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Abstract

Bortezomib/PS-341/Velcade, a proteasome inhibitor, is widely used to treat multiple myeloma. While several mechanisms of
the cytotoxicity of the drug were proposed, the actual mechanism remains elusive. We aimed to identify genes affecting the
cytotoxicity of Bortezomib in the fission yeast S.pombe as the drug inhibits this organism’s cell division cycle like
proteasome mutants. Among the 2815 genes screened (covering 56% of total ORFs), 19 genes, whose deletions induce
strong synthetic lethality with Bortezomib, were identified. The products of the 19 genes included four ubiquitin enzymes
and one nuclear proteasome factor, and 13 of them are conserved in humans. Our results will provide useful information for
understanding the actions of Bortezomib within cells.
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Introduction

The ubiquitin/proteasome pathway is a major proteolytic

machinery in cells and has pivotal roles in the cell division cycle,

apoptosis, etc [1]. Therefore, this pathway is considered to be a

strong potential target of clinical treatment for diseases such as

cancer, and chemicals that modulate the activity of the ubiquitin/

proteasome pathway have been intensively investigated [2,3].

Bortezomib/PS-341/Velcade is a peptide boronic acid that

inhibits the chymotrypsin-like activity of the beta 5 subunit of

the proteasome in vitro. Bortezomib has strong potential anti-

tumor effects in in vitro and animal studies and has been

developed as an anti-cancer drug to treat multiple myeloma and

other cancers [3,4]. Inhibiting the proteasome causes pleiotropic

effects. Therefore, several mechanisms for the cytotoxicity of

Bortezomib have been suggested, like inhibition of anti-apoptotic

proteins, stabilization of p53, disturbance of cell cycle progres-

sion, etc [5]. To increase knowledge of the mechanisms of the

anti-tumor and adverse effects of Bortezomib, it will be beneficial

to identify genes involving in the cytotoxicity of this drug. A

pioneer effort to identify such genes was reported by Lightcap

group in 2010 [6].

The fission yeast Schizosaccharomyces pombe is a simple unicellular

eukaryote and has been used as a model organism of basic cell

biology, owing to its genetic tractability and its similarity to higher

eukaryotes. A library of 2815 gene-deleted strains is available for

genome-wide studies of drug sensitivity [7,8,9].

Here, we attempted to identify evolutionally conserved genes

affecting the cytotoxicity of Bortezomib by taking advantage of the

gene-deletion library in S. pombe and established a method to

perform genome-wide synthetic lethal screening with Bortezomib.

Among the 2815 genes screened, deletion strains of 19 genes had

strong synthetic lethality with Bortezomib (such genes were

hereafter designated as synthetic lethal with Bortezomib; SLB).

Of the 19 SLB genes, 13 are conserved from yeast to human and

include factors involved in ubiquitin/proteasome dependent

proteolysis, chromatin silencing, nuclear/cytoplasmic transporta-

tion, amino acid and vitamin metabolism, vesicular trafficking,

RNA metabolism, etc.

Results

Mitotic arrest and failure in chromosome segregation
induced by Bortezomib

We found that Bortezomib (LC Laboratories) effectively

inhibited proliferation of S. pombe, while MG132, an authentic

proteasome inhibitor in mammalian cells did not inhibit

proliferation (Figure S1). We then examined the level of poly-

ubiquitinated proteins in the presence or the absence of

Bortezomib (Figure S1). Log-phase cultures were harvested at 0,

4, and 9 hours after addition of 1 mM Bortezomib and total

proteins were extracted for immunoblot analysis. In the presence

of Bortezomib, poly-ubiquitinated proteins accumulated in a time-

dependent manner. Therefore, we concluded that Bortezomib

effectively inhibits cellular proliferation and proteolytic activity of

the proteasome in S. pombe.

Temperature-sensitive mutants of proteasome components

(mts3-1 for Rpn12 of 19S regulatory particle and mts2-1 for Rpt2

of 19S regulatory particle) are arrested at M phase due to the

inhibition of degradation of mitotic regulators like Cdc13 (cyclin)

[10,11]. This finding led us to examine in detail how Bortezomib

affects the cell cycle. After adding Bortezomib to mid log-phase
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cultures, the cell concentrations and viability were measured over

time (Figure 1A). Cell proliferation eventually ceased and viability

decreased to 21, 10, and 4.7% at 4, 6, and 9 hours after adding

Bortezomib. Without Bortezomib, the cells continued dividing and

sustained viability. To examine how the cell cycle was affected by

Bortezomib, chromatin DNA, microtubules, and spindle pole

bodies (SPB: homologous to centrosome) were visualized by green

or red fluorescent protein tagging to histone H2A (for chromatin),

alpha-tubulin (microtuble) and Sid4 protein (SPB, the yeast

equivalent centrosome, shown as a dot in Figure 1C) respectively.

The ratio of cells with over-condensed chromosomes and

metaphase spindles was highest (30%) at 1 hour after Bortezomib

addition and subsequently decreased (Figure 1B and 1C-a). As the

ratio of metaphase cells decreased, the ratio of cells with a

displaced nucleus increased (Figure 1C-b), in which sister

chromatids were not separated and the nucleus was displaced

from the center. As the ratio of ‘displaced nuclei’ was highest at

4 h and decreased subsequently, anucleated cells and cells with a

giant nucleus increased (Figure 1B and C-c). This was likely the

result of cytokinesis completion in cells with a displaced nucleus.

Thus, in the presence of Bortezomib, cells were briefly arrested at

metaphase, unable to separate sister-chromatids, and viability was

lost. These phenotypes induced by Bortezomib are virtually

identical to mitotic defects caused by mts2-1, the temperature-

sensitive mutation in Rpt2 subunit of 19S particle [10]. In the case

of mts3-1 mutation (Rpn12 of 19S), metaphase arrest phenotype is

severer; 75% of cells are briefly arrested at metaphase [11]. In

both cases, metaphase arrest is temporal and the nucleus is

displaced subsequently as shown in the case of Bortezomib

treatment. Given that the defect in the metaphase/anaphase

Figure 1. Bortezomib induces metaphase arrest. (A) Bortezomib (1 mM) inhibited cellular proliferation. Concentrations of cells and viabilities
are presented. BZ: Bortezomib (B) Bortezomib (1 mM) inhibited the normal progression of the M phase. The graph indicates the ratio of cells with
metaphase spindles and over-condensed chromosomes (blue, cells shown in Figure 1C-a), cells with a displaced nucleus (red, Figure 1C-b), cells
without a nucleus and with a giant nucleus (orange, Figure 1C-c), and cells with chromosome torn by the septum (green, Figure 1C-d, and e). (C)
Chromosomes, microtubules, and SPB were observed in the presence of Bortezomib. Cells showing mitotic abnormalities correspondent to Figure 2B
are shown in a–e (upper panel: +BZ). Images of normal progression of cell division are shown in lower panel (2BZ). Bar = 10 mm (D) Poly-
ubiquitinated cyclin/Cdc13 accumulated in the presence of Bortezomib. See text for details.
doi:10.1371/journal.pone.0022021.g001

Synthetic Lethal Mutants with Bortezomib
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transition is due to the inhibition of proteolysis, ubiquitinated

substrates of the proteasome such as Cdc13 (cyclin) should

accumulate [12]. To examine this, cells that ectopically expressed

hexa-histidine (his6)-tagged ubiquitin were prepared and cultured

in the presence or absence of Bortezomib for 4 h at 26uC. The

proteins were then extracted from both cultures under denaturing

conditions with 6M guanidine-HCl and the resulting extracts were

applied to TALON beads (Clontech), which absorb the his6 tag, to

purify the ubiquitinated-proteins. TALON-purified proteins were

analyzed by immunoblot using an antibody against Cdc13

(Figure 1D). In the presence of Bortezomib, multi-ubiquitinated

Cdc13 was observed, as reported in temperature-sensitive mutants

of the proteasome [12]. These results demonstrated that a

chemical inhibitor for the proteasome can be used to replace the

ts proteasome mutants. This drug might be useful to analyze the

phenotypes of proteasome-defect at a low temperature, for

example, in meiosis or in the experiments in which heat-shock

responses should be avoided. Therefore, we adopted Bortezomib

for further genetic screening to identify the genes that affect the

proteasomal dysfunction phenotype.

Proteasome-related mutants are hypersensitive to
Bortezomib

Prior to the comprehensive screening, we examined how the

Bortezomib cytotoxicity is affected by mutations related to the

ubiquitin/proteasome system. Compared to the wild type were five

proteasome related mutants as follows: mts2-1, mts3-1, pts1-727

(mutated in the beta 5 subunit of the 20S complex [13]), ump1-620

(mutated in the 20S maturation factor Ump1 [13]), and Dcut8 (gene-

deletion mutant of cut8+ required for the proper nuclear localization

of the proteasome [14,15]). Each strain was incubated on a rich

YES agar plate to form a colony and then spotted onto agar plates

containing 0, 100, 250, or 500 mM Bortezomib, assisted by a robot

system (RoToR, Singer, UK). After 3 days incubation at 26uC, the

colony formation ability of each stain was evaluated (Figure 2A and

B). The wild type formed colonies on all the plates, whereas

proteasome-related mutants were defective in colony-formation on

Bortezomib plates (Dcut8 at 100 mM and others at 500 mM). The

clear hypersensitivity of Dcut8 to Bortezomib led us to adopt the

above-described method for further genome-wide screening of

synthetic lethal mutants with Bortezomib.

Figure 2. Synthetic lethal screening with Bortezomib. (A) Strategy for synthetic lethal screening (B) Mutants of components of the ubiquitin/
proteasome pathway are hypersensitive to Bortezomib. Eight colonies of each strain were replica-plated onto agar plates with various concentrations
of Bortezomib and were incubated for 3 days at 26uC. (C) Summary of synthetic lethal screening with Bortezomib. See text for details. (D) Validation
of isolated mutants that had growth defects in 100 mM Bortezomib by spotting 5-fold serial dilutions of vegetative growing cells.
doi:10.1371/journal.pone.0022021.g002

Synthetic Lethal Mutants with Bortezomib
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Genome-wide synthetic-lethal screening with
Bortezomib

To identify the genes affecting the cytotoxicity of Bortezomib in

S. pombe, we screened 2815 gene-deletion mutants for synthetic

growth inhibition on YES agar plates with Bortezomib using

Robot-assisted replica plating. From the primary screening, 59, 62,

and 135 strains were isolated that had growth defects in media

with 100, 250, and 500 mM Bortezomib, respectively. There was

no clear-cut Bortezomib-resistant mutant that grew faster than the

wild-type strain on 500 mM Bortezomib medium. A summary of

the screening is shown in Figure 2C (examples of raw results of the

primary screening and the list of genes are shown in Figure S2 and

Table S1). The 59 strains that had growth defects with 100 mM

Bortezomib were retested by spotting 5-fold serial dilutions of log-

phase cultures of each strain (from 10 cells to 6250 cells) onto YES

plates with and without Bortezomib (Figure 2D). We performed

these retests in duplicate. As a result, 19 gene-deletion mutants

reproducibly showed growth defects on YES plates with 100 mM

Bortezomib. Seventeen and 12 strains showed growth defects with

250 and 500 mM Bortezomib, respectively. The rest of the mutants

did not show clear growth defects with Bortezomib in the spotting

test. None of mutants tested on lower doses (1 nM–10 mM) of

Bortezomib showed significant growth defects (Figure S3).

Therefore, we adopted a 100 mM concentration of Bortezomib

for hypersensitivity screening of S.pombe mutants in our present

study, although in the previous and similar study on human cells, a

4 to 7-nM concentration of Bortezomib was used for screening [6].

The 19 genes that showed clear growth defects on 100 mM

Bortezomib plates in the spotting test were categorized according

to function: five belonged to ubiquitin/proteasome pathway, four

to nuclear/chromatin proteins and nuclear transport, three to

vesicular traffic, three to amino acid and vitamins metabolism,

three to RNA metabolism, and protein kinase A (Table 1). Table 1

lists the systematic names, primary names (if applicable), budding

yeast Saccharomyces cerevisiae and human orthologs, and a short

description of each SLB gene. Among the 19 SLB genes, 13 genes

are reported to have potential orthologs in humans.

Discussion

In the present study, we demonstrated that Bortezomib, an

inhibitor of the proteasome widely used as an anti-cancer drug,

effectively inhibits the proliferation of S.pombe and induces mitotic

arrest as well as temperature-sensitive mutations of the proteaso-

mal subunits. Nineteen gene deletion mutants were identified by

the genome-wide screening to be synthetic lethal with Bortezomib.

Despite the strong effect of Bortezomib to arrest the cell cycle,

another proteasome inhibitor, MG132, had weaker inhibitory

effects on proliferation in the present study. MG132 is, however,

reported to inhibit protesome-dependent proteolysis in the cell

lysate of S.pombe, indicating that the proteasome of S.pombe is

sensitive to this inhibitor [16]. In S.cerevisiae, MG132 is used to

inhibit proteolysis in vivo under the gene deletion of PDR5, the

major drug efflux pump, which might effectively excrete MG132

from the cell [17]. S.pombe possesses two PDR5 orthologs, Pdr1

Table 1. List of SLB genes.

S.pombe S.cerevisiae H.sapiens Function

ubiquitin/proteasome pof3 DIA2 STIP1 F-box protein SCF ubiquitin ligase

cul3/pcu3 CUL3 Cullin-3 cullin-RING based BC3B ubiquitn ligase

mug30 HUL3 HECTD2 HECT type ubiquitin ligase

ubp16 UBP10 BAB14306.1 ubiquitin C-terminal hydrolase

cut8 STS1/DBF8 tethering factor for nuclear proteasome

chromatin/nucleus chp1 chromodomain protein,
heterochromatin

rik1 CLRK ubiquitin ligase complex, gene
silencing

SPBC1271.05c YOR052C zf-AN1 type zinc finger protein

kap123 KAP123/YBR4 importin-4 Importin beta family

vesicle transport sec28 SEC28/ANU1 coatmer epsilon vesicle transport

ryh1/hos1 YPT6 Rab-6B vesicle transport, GTPase, TORC2
regulator

ftp105 ECM30 DMC1 C17orf28/DMC1 ortholog, Golgi
localization

metabolism SPAC10F6.13c ASP5/AAT1 NP002070 pyridoxal phosphate-dependent
aminotransferase

snz1 SNZ1 Pyridoxine biosynthesis protein

vht1 VHT1 $ biotin uptake

RNA metabolism rex3 REX3 GOR Exonuclease, involved in processing of
snRNA and rRNA

SPAC8C9.10c RRP14 SURF6 ribosome biogenesis

exo2 KEM1/DST2 XP033181 Exonuclease II

signal transduction pka1/git6 TPK1/2/3 PKA cAMP-dependent protein kinase
catalytic subunit

$: Five potential orthologs (accession numbers; NP_115671, XP_166184, AA29863, NP_001458.1 and NP_061837) are reported in GeneDB S. pombe (Sanger Institute).
doi:10.1371/journal.pone.0022021.t001
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and Bfr1. The difference in the effects of Bortezomib and MG132

might be due to their differences in cell permeability or the efficacy

of excretion by drug efflux pumps. Bortezomib may serve as a

useful tool to study the ubiquitin/proteasome pathway in S.pombe.

We performed the synthetic-lethal screen to identify genes that

affect sensitivity for Bortezomib, using the 2815 gene-deletion

mutants of S. pombe. Nineteen deletion mutants were identified

with severe growth defects induced by 100 mM Bortezomib (listed

in Table 1 and Figure 3). Five of the responsible genes (designated

SLB) were ubiquitin/proteasome-related: pof3, cul3, mug30,

ubp16 and cut8. Their synthetic lethality with Bortezomib might

be explained through the drug’s inhibitory action against

proteasome. For example, ubiquitin ligases provide the substrates

for proteasome so that diminishing both might cause severe

synthetic effects. Others have not been reported to be related to

proteasome function. However, some of SLB genes could still be

explained through the proteasome functions. For three vesicular

trafficking SLB genes (sec28, ftp105, and ryh1), defects in secretory

pathway invoke ER (endoplasmic reticulum) stress that may

enhance requirement of the proteasome activity [18]. One of

vesicular trafficking SLB genes, ftp105, encodes Golgi localizing

protein that was reported to interact with deubiquitinase Usp5 and

be required for the Golgi localization of Usp5 [19]. The human

ortholog of Ftp105 is C17orf28/DMC1 (down-regulated in

multiple cancers), a potential tumor suppressor [20]. Therefore,

the synthetic lethality of ftp105 deletion with Bortezomib will be

studied further in future. Ryh1 was recently reported to regulate

TORC 2 (target of rapamycin complex 2) in S.pombe [21].

Concerning nuclear SLB proteins, more proteasome might be

required when the chromatin dynamics is compromised in

deletion mutants of chromatin regulators, as the nuclear protea-

some is known to contribute to chromatin regulations like DNA

damage repair, DNA replication, and transcription [15,22,23,24].

One of nuclear SLB gene products is Rik1, a component of CLRK

ubiquitin ligase complex required for chromatin silencing [25,26].

Although substrates of CLRK ubiquitin ligase are not known, it

may be a curious experiment to examine whether Bortezomib

affects DNA chromatin silencing. PKA was reported to be

involved in metaphase/anaphase regulations in the fission yeast

and in Xenopus-egg systems in vitro [12,27,28]. While some of the

other SLB genes, such as vitamin metabolic factors, are difficult to

be explained, they might be implicated to one of very diverse

cellular functions of the proteasome. Bortezomib may possibly

have targets other than the proteasome within cells of S. pombe.

Thus evaluation of SLB genes apparently unrelated to ubiquitin/

proteasome might be worth for considering other targets.

Combination of SLB gene deletion and proteasomal tempera-

ture-sensitive mutations will be useful to judge whether the

synthetic lethality is due to inhibition of the proteasome or to other

perturbations caused by Bortezomib. If the synthetic lethality is

due to inhibition of the proteasome, the double mutant of the SLB

gene and the proteasome is expected to show a much severer

phenotype than a single proteasomal mutant. Actually, a mutant

of cut8, an SLB gene, shows synthetic lethality to proteasomal

mutations mts2-1 and mts3-1 [14]. Although it should be kept in

mind that Bortezomib has another target, the present results have

potentially important implications for basic proteasome biology by

opening avenues for discovering novel and unexpected relation-

ships between the proteasome and other cellular pathways. A

similar genome-wide screen in human cells suggested that protein

translations, ER/Golgi pathway, DNA damage repair pathway,

and regulation of Myc and polyamines are involved in

Bortezomib-induced cell death [6]. The findings of the present

study newly suggest that genes involved in vitamin and amino acid

metabolic pathways, chromatin silencing, nuclear/cytoplasm

shuttling, and the cAMP pathway are related to the proteasome

Figure 3. Summary of identified SLB genes. Thirteen conserved SLB genes are shown in red.
doi:10.1371/journal.pone.0022021.g003
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in the fission yeast S.pombe. Therefore, further efforts must be made

to understand the mechanisms of the synthetic lethality of these

unexpected SLB gene deletions with Bortezomib.

We identified 13 conserved SLB genes potentially interesting

for further studies. As mentioned in the Results, 4 to 7 nM of

Bortezomib was used to screen genes affecting the cytotoxicity of

Bortezomib in cancer cell lines, and 100 mM of Bortezomib was

used for S.pombe mutant screening in the present study. The

difference in Bortezomib sensitivity might reflect the difference in

the biology of these organisms, such as drug permeability and

drug excretion. In general, yeast cells are more resistant to

perturbations by chemical inhibitors. Therefore, human ortho-

logs of conserved SLB genes should be examined by small

interference-RNA to see whether their knockdown affects the

survivability of human cells at lower doses of Bortezomib. If the

same synthetic effects occur in human cells, such SLB genes have

potential for the innovation of new therapies or diagnoses. For

example, if chemical inhibitors for these conserved SLB products

are developed, such chemicals will be candidates used for cocktail

therapy with Bortezomib. On the other hand, patients with a

genetically weak background due to these SLB orthologs might

have severe adverse effects upon Bortezomib administration.

Thus further investigations on the SLB orthologs in human are

expected in future.

Materials and Methods

Strain, medium, culture, and drug treatments
S. pombe heterothallic haploids 972h2 and 975h+ and their

derivatives were used. Complete rich YE, YES and minimal

EMM2 media were used [29]. Stock solutions of Bortezomib (LC

Laboratories, Woburn, MA) were prepared in DMSO and drugs

were added to liquid culture or agar medium at the indicated

concentration.

Synthetic lethal screening
For genome-wide screening, we adopted the deletion library of

the S. pombe haploid purchased from Bioneer Corp. (Korea). The

control wild type strains are ED666 (h+ ade6-M210 ura4-D18 leu1-

32) and ED668 (h+ ade6-M216 ura4-D18 leu1-32), which were also

purchased from Bioneer Corp. The haploid gene-deletion library

was provided as glycerol stocks in 96-well plates. First, 5 ml of each

stock of deletion strain was spotted onto YES plates from a 96-well

plate using the laboratory automation system BioMek FX

(Beckman Coulter, Brea, CA). After 3 days incubation at 26uC,

a colony of each strain was picked-up and spotted onto another

YES plate (considered the mother plates) using the RoToR robot

(Singer Instruments, UK). One colony was quadruplicated to

check reproducibility. From the mother plates, spotted colonies

were again picked-up and spotted onto YES plates containing 0,

100, 250, and 500 mM Bortezomib, respectively. Spotted plates

with various concentrations of the drug were incubated for 3 days

at 26uC and the colony formation of each strain was evaluated.

For validation of the primary screening, Bortezomib sensitivities of

selected strains from the primary screening were retested using

spotting tests.

Immunoblot and protein purification
For immunoblot analysis, total proteins were extracted using the

trichloroacetic acid (TCA) method. Identical amounts of proteins

were separated by SDS-PAGE gel and blotted to nitrocellulose

membranes. Anti-poly-Ubiquitin (FK-2; mouse monoclonal,

MBL, Japan), anti-alpha-tubulin (TAT1; mouse monoclonal, a

gift from Dr. Gull) and anti-Cdc13 (rabbit polyclonal) were used as

primary antibodies. Horseradish peroxidase-conjugated secondary

antibodies and an ECL chemiluminescence system (GE Health-

care) were used to amplify signal expression. To purify

ubiquitinated proteins, the previously described method was

applied with minor modification [15].

Fluorescent microscopy
All images were acquired using a fluorescent microscope setting

AxioPlan 2 (Zeiss, Germany). Methods of construction of GFP or

RFP fused gene were previously described [30].

Supporting Information

Figure S1 Bortezomib inhibits proliferation of S.pombe.
(A) Bortezomib and MG-132 were added to a log-phase culture of

S. pombe at the indicated concentrations and cellular proliferation

was examined for 8 hours. Fold-increases at 8 hours after drug

addition are presented on the Y-axis. (B) Levels of poly-

ubiquitinated proteins were examined in the presence (+) or

absence (2) of 1 mM Bortezomib. Poly-ubiquitinated proteins

accumulated in a time-dependent manner after the addition of

Bortezomib.

(TIF)

Figure S2 An example of the primary screening is
shown. As described in the text, every colony of each gene-

deletion strain was spotted to each position (A1, A2…) of YES

agar plates with 0, 100, 250, and 500 mM Bortezomib. To screen

2815 strains, 31 sets of these plates were prepared. After

incubating at 26uC for 3 days, colony formation was evaluated.

Wild-type strains were spotted to positions H2 and H3 (white

broken line). Strains spotted onto A3, B8, B10, and C10 were

selected as candidates showing severe growth defects with 100 mM

Bortezomib and were retested by serial dilution spotting.

(TIF)

Figure S3 Sensitivity to lower doses of Bortezomib.
Colony-formation ability of five slb mutants was examined on YES

agar medium containing 0, 1 nM, 10 nM, 100 nM, 1 mM,

10 mM, and 100 mM Bortezomib as described in Figure 2 (D).

Under 10 mM Bortezomib, significant growth defect was not

observed.

(TIF)

Table S1 List of genes that were identified to show
growth defect in the presence of 100, 250 and 500 mM
Bortezomib from the primary screening.

(XLS)
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