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Abstract: The use of PARP inhibitors (PARPi) is growing widely as FDA approvals have shifted its
use from the recurrence setting to the frontline setting. In parallel, the population developing PARPi
resistance is increasing. Here we review the role of PARP, DNA damage repair, and synthetic lethality.
We discuss mechanisms of resistance to PARP inhibition and how this informs on novel combinations
to re-sensitize cancer cells to PARPi.
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1. Introduction

Poly(ADP-ribose)polymerase (PARP) inhibitors (PARPi) have changed the treatment landscape of
epithelial ovarian cancers (EOC). PARPi are FDA approved across all lines of treatment of EOC. While
this expands the treatment armamentarium, this also raises the question of how best to treat patients
who progress on a PARPi. Effectively, these patients are considered PARPi resistant, and there arises an
urgent need to understand and clinically validate the mechanisms of PARPi resistance, allowing us
to determine appropriately matched post-PARPi-progression combination therapies. Additionally,
these strategies will also likely be applicable to homologous recombination proficient (HRP) and BRCA
wild-type (BRCAwt) cancers, where only minimal benefit is seen with single agent PARPi. Here, we
review the role of PARP in DNA repair pathways, the effects of PARPi, mechanisms of resistance, and
strategies for subsequent combination therapies.

2. DNA Damage Repair and the Role of PARP

High fidelity DNA repair is integral to cell survival. Therefore, there are several pathways by
which DNA damage can be repaired. PARP plays multiple roles in several DNA repair pathways,
highlighting where PARPi exerts its cytotoxic function, but also demonstrates the points at which
PARPi resistance may arise.

Double strand breaks (DSBs) in DNA are highly toxic lesions for which there are several DNA
repair processes, the choice of which is influenced by the cell cycle phase during which the DSB occurs,
the availability of a DNA template, and competition between functional effector proteins [1].

Homologous recombination (HR) is one means of repairing DSBs and is restricted to the S and
G2 phases when a sister chromatid is present as a repair template. DSBs are recognized by PARP1,
whereupon poly(ADP-ribos)ylation (PARylation) initiates a cascade of protein recruitment, including
that of BRCA1 and the MRN complex, composed of the endonucleases MRE11, RAD50, and NBS1.
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The 3′ strand end-resection is initiated by the MRN complex and is continued by other nucleases, such
as CTIP, DNA2, and EXO-1. The resultant overhanging single stranded DNA (ssDNA) is coated by
replication protein A (RPA). BRCA1, PALB2, and BRCA2 facilitate the replacement of RPA with RAD51,
generating a RAD51-loaded nucleoprotein filament; this subsequently facilitates strand invasion of the
sister chromatid and error-free, fidelitous DNA synthesis [2].

End-resection is a crucial step in HR and is balanced by antagonism between BRCA1 and 53BP1 [2].
The 53BP1 interacts with the shieldin complex (which includes a REV7 subunit [3,4]) to bind the
initial 3′ ssDNA overhangs. The shieldin complex protects against further end-resection, preventing
the completion of HR and diverting DNA repair toward the classical non-homologous end-joining
(cNHEJ) pathway [3–6]. Furthermore, DYNL11 (dynein light chain 1) promotes the formation of 53BP1
complexes at DSB sites and represses the activity of the MRN complex [1]. Another negative regulator
of HR is DNA helicase B (HELB), which is recruited by RPA to coated ssDNA and represses further
end resection, serving as another means to divert DNA repair from HR toward NHEJ.

cNHEJ, the other primary means of DSB repair, is a mechanism that is preferentially employed
during the G1 phase [1,7], occurs without a repair template, and is inherently error-prone. Here, the
free ends of DNA are bound by the Ku70/Ku80 complex, leading to the recruitment of DNA-dependent
protein kinase catalytic subunit (DNA-PKcs) and the formation of a DNA-PK complex that recruits
downstream ligation proteins. Competition between PARP1 and the Ku70/80 binding of the free DNA
ends underlies the anti-cNHEJ role of PARP [8]. The limited amount of end-processing required for
end to end ligation leads to deletions and inaccurate gap-filling and explains the mutagenic nature
of NHEJ.

If the DSB occurs in a region of DNA with areas of microhomology, and if the Ku complex is
absent or out-competed for binding, alternative NHEJ (altNHEJ) can be employed for repair. This
process involves PARP1-mediated recruitment of the MRN complex [9], alignment of ssDNA at areas
of microhomology, and POLθ- and LIG3-mediated gap-filling and ligation. POLθ is an error-prone
polymerase that antagonizes RAD51-mediated recombination, thereby suppressing HR [10]. Similarly,
DSBs occurring in areas with longer stretches of homology may rely on the single strand annealing
(SSA) pathway of repair [11], which is also inherently mutagenic.

Furthermore, PARP1 functions to repair single strand breaks (SSBs), is involved in base excision
repair (BER) [12,13] and nucleotide excision repair (NER) [9,14], and promotes nucleosome dissociation
to allow chromatin relaxation [15,16].

3. Replication Fork Dynamics and the Role of PARP

PARP1 has been shown to modulate replication fork dynamics in situations of replication stress.
PARP1 binds the sites of DNA damage, forming a PARP–DNA complex. Replication forks that
encounter these complexes become stalled and undergo fork reversal. In this process, nascent ssDNA
overhangs are protected by RAD51 filaments, thought to be facilitated by BRCA1 and BRCA2 [2,17].
PARylated PARP, bound to damaged DNA, concomitantly inhibits the DNA helicase Q1 (RECQ1) to
prevent premature fork restart [9]. Once the DNA lesion is repaired and PARP1 has dissociated, RECQ1
is no longer inhibited and promotes replication fork restart. There is conflicting evidence that limited
end-resection may be required for fork restart, partly facilitated by PARP1-mediated recruitment of
MRE11 [9,18]. If the coordination of these steps does not occur, progression of the replication fork into
DNA lesions causes fork collapse and the generation of toxic DSBs.

4. Effects of PARP Inhibitors

PARPi can be highly injurious to a cancer cell due to its multiple roles in DNA repair and synthesis,
which is tightly coordinated with the cell cycle. The deleterious effects of PARPi are further amplified
in the context of underlying alterations affecting DNA repair or cell cycle regulation, such as in high
grade serous ovarian cancer (HGSOC), the most common EOC histologic subtype. Approximately 50%
of HGSOC are HR deficient [19,20], comprising germline (14%) and somatic (6%) BRCA1/2 mutations,
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BRCA1 promoter methylation (10%) and RAD51C promoter methylation and other RAD mutations
(3–4%). Additionally, upwards of 90% of HGSOC patients harbor mutant TP53, which is critical for
the appropriate regulation of the cell cycle, acting primarily at the G1/S checkpoint but also the G2/M
checkpoint [21–25]. HGSOC is, therefore, particularly susceptible to additional perturbations in the
DNA repair process, such as by PARPi.

This forms the basis for synthetic lethality with PARPi [19,26,27]. For example, PARP inhibition
allows the accumulation of unrepaired SSBs, which are processed into DSBs during replication. In the
absence of a functional HR pathway, and in the setting of unopposed Ku70/80 binding, DSBs are shunted
toward error-prone cNHEJ. The accumulation of DNA errors leads to progressive genomic instability
and cell death. Replication fork dynamics are also altered. PARPi cause the trapping of PARP1 at
sites of DNA lesions, wherein the dissociation of PARP1 is impaired [28]. Without the resolution of
these lesions, replication forks remain stalled. PARPi also disrupt the careful coordination of MRE11
and RECQ1, allowing strand degradation and inappropriate fork restart, leading to fork collapse.
Furthermore, unresolved DNA lesions carried through a dysregulated cell cycle can precipitate mitotic
catastrophe and cell death.

5. Biomarkers of PARP Inhibition

Determining predictive biomarkers of response to PARP inhibition is an area of significant interest
and continued investigation [29,30]. The presence of a BRCA mutation [31] or a “BRCA-like” gene
expression profile [32] both correlate with PARPi response. Among patients with a germline BRCA
mutation, platinum sensitivity and fewer prior lines of therapy were associated with higher response
rates and longer durations of response to PARPi [33]. The measurement of HR deficiency, based on
genomic characteristics, such as loss of heterozygosity or telomeric allelic imbalance, are utilized
in commercial assays, such as the Myriad myChoice HRD assay, and also appear to correlate with
PARPi response [29]. Whether level of PARP1 expression correlates with response to PARPi remains
under investigation. One study evaluating primary ovarian cancer samples found no correlation [34],
whereas a radiotracer-PARP1 study found a significant correlation with response to two PARPi [35].

6. PARP Inhibitors in Ovarian Cancer

The clinical use of PARPi in the treatment of EOC has expanded dramatically. Olaparib, rucaparib,
and niraparib were initially approved for use in the recurrence setting as monotherapy [36–38] agnostic
of sensitivity to platinum, followed by approval as post-chemotherapy maintenance for platinum
sensitive disease [39]. PARPi are now FDA approved as frontline maintenance. Olaparib obtained
FDA approval in 2018 as maintenance following response to frontline platinum-based therapy for
patients with germline or somatic BRCA-mutated EOC [40]. In April 2020, niraparib received FDA
approval as maintenance following response to frontline platinum regardless of HR status [41], and the
combination of olaparib/bevacizumab received FDA approval in May 2020 as maintenance for patients
with HRD EOC [42].

Analysis of the frontline PARPi maintenance studies may yield the best indicators of baseline rates
and kinetics of de novo and acquired PARPi resistance, as this population is the least affected by prior
lines of treatment. The randomized placebo-controlled phase III SOLO-1 trial studied maintenance
olaparib following partial or complete responses to platinum-based frontline chemotherapy in patients
with germline or somatic BRCA-mutated advanced HGSOC or high grade endometrioid EOC [43].
Olaparib maintenance was estimated to improve median PFS by approximately 36 months, as median
PFS had not yet been reached at the time of data reporting. However, the continued negative slope of
the Kaplan–Meier survival curve for patients receiving olaparib highlights disease recurrence despite
PARPi treatment. Similarly, the randomized placebo-controlled phase III PRIMA/ENGOT-Ov26 trial
studied niraparib in the frontline maintenance setting in patients with or without a known BRCA
mutation or evidence of HRD by the Myriad myChoice assay [44]. Median PFS improved from
8.2 months to 13.8 months with niraparib maintenance in the overall population, and prespecified
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molecular subgroup analysis demonstrated that the benefit was greatest in those with BRCA mutations
(median PFS 22.1 versus 10.9 months), followed by those with non-BRCA HR deficiency (19.6 versus 8.2
months). Regardless of this susceptibility, however, disease recurrence substantiates the development
of PARPi resistance.

7. Mechanisms of PARP Inhibitor Resistance

The increase in PARPi use will be paralleled by an increasing number of women who are found
to have de novo or acquired resistance to PARPi. As seen in many trials evaluating PARPi as
post-chemotherapy maintenance or as monotherapy, a substantial proportion of women progress
on treatment, highlighting an urgent need to determine appropriate post-progression treatment, the
choice of which may be influenced by the mechanism(s) of PARPi resistance [45]. Select resistance
mechanisms (summarized in Figure 1) are discussed in detail below.

7.1. Alterations in PARP1

7.1.1. PARP1 Mutations

Mutations in PARP1 can diminish the binding of PARPi or allow PARP1 to maintain endogenous
functions. A large-scale Crispr-cas9 mutagenesis screen with in vitro clonal selection following PARPi
selection pressure identified in-frame mutations occurring within the DNA-binding zinc-finger domain
of PARP1 [46]. Mutations were frequently seen involving residues K119 and S120 and the surrounding
region, impacting the ability of PARP1 to bind sites of DNA damage. This suggests that the abolishment
of PARP1 trapping underlies those clones’ resistance to PARPi. A mutation arising in a region predicted
to contribute to the DNA-binding interface abolished PARP1 trapping, as did a separate unique
mutation located in the PARP1 regulatory region. A catalytic domain mutation yielded a mutant
PARP1 that had retained but diminished recruitment to sites of DNA damage, PARylation, and DNA
binding capacity. In response to PARPi, there was only transient PARP trapping. These preclinical data
highlight that PARP1 mutations altering PARP trapping may serve as a mechanism of PARPi resistance.
This hypothesis is supported by a reported case of a patient with EOC and de novo resistance to
olaparib, who was subsequently found to have a PARP1 mutation affecting a region critical for the
communication between the DNA-binding and catalytic domains [46]. The resulting PARP1 protein
retained DNA-binding capacity but was unable to become trapped in response to PARPi.

Post-translational modifications of PARP1 may also impact its function and confer PARPi resistance.
Preclinical studies in models of triple negative breast cancer found that MET, activated in response
to oxidative DNA damage, was able to phosphorylate PARP1 [47]. This modification resulted in
reduced binding by PARPi, an increase in PARP1 enzymatic activity, and resistance to PARPi. Cells
were re-sensitized to PARPi with the use of a MET inhibitor, and dual MET and PARP inhibition led to
synergistic anti-tumor activity in breast and lung cancer xenografts. In contrast, in a separate model
of hepatocellular carcinoma, PARP1 phosphorylation was dependent on the nuclear translocation of
EGFR and formation of an EGFR/MET heterodimer causing MET activation [48]. Whether PARP1
phosphorylation in EOC relies on MET alone or requires another receptor tyrosine kinase, such as
EGFR, is unknown.



Cancers 2020, 12, 2054 5 of 25

Cancers 2020, 12, x 4 of 24 

 

non-BRCA HR deficiency (19.6 versus 8.2 months). Regardless of this susceptibility, however, disease 
recurrence substantiates the development of PARPi resistance. 

7. Mechanisms of PARP Inhibitor Resistance  

The increase in PARPi use will be paralleled by an increasing number of women who are found 
to have de novo or acquired resistance to PARPi. As seen in many trials evaluating PARPi as post-
chemotherapy maintenance or as monotherapy, a substantial proportion of women progress on 
treatment, highlighting an urgent need to determine appropriate post-progression treatment, the 
choice of which may be influenced by the mechanism(s) of PARPi resistance [45]. Select resistance 
mechanisms (summarized in Figure 1) are discussed in detail below. 

 
Figure 1. Thematic mechanisms of resistance to PARP inhibition. 

7.1. Alterations in PARP1 

Figure 1. Thematic mechanisms of resistance to PARP inhibition.

7.1.2. Post-Translational Modifications of PARP1

7.2. Restoration of Homologous Recombination

A common mechanism of resistance to PARPi is the restoration of at least partial HR capabilities,
such that DSBs can be repaired, decreasing genomic instability and replication stress. This can occur
through the restoration of a deficient HR-related protein to a functional capacity, or by the alteration of
inhibitory proteins such that HR can proceed (Figure 1).



Cancers 2020, 12, 2054 6 of 25

7.2.1. Restoration of Functional HR-Associated Proteins

Reversion Mutations

Somatic BRCA reversion mutations are a well described mechanism of resistance to PARPi,
occurring in approximately 20% of cases of EOC [49,50]. As pathogenic BRCA1/2 mutations may lead
to frameshifts, protein truncation, and the generation of a hypomorphic or non-functional protein,
reversion mutations can be insertions or deletions that restore the open reading frame, remove the
original deleterious mutation to restore a nearly full-length wild-type sequence, or cause a synonymous
mutation, restoring wild-type amino acid sequences [51,52]. This results in the restoration of a
functional BRCA protein [50,51,53–59]. Micro-homology associated with reversion alterations suggest
that they arise as a result of the error-prone altNHEJ or SSA pathways of DNA repair, utilized in the
setting of HR deficiency [53,54,60]. Multiple concurrent reversion mutations may evolve following
PARPi treatment, representing multiple subclones [49,54,56,59,61,62] that may contribute to clinically
heterogenous intra-patient progression of disease. In one case, 12 separate reversion mutations were
found within one patient who developed resistance to rucaparib [61].

Reversion mutations are similarly found in other altered HR-associated proteins. For example,
reversion mutations in RAD51C and RAD51D have been described in association with acquired
resistance to rucaparib in a cohort of HGSOC patients from the ARIEL2 trial [63,64].

BRCA1 Promoter Alterations

The de-methylation of BRCA1 leading to the re-expression of protein and restored HR was
demonstrated in patient-derived xenograft (PDX) models of PARPi-resistant breast cancer [60]. This
was reported clinically, with BRCA1 de-methylation occurring at the time of relapse in a patient with
PARPi resistant EOC [56] and in two patients following neoadjuvant platinum-based chemotherapy [65].
The zygosity of BRCA1 methylation appears to be important for PARPi sensitivity or resistance, with
heterozygous methylation correlating with PARPi resistance in HGSOC PDX models [65]. Additionally,
BRCA1 promoter methylation can be subverted by intrachromosomal rearrangements that place
BRCA1 expression under the control of a different promoter, as was found in PARPi-resistant PDX
tumors [60].

Generation of Hypomorphic BRCA Proteins

Alternative splicing of BRCA1 can generate a hypomorphic protein with residual function.
The expression of the BRCA1∆11q splice variant, with partial skipping and exclusion of most of
the exon 11 nucleotides, was associated with in vitro and in vivo PARPi resistance [66]. Mutations
in the highly conserved RING domain of BRCA1, crucial for interaction with BARD1, yielded a
protein that demonstrated increased stability independent of BARD1, with retained function and
PARPi resistance [67]. Furthermore, RING domain deficient BRCA1 was detected in patient derived
specimens with germline BRCA1 mutations, confirming this as a clinically relevant mechanism of
resistance. Similarly, the generation of hypomorphic BRCA1 can result from mutations occurring in
close proximity to Alu elements in intron 15 of BRCA1 [68]. These mutant BRCA1 isoforms were
able to avoid proteasomal degradation, retained partial RAD51-loading capability despite loss of the
BRCT domain, and promoted PARPi resistance [68]. Additionally, the authors determined that BRCA1
gene rearrangements led to the translation of intron 15. This BRCA1 isoform was functional, retained
RAD51 loading ability, and also generated PARPi resistance in vitro [68].

Decreased Proteasomal Degradation

Mutations within the BRCT domain itself can create a misfolded protein, which typically
undergoes proteasomal degradation [69,70]. However, under PARPi selection pressure in vitro, PARPi
resistant cells were found to have increased expression of the mutant BRCA1 due to Hsp90-mediated
stabilization [71]. These BRCT-mutated proteins were functional and able to interact with PALB2-BRCA2
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for RAD51 foci formation, thereby engendering PARPi resistance. Analysis of specimens obtained
from platinum-treated recurrent BRCA1-mutated EOC patients found that, of four patients with BRCT
domain mutations, two patients had increased BRCA1 protein expression in the absence of reversion
mutations. Analogous to the in vitro data, this was likely due to Hsp90-mediated stabilization [71].

Amplification of Wild-Type BRCA

Copy number gain or upregulation of the wild-type, functional BRCA allele was found to underlie
the PARPi resistance in a cohort of patients with HGSOC [72]. In one patient, the primary tumor had
single-copy loss of the majority of chromosome 17q. However, at the time of progression, there was
single-copy gain of the remaining wild-type allele, resulting in two copies of the non-mutated BRCA1
allele. A second patient developed upregulation of the wild-type BRCA2 allele at time of progression.
However, in vitro analysis of BRCA2-mutant PARPi resistant clones found that amplification and copy
number gain of even the mutant BRCA2 allele was sufficient for the restoration of HR and PARPi
resistance. Therefore, this may be a mechanism of resistance in situations of a hypomorphic BRCA
mutation [73].

7.2.2. Restoration of End-Resection

A crucial step in HR is end-resection, initiated by the MRN complex and extended by additional
nucleases, including EXO-1 and DNA2. Alterations in proteins associated with end-resection may
restore HR capability in previously HR-deficient cancers, leading to PARPi resistance (Figure 1).

Loss of 53BP1, a repressor of end-resection, was shown in vitro to partially restore HR despite
BRCA1 deficiency, conferring PARPi resistance [74,75]. The loss of 53BP1 was seen in 20% of
PARPi-resistant breast cancer PDXs [76]. One patient with PARPi-resistant BRCA-mutant breast
cancer, identified through genomic analysis of a breast cancer cohort, was found to have biallelic
inactivation of TP53BP1 [77]. How the loss of 53BP1 restores HR is likely manifold. The loss of
53BP1-mediated suppression of ATM-dependent RPA phosphorylation rescues RPA loading onto
ssDNA. Concomitantly, 53BP1 loss appears to abrogate ATM-mediated cell cycle checkpoint arrest,
allowing the restoration of cell proliferation [78,79]. Lastly, if BRCA1 is deficient and cannot facilitate
PALB2 recruitment, the loss of 53BP1 allows the exposure of the nucleosome region required for PALB2
self-localization and direct DNA binding [75].

The restoration of HR due to the loss of 53BP1 appears specific to BRCA1 but not BRCA2
deficiency [78], with the type of BRCA1 mutation dictating the extent to which HR is restored. For
example, in cells with 53BP1 loss and BRCA1 mutations not affecting the coiled-coil domain (required
for interacting with PALB2), HR was restored to a greater degree compared to BRCA1 with disrupted
coiled-coil domains [80–82]. Similarly, the depletion of REV7, a component of the shieldin complex,
was found in vitro to restore HR through CtIP-mediated end-resection, leading to PARPi resistance.
This was seen in BRCA1-, but not BRCA2-, deficient cells, highlighting the different steps in HR in
which each BRCA protein acts [83].

DYNLL1 suppresses the activity of several components of the end-resection machinery involved
in HR, including the MRN complex, thereby limiting end resection. The loss of DYNLL1 permitted the
uninhibited recruitment of end-resection proteins to areas of DNA damage, allowing end resection
and HR to proceed [84]. Even in BRCA1 mutant cells, DYNLL1 loss enhanced end-resection, restored
RAD51 foci formation, and restored HR-mediated DSB repair. This was correlated clinically in a
cohort of HGSOC specimens in which BRCA1-deficient cancers with low expression of DYNLL1
were associated with fewer chromosomal abnormalities [84]. In vitro, concurrent DYNLL1 loss and
BRCA1 deficiency resulted in resistance to PARPi. In effect, the loss of DYNLL1 compensated for
BRCA1 deficiency.
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7.2.3. Promotion of Repair Protein Recruitment

Preclinical data suggest that PARPi resistance may arise from adaptive epigenetic changes. For
example, the overexpression of the histone methyltransferases EHMT1/2 was found in PARPi resistant
HGSOC [85]. EHMT1/2 promote the recruitment of DNA damage repair proteins [86,87], including
those related to HR, and have been implicated in replication fork stability [88], suggesting two
downstream mechanisms of resistance. The inhibition of EHMT1/2 ablated markers of HR and NHEJ
in PARPi resistant but not sensitive cells, suggests that PARPi resistant cells developed a reliance
on EHMT1/2-facilitated repair [85]. In both BRCA-deficient and -proficient cells, the inhibition of
EHMT1/2 re-sensitized previously resistant cells to olaparib [85].

In PARPi resistant cells, RAD51 levels are elevated due to the downregulation of EMI1, a mitotic
regulator that assembles a ubiquitin ligase complex involved in RAD51 degradation [89]. Therefore,
EMI1 downregulation allows the accumulation of RAD51, which may facilitate HR and PARPi
resistance [90].

7.2.4. Repression of Alternative DNA Repair Pathways

If alternative DNA repair pathways are suppressed, HR may be preferentially employed instead.
This was demonstrated with microRNA-622 (miR-622), which clinically is associated with worse
overall and disease-free survival in BRCA1 mutated cases of EOC [91]. This association was not seen in
cases with wild-type BRCA. Mechanistically, miR-622 targeted and decreased the expression of Ku80,
suppressing NHEJ. In parallel, this allowed the unfettered recruitment of the MRN complex to DSBs
and rescue of HR in BRCA1 mutant cancers, leading to PARPi resistance [91]. The upregulation of
Wnt/β-catenin signaling, which may occur secondary to the methylation of FZD10, a receptor in the
Wnt pathway [92], also induced PARPi resistance in vitro [93]. Functional assays demonstrated that HR
was primarily enhanced, however NHEJ was also promoted. The inhibition of β-catenin significantly
impeded HR and NHEJ and restored sensitivity of cells to PARPi [92,94]. This may occur through the
modulation of LIG4 by β-catenin, which is involved in NHEJ and upregulation of MRE11 [95,96].

7.3. Alteration of Replication Fork Dynamics

One means of PARPi cytotoxicity occurs through the dysregulation of replication fork reversal
and/or restart. Therefore, resistance to PARPi can arise through the stabilization of replication forks [97].

MRE11 is recruited to stalled replication forks and may be involved in limited resection required
for fork restart. However, in the setting of BRCA1/2 deficiency it may also precipitate uncontrolled
degradation and fork collapse. Fork remodeling is required for MRE11-dependent nascent DNA
degradation. This process is facilitated by SMARCAL1, ZRANB3, and HLTF; depletion of these
chromatin remodelers prevented strand degradation by MRE11, leading to fork stability, reduced
replication stress-induced DNA damage and chromosomal instability, and resistance to olaparib in
BRCA1/2 deficient cells [98]. Additionally, the loss of the recruitment protein PTIP protects nascent
DNA strands from extensive degradation by MRE11, as can occur when BRCA1/2 is deficient or
nonfunctional and cannot recruit protective RAD51 [97]. Comparably, MRE11 inhibition reduced the
levels of PARPi-induced chromosomal abnormalities, likely through replication fork protection.

E2F7, a transcription factor induced by DNA damage and involved in facilitating G1/S arrest, also
impacts MRE11 activity [99]. E2F7 represses the expression of key HR contributors, including RAD51
and BRCA1 [100]. In vitro depletion of E2F7 led to increased RAD51 levels, restored RAD51-mediated
HR repair, and increased stability of stalled replication forks by preventing MRE11-mediated
degradation, overall imparting resistance to PARPi.

Similarly, the recruitment of the nuclease MUS81 by EZH2-directed histone methylation facilitates
fork restart in BRCA2-deficient cells [101]. Low EZH2 levels reduced MUS81 recruitment and led to
fork stabilization. EZH2 inhibition and MUS81 loss each conferred PARPi resistance in BRCA2-deficient
cells and breast cancer model.
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The nuclear protein SLFN11 detects replication stress, stalls fork progression, and prolongs S
phase arrest to allow the repair of DNA lesions prior to the continuation of the cell cycle. However,
prolonged fork stalling eventuates replisome disassembly and fork breakage, contrarily predisposing
cells further to the genome-destabilizing effects of PARPi. High SLFN11 expression was associated
with increased sensitivity to PARPi [102]. Loss of SLFN11 was associated with resistance to PARPi in
BRCA1/2-deficient cells [102,103].

In keeping with the evidence above, miR-493-5p induced PARPi resistance by decreasing protein
expression of the end-resection proteins EXO1, MRE11, BLM, and CHD4 in BRCA2-mutant cells [104].
These factors, recruited by PTIP, are involved in destabilizing the replication fork with additional roles
in HR and single strand annealing [17,18,97,105]. Therefore, miR-493-5p promotes fork stabilization
and diminishes the repair of DSBs via the mutagenic SSA pathway. In BRCA2-mutated EOC cell lines,
miR-493-5p upregulation was associated with olaparib resistance [104].

7.4. PARPi Efflux

Upregulation of drug efflux pumps is a well described mechanism of PARPi resistance. Gene
alterations in ABCB1, encoding the multi-drug efflux pump MDR1 (also known as p-glycoprotein),
include intergenic deletions, transcript fusions, and 5′ region mutations, leading to the increased
expression of ABCB1 [56,106]. Transcript fusions can place ABCB1 under the control of heterogeneous
genes and promoters. In one study of patients with recurrent HGSOC, fusions accounted for 59% of the
specimens with the highest MDR1 expression [106]. Approximately 8% of HGSOC specimens, taken at
time of post-PARPi recurrence, found the upregulation of ABCB1 via fusions and translocations [56].

Of note, paclitaxel and doxorubicin are also MDR1 substrates. Theoretically, the use of either
agent prior to PARPi may similarly induce MDR1 upregulation and indirectly induce PARPi resistance.
In one study, prior paclitaxel use was significantly associated with the presence of ABCB1 fusion
transcripts [106]. However, prior doxorubicin use was not significantly associated with ABCB1
fusion transcripts. The association of MDR1 cross-resistance between PARPi and paclitaxel has been
demonstrated in additional studies [107,108]. Therefore, conversely, MDR1 overexpression occurring
as a PARPi resistance mechanism has implications for which agent to use following PARPi resistance.

8. Implications for Post-Progression PARP Inhibitor Combination Therapies

Barring alterations in PARP1 or increased efflux, PARPi resistance generally occurs via the
restoration of HR or replication fork stabilization. Therefore, combination therapies may aim to target
one or both to re-sensitize resistant cells to PARPi or to induce PARPi sensitivity in EOC that is HRP at
baseline. The rationale behind many combination therapies is depicted in Figure 2. However, many
combinatorial strategies are thus far only in the preclinical or early-phase trial stages, where issues,
such as additive toxicities precluding therapeutic dosing of one or both agents and lack of comparator
arms, hinder the ability to robustly evaluate these combinations [109].



Cancers 2020, 12, 2054 10 of 25

Cancers 2020, 12, x 9 of 24 

 

HGSOC specimens, taken at time of post-PARPi recurrence, found the upregulation of ABCB1 via 
fusions and translocations [56]. 

Of note, paclitaxel and doxorubicin are also MDR1 substrates. Theoretically, the use of either 
agent prior to PARPi may similarly induce MDR1 upregulation and indirectly induce PARPi 
resistance. In one study, prior paclitaxel use was significantly associated with the presence of ABCB1 
fusion transcripts [106]. However, prior doxorubicin use was not significantly associated with ABCB1 
fusion transcripts. The association of MDR1 cross-resistance between PARPi and paclitaxel has been 
demonstrated in additional studies [107,108]. Therefore, conversely, MDR1 overexpression occurring 
as a PARPi resistance mechanism has implications for which agent to use following PARPi resistance. 

8. Implications for Post-Progression PARP Inhibitor Combination Therapies  

Barring alterations in PARP1 or increased efflux, PARPi resistance generally occurs via the 
restoration of HR or replication fork stabilization. Therefore, combination therapies may aim to target 
one or both to re-sensitize resistant cells to PARPi or to induce PARPi sensitivity in EOC that is HRP 
at baseline. The rationale behind many combination therapies is depicted in Figure 2. However, many 
combinatorial strategies are thus far only in the preclinical or early-phase trial stages, where issues, 
such as additive toxicities precluding therapeutic dosing of one or both agents and lack of comparator 
arms, hinder the ability to robustly evaluate these combinations [109]. 

 
Figure 2. Rationale for re-sensitization to PARPi. Almost all HGSOC harbor mutant p53, with cell 
cycle dysregulation at baseline. Inhibition of ATM or ATR further prevents the appropriate halting of 
the cell cycle. Using agents that reestablish HR deficiency allows for the accumulation of endogenous 
and exogenous DNA damage, trapped PARP, and replication stress, ultimately leading to mitotic 
catastrophe and cell death. 

8.1. PARPi and Anti-Angiogenic Agents 

Anti-angiogenic agents have been shown to inhibit BRCA1/2 expression, which may be 
beneficial in cases of reversion alterations leading to functional proteins. The inhibition of VEGFR3 
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the cell cycle. Using agents that reestablish HR deficiency allows for the accumulation of endogenous
and exogenous DNA damage, trapped PARP, and replication stress, ultimately leading to mitotic
catastrophe and cell death.

8.1. PARPi and Anti-Angiogenic Agents

Anti-angiogenic agents have been shown to inhibit BRCA1/2 expression, which may be beneficial in
cases of reversion alterations leading to functional proteins. The inhibition of VEGFR3 in vitro decreased
levels of BRCA1 and BRCA2 and inhibited cell growth [110]. In the setting of a BRCA2-mutated
clone that developed a resistance mutation and expressed a functionally wild-type protein, VEGFR3
inhibition was sufficient to restore chemosensitivity [110]. The inhibition of VEGF and VEGFR2 in
organoid models prevented Akt-mediated DNA repair, thereby preventing HR and leading to aberrant
NHEJ [111]. Anti-angiogenics are also hypothesized to induce or exacerbate intratumoral hypoxia,
which itself is associated with impaired HR [112–115]. Therefore, preclinical data suggest that combining
anti-angiogenic agents with PARPi may be effective in PARPi resistant disease. A single arm phase II
trial treated 34 patients with PARPi-resistant EOC with olaparib and cediranib (oral anti-angiogenic),
yielding 4 patients who achieved partial responses and 18 patients with stable disease [116]. That this
combination was effective even in PARPi-resistant cases may be due to cediranib-mediated suppression
of BRCA1/2 and RAD51 expression, both indirectly through induction of hypoxia, and directly through
transcriptional repression [117]. In a similar patient population of germline BRCAwt platinum sensitive
recurrent EOC, combination cediranib/olaparib had greater activity compared to olaparib alone in
post-hoc analyses of a phase II trial, prolonging median PFS from 5.7 months to 23.7 months (p = 0.002)
and median OS from 23.0 months to 37.8 months (p = 0.047) [118]. In prespecified subset analysis in a
subsequent phase III trial (GY-004), however, the population with germline BRCAwt platinum sensitive
recurrent EOC performed comparably to platinum-based chemotherapy (ORR 64% cediranib/olaparib
versus 72% chemotherapy; HR 0.97, 95% CI 0.73–1.30) [119]. Cediranib/olaparib performed better than
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chemotherapy in those with BRCA-mutated disease (ORR 89% versus 71%, HR 0.55, 95% CI 0.32–0.94).
Due to the trial’s hierarchical testing design, cediranib/olaparib did not meet statistical criteria for
comparison to olaparib monotherapy. Importantly, the phase II and III trials of cediranib and olaparib
did not report the somatic BRCA status of patients. Additionally, the benefit of anti-angiogenic agents
may also be influenced by the immunomodulatory effects of anti-VEGF/VEGFR agents [120,121].

8.2. PARPi and Hsp90 Inhibition

Pairing PARPi with inhibitors of Hsp90 (Hsp90i) may be relevant for EOC with BRCA1 mutations
affecting the BRCT domain, given the role of Hsp90 in subverting ubiquitin-directed proteasomal
degradation and restoring BRCA1 protein function [71]. Hsp90 stabilization of mutant BRCA1 likely
extends beyond BRCT domain mutations [122]. In addition to BRCA1, Hsp90 interacts with several
other client proteins involved in DNA repair and cell cycle regulation, including CHK1, BRCA2,
RAD51, and MRE11 [122,123]. Therefore, Hsp90i may impair HR by several mechanisms and may
additionally impair NHEJ [122]. This was corroborated in preclinical studies using the Hsp90 inhibitor
ganetespib. Treatment with ganetespib led to reduced expression of BRCA1, BRCA2, CHK1, ATM,
RAD51, MRE11, and CDK1 and was associated with abrogated HR [124]. Pairing ganetespib with
talazoparib produced anti-tumor synergy even in BRCAwt, HR-proficient HGSOC cells [124]. This
suggests that PARPi resistant cancers with restored HR may be susceptible to combination Hsp90i
and PARPi.

8.3. PARPi and PI3K Pathway Inhibition

Impairing DNA damage repair through PI3K inhibition (PI3Ki) occurs through the suppression of
BRCA1/2 transcription and depletion of the nucleotide pool [125–128]. A phase I trial of buparlisib
(PI3Ki) with olaparib yielded 12 of 46 patients with EOC who achieved a partial response, of which
four patients did not have germline or somatic BRCA mutations [129]. Similarly, a phase Ib trial
of alpelisib (PI3Ki) with olaparib in patients with EOC found that 35% (n = 6/17) of patients with
germline BRCAwt disease achieved partial responses, similar to those with germline BRCA mutations
(30%, n = 3/10) [130]. Both cohorts were enriched for HR proficient disease, as 94% and 90% of each
group, respectively had platinum resistant or refractory disease. In prespecified analyses, archival
tumor specimens were assessed for somatic mutations, and in a combined group of germline and
somatic BRCAwt disease, 33% of patients (4/12) achieved a response. These data suggest that PI3Ki
was sufficient to induce HR deficiency in cancers with baseline HR proficiency and without evidence
of PI3K pathway mutations, thereby sensitizing to the effects of PARPi. Though both phase I trials
allowed prior PARPi use for patients in dose escalation, response attributions and whether these
patients had PARPi resistance is unclear.

In a phase I trial of olaparib and the AKT inhibitor capivasertib, 11 of 25 patients with EOC
achieved clinical benefit (CR + PR + SD ≥ 4 months) [131]. Of these 11 patients, four were PARPi
resistant. Despite this, one patient achieved a PR, and two patients achieved prolonged SD of 56
and 115 weeks, respectively. These data suggest that combination therapy was able to re-induce
sensitivity to PARPi. Of additional interest is correlative cfDNA analysis that showed BRCA1/2
reversion mutations developing at the time of progression, demonstrating that PARPi resistance can
develop despite combination therapy [131]. A separate analysis of patients with endometrial, ovarian,
and triple-negative breast cancers treated with olaparib/capivasertib determined that markers of DNA
damage checkpoint activation (high phospho-Chk1, -Wee1, -CDC2) and decreased mTOR activity were
associated with response, whereas resistance to the combination was associated with high receptor
tyrosine kinase activity levels and mTOR activation [132]. Though it is unclear whether markers
differed between malignancies or whether any patients included in the analysis had received prior
PARPi, these data provide some indication of a molecularly-defined population who may be more
likely to respond, and provide greater insight to additional resistance mechanisms.
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8.4. PARPi and MEK Inhibition

RAS-mutated cell lines were found to be HRP and PARPi resistant, and acquired PARPi resistance
was associated with the upregulation of the RAS/MAPK pathway [133]. This suggested that the MAPK
pathway may be a target for re-sensitization to PARPi. MEK inhibition (MEKi) was found to decrease
cellular capacity for HR by decreasing the expression of MRE11, RAD50, NBN, and BRCA1/2 [133,134],
predisposing to effects of PARPi. Combining MEKi and PARPi induced greater DNA damage and
apoptosis in vitro, with synergistic anti-tumor activity in vivo [133,134]. An ongoing phase I/II trial of
olaparib and selumetinib (MEKi) (NCT03162627) includes an expansion cohort of PARPi-resistant EOC.

8.5. PARPi and Inhibition of ATR, Chk1, and Wee1

Inhibitors of the ATR/Chk1/Wee1 axis affect both HR and replication fork stability, promoting
re-sensitization to PARPi in settings of both BRCA1 and BRCA2 deficiency. In BRCA1-deficient cells,
ATR inhibitors (ATRi) disrupted the acquired ATR-dependent recruitment of PALB2-BRCA2 and RAD51
loading [135,136], thereby reestablishing HR deficiency and overcoming the RAD51-related protection
of stalled forks. The synergistic anti-tumor effect of combination PARPi and ATRi was demonstrated
in PARPi-resistant BRCA1-mutant EOC models [137] and breast cancer models [138]. Furthermore,
the role of ATR in coupling DNA damage repair with cell cycle regulation enhances the synergism of
combination ATRi and PARPi, particularly in p53-mutated EOC [139]. In BRCA2-mutant EOC PDX
models, ATRi released G2/M arrest, leading to premature mitosis with unrepaired PARPi-induced
DNA damage [140]. This corresponded with increased tumor suppression in murine models.

The inhibition of Chk1 (Chk1i), a downstream effector protein activated by ATR, produced similar
results when administered with PARPi, in both BRCA mutant and wild-type EOC models [137,140,141].
Prexasertib, a Chk1 inhibitor, has demonstrated preclinical sensitization to PARPi [141,142] and early
evidence of clinical effectiveness in a phase I trial [143]. Interestingly, two patients with PARPi-resistant,
BRCA1-mutant HGSOC achieved partial responses with combination olaparib and prexasertib [143].
Effects of Chk1i may result from its known role interacting with Cdc25a and Cdc25c, possibly from
effects on the transcription factor E2F7 [99], and by preventing RAD51 foci formation [141].

Acting downstream of Chk1, Wee1 inhibition synergizes with PARPi in preclinical data across
several cancer types [144–146]. The safety of combination olaparib and the Wee1 inhibitor adavosertib
was demonstrated in a phase 1b trial of refractory solid tumors [147], and this regimen is under
investigation in a phase II trial specifically in PARPi-resistant EOC (NCT03579316). Interestingly, the
sequential administration of PARPi and adavosertib was as effective as a concurrent administration
in anti-tumor efficacy in vivo, but was better tolerated with fewer hematopoietic effects [146]. This
alternate dosing schedule could be considered in future trials.

8.6. PARPi and BET/BRD4 Inhibition

Bromodomain containing 4 (BRD4) is a member of the BET protein family with roles in epigenetic
gene regulation. The re-sensitization of PARPi-resistant cells using BRD4 inhibition (BRD4i) or
broader BET inhibition (BETi) appears to be through the repression of HR-associated genes, including
BRCA1, RAD51, and CtIP, thereby generating a state of HR deficiency [148–150]. Combined
PARPi/BRD4i demonstrated antitumor synergy in vitro and in vivo [148–150]. This combination
was effective in cell lineages that were BRCAwt (mimicking BRCA reversion mutations), 53BP1
deficient (mimicking TP53BP1 mutations and/or 53BP1 loss), and PARP1 deficient (mimicking PARP1
mutations or post-translational modifications), suggesting effectiveness across several mechanisms of
PARPi resistance [148]. A phase I trial evaluating the combination of olaparib and AZD5153 (BETi)
(NCT03205176) in advanced solid tumors, including EOC, allows prior PARPi exposure.



Cancers 2020, 12, 2054 13 of 25

8.7. PARPi and CDK12 Inhibition

Cyclin-dependent kinase 12 (CDK12) modulates transcription by acting on RNA polymerase II.
In vitro, CDK12 loss-of-function mutations and CDK12 inhibition (CDK12i) reduced the expression
of HR-related genes, including BRCA1, ATR, and Fanconi-anemia pathway genes, due to premature
cleavage and polyadenylation [151–153], leading to reduced capacity for HR repair [154–156]. This
mechanism of re-inducing HR underlies the synthetic lethality between CDK12i and PARPi, seen in
models of HGSOC [157] and breast cancer [156] and may be effective for PARPi-resistant disease in
which HR is restored. There are thus far no clinical data for this combination.

8.8. PARPi and Immune Checkpoint Inhibition

Pairing PARPi and immune checkpoint inhibition (ICI) exploits two main premises for synergy.
The first centers on the ability of PARPi to propagate DNA damage and generate cytosolic DNA. This
activates the cGAS/STING pathway [158–163], with the downstream expression of type 1 interferons,
T-cell-recruiting cytokines, and paracrine stimulation of dendritic cells [158,164]. However, this may be
compromised if the mechanism of PARPi resistance is the restoration of HR proficiency. For example,
downstream markers of cGAS/STING activation were decreased in BRCA proficient cells compared
to BRCA deficient cells [158,165]. The second premise arises from the multiple immunomodulatory
effects of PARPi, including on T cell differentiation, macrophage polarization [166–168], increased
susceptibility to NK cell-mediated death [169,170], and PD-L1 upregulation [171,172]. These effects
may be compromised if acquired alterations affect PARPi binding or allow the persistence of PARP1
function. The combination PARPi/ICI seeks to capitalize on the immunostimulatory effects of PARPi
while negating the effects of PD-L1 upregulation.

The combination of PARPi/ICI may still be effective in the setting of restored HR proficiency.
In the phase I/II TOPACIO/KEYNOTE-162 trial, the combination of niraparib and pembrolizumab
was evaluated in patients with platinum-resistant EOC, of whom the majority were BRCAwt (79%)
or HRP (53%) [173]. Overall response rates (ORR) were similar regardless of HR status; an ORR of
19% was seen in those patients with HRP disease, compared to an ORR of 14% in patients with HR
deficient disease. This was comparable to the ORR of 14% (5/35) seen in a phase II trial of olaparib and
durvalumab in a predominantly platinum-resistant (86%), BRCAwt (77%) patient population [174]. Of
the five responders, two were BRCAwt and HRP. Paired pre- and on-treatment specimens showed that
olaparib/durvalumab promoted an immunologically-inflamed environment, with increased IFNγ and
TNFα production, increased tumor-infiltrating lymphocytes, and increased PD-L1 expression [174].
Therefore, though the clinical effectiveness of PARPi/ICI is modest in patients with measured or
surrogate markers of HR proficiency, this combination may still be beneficial in select patients.

9. Conclusions and Future Perspectives

There are multiple mechanisms for PARPi resistance, and though many described mechanisms
require clinical validation, the above data highlight several key issues. First, multiple resistance
mechanisms may arise within one individual. This is well illustrated in the case of BRCA reversion
mutations, in which several studies found numerous reversion mutations within individuals. The
choice of subsequent PARPi combination therapy would need to consider this heterogeneity. Second,
it is imperative to reassess the molecular characteristics of disease at each point of progression, given
the dynamic nature of treatment response and resistance. “Liquid biopsy”, evaluating cell-free DNA
(cfDNA), circulating tumors cells, circulating miRNA, or exosomes, may be more feasible than repeated
biopsies [175]. For example, BRCA reversion mutations are readily detected using cfDNA [49,50,59,62].
Importantly, genetic alterations may have unanticipated consequences on the overall restoration of
DNA repair or synthesis. In this regard, functional assays, such as those for the detection of HR
deficiency/proficiency or replication fork stability, may be more informative than identifying the genetic
changes in isolation. This is an area of unmet need, as surrogate measures of HR and replication
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fork dynamics, such as detection of γH2AX and Rad51 foci, are not yet clinically validated. Finally,
PARPi combination therapies have great promise, but few trials currently allow patients with PARPi
resistance. This is detrimental to the development of effective treatment strategies, particularly as
the number of PARPi-resistant patients will rise with the growing use of PARPi in general. Ideally,
post-progression PARPi combination regimens should complement the resistance mechanism(s) and
functional status of the tumor at the time of treatment. To do so will require establishing the predictive
value of both to optimize the pairing of patient and regimen. Expanding the benefit of PARPi through
combination therapies will critically rely on appropriate dose escalation or alternative dose-schedule
strategies. Optimizing target modulation while minimizing possible overlapping toxicities will prevent
the premature termination of a promising combination. In conclusion, understanding the mechanisms
of PARPi resistance, detecting them in real-time, such as through regular sampling by liquid biopsy,
and optimizing targeted combinations, are critically needed.
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altNHEJ Alternative non-homologous end-joining
BER Base excision repair
cfDNA Cell-free DNA
cNHEJ Classical non-homologous end-joining
DSB Double strand break
EOC Epithelial ovarian cancer
HGSOC High grade serous ovarian cancer
HR Homologous recombination
HRD Homologous recombination deficient
HRP Homologous recombination proficient
ICI Immune checkpoint inhibition
NER Nucleotide excision repair
NHEJ Non-homologous end-joining
PARP Poly(ADP-ribose) polymerase
PARPi PARP inhibitor
PDX Patient-derived xenograft
SSA Single strand annealing
SSB Single strand break
ssDNA Single stranded DNA
VEGF/R Vascular endothelial growth factor/receptor
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