1445 0.8655 0.0431

SHC1 0.0105 1.0106 0.0492

TGFA −0.0159 0.9843 0.0152

TNFSF14 0.1075 1.1135 0.0046

IRGs, immune-related genes; Coef, Cox-PH coefficient; HR, Hazard Ratio.

their clinical significance. When we analyzed the expression
profiles of 318 TFs, we identified 60 differentially expressed
TFs (Figures 3A,B). A regulatory network constructed using
these 60 TFs and 15 IRGs. The critical values were correlation
coefficient = 0.4 and P = 0.6. The resulting TF-based regulatory
networks clearly illustrated the regulatory relationships between
these IRGs (Figure 3C).

Development of a Clinical Prognostic
Model
Here we identified six IRGs according to the results of the Lasso
Cox model analysis, which were used to develop a prognostic
model of the IRGs, ANGPTL3, IL2RA, PPARA, SHC1, TGFA,
and TNFSF14 (Table 4). The risk score was calculated as follows:
[expression level ANGPTL3 ∗ (−0.1200)] + [expression level
IL2RA ∗ (0.0577)] + [expression level PPARA ∗ (−0.1445)] +
[expression level SHC1 ∗ (0.0105)] + [expression level TGFA ∗

(−0.0159)]+ [expression level TNFSF14 ∗ (0.1075)].

TABLE 5 | Clinical characteristics of ccRCC patients included in this study.

Variables Total TCGA-KIRC Training group Testing group GEO cohort

(N = 504) (N = 252) (N = 252) (N = 39)

Age (Mean ± SD) 60.47 ± 12.16 61.71 ± 11.82 59.24 ± 12.39 61.38 ± 12.77

Survival time (y) 3.27 ± 2.18 3.13 ± 2.21 3.40 ± 2.15 2.99 ± 1.67

Status

Alive 339 (67.26) 169 (67.06) 170 (67.46) 22 (56.41)

Dead 165 (32.74) 83 (32.93) 82 (32.54) 17 (43.59)

Gender

Male 331 (65.67) 157 (62.30) 174 (69.05)

Female 173 (34.33) 95 (37.70) 78 (31.95)

Stage

I 249 (49.70) 123 (49.00) 126 (50.40)

II 53 (10.57) 30 (11.95) 23 (9.20)

III 117 (23.35) 58 (23.11) 59 (23.60)

IV 82 (16.37) 40 (15.94) 42 (16.80)

Grade

1 10 (2.01) 3 (1.21) 7 (2.80)

2 215 (43.26) 110 (44.53) 105 (42.00)

3 198 (39.84) 103 (41.70) 95 (38.00)

4 74 (14.89) 31 (12.55) 43 (17.20)

T

1 255 (50.60) 127 (50.40) 128 (50.79) 11 (28.21)

2 65 (12.90) 36 (14.29) 29 (11.51) 5 (22.73)

3 173 (34.33) 82 (32.54) 91 (36.11) 22 (56.1)

4 11 (2.18) 7 (2.78) 4 (1.59) 1 (2.56)

M

0 400 (83.68) 201 (84.45) 199 (82.92) 26 (66.67)

1 78 (16.32) 37 (15.55) 41 (17.08) 13 (33.33)

N

0 224 (93.33) 112 (93.33) 112 (93.33) 32 (82.05)

1 16 (6.67) 8 (6.67) 8 (6.67) 7 (17.95)

Data are shown as n (%). T, tumor; M, metastasis; N, node.
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FIGURE 4 | Evaluation and validation of clinical prognostic models employing IRGs. (A,D,G) Distribution of patients according to risk index. (B,E,H) Survival. (C,F,I)

Heatmaps of IRG expression profiles.

Evaluation of the Prognostic Performance
of the Clinical Prognostic Model Based on
IRGs
TCGA clinical data of 504 patients with ccRCC included age, sex,
stage, tumor, node, metastasis stage, and survival. These patients
were randomly divided into a training (n= 252) or test (n= 252)
group. Table 5 shows their clinical information. According to the
risk scores of the prognostic model, patients with ccRCC were
divided into a low- or high-risk group (Figure 4A). As the risk
score increased, the longevity of patients decreased (Figure 4B).
Figure 4C shows differential expression of the IRGs between the
low- and high-risk groups. The clinical prognostic model yielded
a risk score that predicted that the OS rates of the low- and high-
risk groups were significantly different (Figure 5A). The AUC of
the ROC curve was 0.772, indicating that the prognostic features
based on IRGs were highly accurate for predicting survival
(Figure 5B). Furthermore, univariate analysis revealed that the
risk score significantly correlated with shorter OS (HR: 2.50;
95% CI: 1.64–3.83; P < 0.001). Other clinicopathologic variables
associated with poor survival included stage, and grade as well as
tumor, node, andmetastasis stage. Multivariate analysis indicated
that the risk score served as an independent prognostic factor
(HR: 2.20; CI: 1.33–3.63, P = 0.002) (Figures 6A,B, Table 6).

Validation of the Clinical Prognostic Model
To determine whether the clinical prognostic model was reliable
when applied to different populations, we used the same formula

to evaluate the test group and the GEO cohort (GSE29609),
which was consistent with the results of the training group.
The GSE29609 data include 39 patients with ccRCC (Table 5).
Patients were divided into high- or low-risk groups according to
the risk value of the model (Figures 4D,G). Increased risk was
associated with more deaths (Figures 4E,H). The results show
further that the prediction potential of the clinical prognostic
model was suitable for different populations. Figures 4F,I show
the expression data of selected IRGs for different risk groups.
Furthermore, the probability of survival of the high-risk group
was lower than that of the low-risk group (Figures 5C,E). Next,
we evaluated the accuracies of the clinical prognostic model
applied to the test group and GEO cohort, for which the
AUCs of the ROC curve were 0.678 and 0.781, respectively
(Figures 5D,F). These results indicate that the clinical prognostic
model accurately predicted the prognosis of patients with ccRCC.

Clinical and Immune Correlations of the
Prognostic Model
The correlation between the IRGs analyzed using the clinical
prognostic model with clinical and demographic characteristics
was analyzed as a function of age, sex, stage, and TNM
stage (Figure 7). Furthermore, to determine whether the
immune prognostic model accurately reflected the state of the
tumor immune microenvironment, we analyzed the relationship
between risk scores and immune cell infiltration. The results
show that the risk score was significantly related to CD8+T

Frontiers in Oncology | www.frontiersin.org 8 August 2020 | Volume 10 | Article 1496

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Ren et al. Clinical Prognosis Model of KIRC

FIGURE 5 | Evaluation of the clinical prognostic model. (A,C,E) The risk scores of the clinical prognostic model predict survival. (B,D,F) The receiver operating

characteristic (ROC) curve of survival-dependent receiver verifies the prognostic value of the model.

TABLE 6 | Univariate analysis and multivariate analysis of the correlation between the risk score calculated by the clinical prognosis model and OS.

Univariate analysis Multivariate analysis

Clinicopathologic HR (95%CI) p-value HR (95%CI) p-value

Age 1.00 (0.97–1.02) 0.765

Gender 0.85 (0.45–1.60) 0.616

Grade 2.86 (1.72–4.75) <0.001 1.49 (0.84–2.65) 0.174

Stage 1.90 (1.44–2.51) <0.001 0.67 (0.20–2.25) 0.520

T 2.31 (1.56–3.41) <0.001 2.01 (0.62–6.47) 0.242

M 3.79 (1.91–7.52) <0.001 5.14 (0.872–30.35) 0.071

N 4.47 (1.31–15.19) 0.016 2.64 (0.66–10.66) 0.712

Risk score 2.50 (1.64–3.83) <0.001 2.20 (1.33–3.63) 0.002

Bold values indicate P < 0.05. HR, hazard ratio; CI, confidence interval. T, Tumor; N, Node; M, Metastasis.

cells (p < 0.001), neutrophils (p < 0.001), and dendritic cells
(p < 0.001) (Figure 8).

DISCUSSION

The role of IRGs in tumorigenesis and development is
established. However, systematic, comprehensive data that
identify their roles in patients with ccRCC are insufficient. To
address this deficiency in our knowledge, here we analyzed
the ccRCC dataset of TCGA to establish a clinical prognostic
model employing differentially expressed IRGs that accurately

predicted the clinical outcomes of patients according to their
clinicopathological characteristics. Moreover, these IRGs are
closely associated with the occurrence and development of
ccRCC and therefore may serve as significant clinical biomarkers.
These results show that our clinical prognostic model predicted
patients’ outcomes as well as identified potential targets
of immunotherapy.

Specifically, we identified 15 IRGs closely related to the

survival of patients, including six protective factors and nine

risk factors. Functional enrichment analysis showed that these
IRGs are significantly associated with response to receptor ligand
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FIGURE 6 | (A) Univariate analysis revealed that the risk score correlated with shorter OS, stage, grade, and TNM. (B) Multivariate analysis revealed that the risk score

served as an independent prognostic factor.

activity. To improve the accuracy of the clinical prognostic
model, we used the Lasso Cox regression model to identify
IRGs with the greatest prognostic value. Moreover, to study
the molecular mechanisms that explain the possible clinical
value of these IRGs, we established a TF-mediated network that
considered significant differentially expressed TFs regulated by
these IRGs. The regulatory network contained 17 TFs and 10
IRGs. Our TF–IRG regulatory network will provide guidance for
future mechanistic analyses.

The present clinical prognostic model comprised six IRGs
with prognostic significance. For example, angiopoietin-
like proteins (ANGPTLs) (24) mediate lipid metabolism,
inflammation, cancer cell infiltration, and hematopoietic stem
cell expansion (24–28). Low levels of ANGPTL3 in RCC tissue
are associated with poor prognosis (29), and ANGPTL3 inhibits

metastasis of RCC by regulating the activities of MMPs and
epithelial-mesenchymal transition (EMT)-related pathways (29).
SHC1 is expressed at higher levels in RCC tissues compared with
normal tissues, suggesting its requirement for the progression of
ccRCC (30). SHC1 regulates PTRF through the AKT pathway to
contribute to the occurrence and development of ccRCC (30).

Signaling through NF-κB-mediate pathways promotes tumor
cell proliferation, inhibits apoptosis, induces angiogenesis and
the EMT, and promotes distant metastasis. The activation of
NF-κB may reshape local metabolism and energize the immune
system, thereby promoting tumor growth (31, 32). TNFSF14
induces the noncanonical NF-κB pathway in certain types of
cancer cells to promote tumor development (33). The nuclear
transcription factor peroxisome proliferator-activated receptor-α
(PPARA), a key mediator of lipid metabolism, serves as a
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FIGURE 7 | Correlation between IRGs and patients’ clinical and demographic characteristics.

biomarker for ccRCC (34). The high levels of IL2RA in
activated circulating immune cells and Tregs is exploited for IL-2
immunotherapy of tumors and autoimmune diseases; and certain

polymorphisms of IL2RA are related to the risk of kidney cancer
(35, 36). Thus, these IRGs therefore provide a new direction for
our research.
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FIGURE 8 | Relationship between risk score and immune cell infiltration.

To evaluate the prognostic value of our clinical prognostic
model, we determined the OS of patients with ccRCC in the
training group. The prognostic model classified these patients
into high- or low-risk groups for shorter survival according
to risk scores. Moreover, when we generated risk curves by
combining the changes in levels of six IRGs with clinical
parameters, and by combining the risk scores of the prognostic
model, we were able to monitor the progression of ccRCC. ROC
curves indicated that high accuracy of the clinical prognostic
model. All results were verified using a testing group and the
GEO cohort. Multivariate analysis further confirmed that the risk
score served as an independent predictor of OS of patients with
ccRCC. Moreover, the prognostic model predicted the survival
of patients as well as disease progression. Thus, this model will
likely serve as a valuable tool to evaluate the prognosis of patients
with ccRCC.

Moreover, our clinical prognostic model showed good
clinical feasibility. For example, the six IRGs performed
moderately for predicting prognosis and were associated with
age, sex, grade, stage, and TNM stage. To analyze tumor–
immune interactions, it is essential to characterize immune
infiltration. Our analysis shows that the levels of the six
IRGs positively correlated with the infiltration of neutrophils,

dendritic, and CD8+ T cells. The role of neutrophils in
cancer is multifactorial, and they participate in different
stages of cancer development, including occurrence, growth,
proliferation, and metastasis (37, 38). Furthermore, neutrophils
promote tumor proliferation by weakening the immune system
(39). Dendritic cells are required for the immune response
through attracting antitumor T cells in the TME. However,
during tumor development, dendritic cells may convert from
immunostimulators to immunosuppressors (40). These results
suggest that high-risk patients harbor relatively higher numbers
of infiltrating dendritic cells, CD8+ T cells, and neutrophils.
Moreover, our results suggest that these six IRGs may predict
increased immune cell infiltration.

Previously, Ghatalia et al. and Wang et al. reported the
ccRCC immune model, but the research of Ghatalia et al. was
mainly based on ccRCC patients who received nephrectomy,
and discussed the relationship between the characteristics of
tumor infiltrating immune cells and the recurrence rate of
local renal cancer (41). The difference is that our study is
based on ccRCC patients and established a clinical immune
gene model to predict the clinical prognosis of ccRCC patients.
Another analysis of TGCA RCC data identified a prognostic
6-DEG classifier, including genes encoding IL21R, ATP6V1C2,
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GBP1, P2RY10, GBP4, and TNNC2 (42). Further analysis
using this model revealed significant associations between
immune/stromal scores and clinicopathological staging. The
expression patterns of these genes expressed in the tumor
microenvironment provide a powerful indicator of prognosis of
patients with RCC. The differences in predictive IRGs identified
by Wang et al. (42) Our present study may be explained by
the former’s use of the ESTIMATE package of R to score
the immune/stromal of TCGA samples and then to screen
differentially expressed genes using the Lasso Cox regression
model to build a prognostic six gene-based clinical model
to predict the survival of patients with ccRCC. In contrast,
here we screened for differentially expressed IRGs acquired
from the ImmPort database, and we then identified IRGs
related to survival among the differentially expressed genes and
used the Lasso Cox regression model to select IRGs with the
highest ability to predict prognosis to construct the prognostic
model. Furthermore, our prognostic model was validated using
TCGA and GEO data, which yielded consistent, stable, and
universal results.

In conclusion, our study identified and validated a
clinical prognostic model comprising six IRGs, which
served as an independent prognostic factor for patients
with ccRCC. Moreover, the prognostic significance of this
model may contribute to monitoring ccRCC occurrence
and to predict prognosis. Our results provide new
insights into approaches to develop new immunotherapies
for ccRCC.
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