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A B S T R A C T   

In the Karst region of Southwest China, the content of soil heavy metals is generally high because 
of the geological background. Moreover, Southwest China is rich in mineral resources. A large 
number of mining and smelting activities discharge heavy metals into surrounding soil and cause 
superimposed pollution, which has drawn widespread concern. Due to the large variation co-
efficients of soil heavy metals in the Karst region, it is particularly essential to select appropriate 
analysis methods. In this paper, Jichangpo in Puding County, a Karst area with multi-mineral 
mining and smelting, is selected as the research object. A total of 368 pieces of agricultural 
topsoil in the study area are collected. The pollution level of heavy metals in agricultural soil is 
evaluated by the geological accumulation index (Igeo) and enrichment factor (EF). Absolute Factor 
Score/Multiple Linear Regression (APCS/MLR), geographic information system (GIS), self- 
organizing mapping (SOM), and random forest (RF) are used for the source allocation of soil 
heavy metals. Finally, the combination of APCS/MLR and health risk assessment model is adopted 
to evaluate the risks of heavy metal sources and determine the priority-control source. The results 
show that the average values of soil heavy metals in the study area (Cd, Hg, As, Pb, Cr, Cu, Zn, and 
Ni) exceed the background values of corresponding elements in Guizhou Province. Three sources 
of heavy metals are identified by combining APCS/MLR, GIS, SOM, and RF. Zn (63.47%), Pb 
(55.77%), Cd (58.98%), Hg (32.17%), Cu (14.41%), and As (5.99%) are related to lead-zinc 
mining and smelting; Cr (98.14%), Ni (90.64%), Cu (76.93%), Pb (43.02%), Zn (35.22%), Cd 
(28.97%), Hg (22.44%), and As (5.84%) are mixed sources (natural and agricultural sources); As 
(88.17%), Hg (45.39%), Cd (12.04%), Cu (8.66%), and Ni (6.72%) are related to the mining and 
smelting of coal and iron. The results of health risk assessment show that only As poses a non- 
carcinogenic risk to human health. 3.31% of the sampling points of As have non-carcinogenic 
risks to adults and 10.22% to children. In terms of carcinogenic risks, As, Pb, and Cr pose 
carcinogenic risks to adults and children. Combined with APCS/MLR and the health risk 
assessment model, the mining and smelting of coal and iron is the priority-control pollution 
source. This paper provides a comprehensive method for studying the distribution of heavy metal 
sources in areas with large variation coefficients of soil heavy metals in the Karst region. 
Furthermore, it offers a theoretical basis for the management and assessment of heavy metal 
pollution in agricultural land in the study area, which is helpful for researchers to make strategic 
decisions on food security when selecting agricultural land.  
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1. Introduction 

The soil pollution of arable land has become one of the most prominent environmental problems in China [1]. Heavy metals have 
polluted about one-fifth of China’s arable land [2]. China bears 22% of the world’s population upon 7% of the arable land. The arable 
land pollution in China threats the world’s food security [3]. Heavy metals have been listed as the most severe pollutants on account of 
their high toxicity, bio-accumulation, and irreversible damage to humans [4]. Soil heavy metals enter the human body through the 
food chain and harm the human body. It arouses worries about the safety of agricultural products and widespread concerns about the 
heavy metals in cultivated soil [5–10]. Therefore, research on the accumulation degree, pollutant source, and health risks to humans of 
heavy metals in agricultural soil will make a significant contribution to food security. 

Karst area accounts for 12% of the global land area. As one of the three largest Karst areas, Southwest China is an essential part of 
global Karst areas [10,11]. The area of carbonate rocks in Guizhou Province in Southwest China is about 1.1 × 105 km2, accounting for 
73% of the province’s total area [12]and ranking first in China. The soil in the Karst area is characterized by poor, discontinuous, and 
thin solum, leading to a shortage of cultivated land and an increment in its value [13]. The soil in the Karst area has the typical features 
of high geochemical background with the accumulation of heavy metals [6]. Meanwhile, the ecological environment in the Karst area 
is very fragile and easily affected by human activities. The bearing capacity of soil in the Karst area for heavy metals is limited. 
Southwest China is abundant in mineral resources. A large number of mining and smelting activities discharge heavy metals into the 
environment, which can cause superimposed pollution by migrating to the surrounding soil [9,14,15]. In Southwest China, the 
variation coefficients of soil heavy metals are generally large [6,9,11]. Previous studies have focused on the enrichment mechanism 
and distribution characteristics [16], health risk assessment [1,17], and source analysis [1,17,18] of soil heavy metals in karst areas. 
The source analysis methods of heavy metals mainly focus on geographic information system (GIS) mapping and receptor models 
(principal components analysis (PCA), positive matrix factorization (PMF)\UNMIX model) [1,9,17–19]. GIS and PCA can merely 
identify the potential source types of heavy metals rather than the source contributions [19]. PMF has the advantages of applying 
non-negative constraints and solving factor values while considering the uncertainty of heavy metals. However, PMF is sensitive to 
outliers, which may cause the deviation of results from actual values [10,20]. UNMIX can easily distinguish the source with the 
greatest contribution but may ignore the source with the lowest contribution [21]. APCS/MLR uses regression analysis to quantify the 
contribution of factors based on factor analysis, possessing the advantages of easy operation and fast calculation [21,22]. Previous 
studies show that in terms of predicting sources of soil heavy metals, APCS/MLR has a higher accuracy than PMF and UNMIX models 
and can effectively process strongly mutated data [20]. 

However, the receptor models do not consider the spatial change of data and require data to fit in with the algorithms. They cannot 
analyze variables such as soil type, land-use type, and soil parent material which are also significant factors affecting the accumulation 
of soil heavy metals [20]. Meanwhile, machine learning methods can reveal the complex relationship between soil heavy metals and 
environmental conditions and obtain more realistic results. Therefore, machine learning models are practical for identifying sources of 
soil heavy metals [23]. At present, there are few studies on machine learning methods for identifying sources of soil heavy metals [24]. 
SOM is an unsupervised artificial neural network, which relies on the competition among neurons to optimize the network step by step 
with the competitive learning strategy. It maintains the topological structure of input space by using the neighbor relationship 
function. SOM can project complex high-dimensional data sets into low-dimensional space, visualize them onto a two-dimensional 
surface, group the input objects with similar properties into the same category, and retain the initial topological structure. It ap-
plies to multi-dimensional data [25]. SOM can reveal the local relationship between variables and classify data with large variation 
coefficients. Besides, SOM supports the technology of giving information pictures of data by using reference vectors, which can clearly 
disclose the interdependence of variables [26]. RF is a decision tree model based on integrated learning, proposed by Leo Breiman in 
2001 [27]. Using the bagging method to form integrated learners for training, RF can avoid data over-fitting. It has a specific resistance 
to noise, high prediction accuracy, and excellent performance in classification and regression [28]. 

We selected Jichangpo Town, Puding County, Guizhou Province, as the research object. Previous studies have shown that heavy 
metals such as Cd, Pb, Cu, and Cr in the soil of Puding County are enriched to varying degrees [29]. Jichangpo Town possesses various 
minerals, such as lead-zinc, coal, and iron. Multiple mines aggravate the pollution of soil heavy metals. However, the accumulation 
degree, source, and contribution rate of soil heavy metals in the study area are still unknown. Therefore, it is selected as the case of this 
study. Methods can be mutually verified and supplemented. This study combined traditional analysis methods (APCS/MLR and GIS) 
with machine learning methods (SOM and RF) to determine the contributions of heavy metal sources. The APCS/MLR and health risk 
assessment model are combined to assess the health risk of heavy metal sources. This study provides a comprehensive approach to the 
sources of heavy metals in karst areas. At the same time, our study is of great significance for the safe use of agricultural land and the 
protection of human health in karst areas with high heavy metal background values. 

2. Materials and methods 

2.1. Study area 

Located in the central of Guizhou Province, Puding County is an agricultural county in the mountainous area with few farmlands 
per capita. A large amount of land cannot be cultivated. The distribution area of carbonate rock in the county accounts for 84% of the 
county’s total area. Lead-zinc ores are abundant in Jichangpo Town and hosted in the Cambrian dolomite strata near the axis of the 
northeast Wuzhishan anticline in Jichangpo Town. Twelve ore spots have been found, and nine have been or are being mined with 
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mining rights. In addition, there are iron and coal mines in the study area. The distribution of mineral resources is shown in Fig. 1. The 
soil types in the study area mainly include yellow soil, yellow-brown soil, lime soil, paddy soil, and purple soil. The exposed strata are 
the Permian and Triassic strata (Fig. 1). The lithology is mostly limestone, dolomite, magmatite, and clastic rocks. The parent rock of 
soil formation is primarily carbonate rock. 

Fig. 1. Geological map and sampling map of the study area. 1. Paleogene, 2. Triassic Daye Formation limestone, 3. Permian Longtan Formation 
sandstone, 4. Permian Emeishan basalt formation, 5. Permian Maokou Formation, 6. Permian Qixia Formation, 7. Permian Liangshan Formation, 8. 
Carboniferous Mapping Group, 9. Carboniferous Mapping Group, Huanglong Group, 10. Carboniferous Huanglong Group, 11. Carboniferous Pazuo 
Group, Datang Group, 12. Devonian Daihua Group, 13. Ordovician Meitan Group, 14. Cambrian Loushanguan Group, 15. Cambrian Gaotai For-
mation, 16. Cambrian Qingxudong Formation, 17. Cambrian Qingxudong Formation, Jindingshan Formation, 18. Cambrian Jindingshan Formation. 
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2.2. Soil sample collection 

The data in this paper was from the Geochemical Survey and Evaluation of Cultivated Land Quality in Guizhou Province. The 
sampling period was from January to February 2018. The total number of samples was 368. 

The sampling used the land-use status map (1:50,000) with the second land survey data in Guizhou Province and the Ovital Map as 
working base maps, according to the “People’s Republic of China Geology and Mineral Industry Standard Land Quality and 
Geochemical Evaluation Specification” (DZ/T 0295-2016) to design sampling points and determine the sampling depth. The density of 
sampling points ranged from 4 to 16 points/km2. Each sample was composed of a central sample and 4-6 sub-samples. Most sample 
points were arranged in an “X” shape, and a few ones were in the shape of an “S.” Then the sampling points were input into the 
OvitalMap on a mobile phone. Sampling points were located according to the navigation service of the OvitalMap. The on-site 
sampling points could be adjusted within 100 m. Sampling points were set in the center of the cultivated land, the dominant land 
use type, the cultivated land for dominant crops, and areas with large soil thickness, with a sampling depth of 0–20 cm. In order to 
avoid the introduction of heavy metal elements before sampling, the soil was first dug with a shovel. The part of the soil that touched 
the shovel was removed with bamboo slices, and then samples were collected. During sampling, stones, insects, other debris and plant 
roots were removed. Live and dead roots were separated by visual inspection. Live roots were distinguished by their light color and 
high tensile strength. Roots were classified as dead when they became blackened and shriveled. Sub-samples and center samples were 
combined into one surface soil sample in equal proportion. The shovel and bamboo chips were cleaned up before collecting the next 
sample. All collected samples were packed in sealed kraft paper bags to avoid pollution and transported immediately to the laboratory. 
The distribution of sampling points is shown in Fig. 1. 

Duplicate samples accounted for 2% of the total number of samples, which were collected at the same point by another sampling 
group after 3–5 days with the same method. 

2.3. Sample test method 

After being transported to the laboratory, The samples were then dried in a constant temperature drying oven below 60 ◦C. The 
samples were passed through a 20-mesh nylon sieve to remove impurities, such as rocks, plants, and animal debris. The dried samples 
were thoroughly mixed. 50 g of soil samples were taken out, ground by a ceramic mortar, and then were passed through a 20-mesh 
nylon sieve. The soil samples were divided into four parts by the quartile method. One part was for the pH test. The other parts were 
ground again and then were passed through a 60-mesh nylon sieve for the testing of soil organic matter and soil total nitrogen. 80 g of 
samples were taken out and ground by a pollution-free planetary ball mill (QXQM-4, Changsha Tianchuang Powder Technology Co. 
LTD, China), which inside the ball mill is agate ball, and then were passed through a 200 nylon mesh sieve. Then they were divided into 
five parts and packed for chemical analysis. 

5.0 g of samples were taken out, uniformly put into a low-pressure polyethylene plastic ring, and placed on a press under the 
pressure of 30 MPa for 10s. An X-ray fluorescence spectrometer (ARL PERFORMX PerformX4200, Thermo Fisher Scientific, USA) was 
used to determine the contents of Cr, Cu, Ni, Pb, Zn, and TP (total phosphorus). 0.1000 ± 0.0002 g of soil samples were put into a 25 
mL colorimetric tube. 10 mL 1 + 1 aqua rega containing tartric acid (50 g/L) was injected into the tube. Then the tube was put in a 
water bath and boiled for 1 h. After it was taken out and cooled down, it was diluted to 25 mL with 4.0 mol/L hydrochloric acid. After 
the solution was clarified, 5 mL of the supernatant was taken out and put into a 25 mL test tube. 5 mL of the mixed solution of 50 g/L 
thiourea and 50 g/L ascorbic acid was injected into the tube. The tube was shaken well, then stewing for 30min. As and Hg were 
determined by a two-channel atomic fluorescence spectrometer (BAF-2000, Beijing BaODE Instrument Co. LTD, China); 0.0500 ±
0.0002 g of samples were placed into a polytetrafluoroethylene crucible and added in 10 mL of mixed acid (HNO3 + HClO4 + HF). The 
crucible was covered and placed on a temperature-control electric hot plate overnight. The next day, the crucible was steamed until it 
was nearly dry. Then it was added HCl to dilute the solution to 25 mL. Cd was determined by an inductively coupled plasma mass 
spectrometry (ICP-MS, NexION 1000G, PE-Perkinelmer, USA). TN (total nitrogen) was determined by the kjeldahl method (auto- 
kjeldahls apparatus, K9860, Jinan Haineng Instrument Co. LTD, China). Soil pH was determined by a pH meter (PHSJ-4F, Shanghai Lei 
Chi Instrument Co. LTD, China) electrode method (ISE). Soil organic matter was determined by the high-temperature external thermal 
potassium dichromate oxidation - volumetric method (VOL) (burette,50 mL, Tianjin Tianbo Glass Co., LTD., China). The sample tests 
were completed at Sichuan Provincial Bureau of Geology and Mineral Exploration and Development, China. The quality of sample 
analysis was monitored with the first-grade standard materials of GBW07401-GBW07408 and GBW07425-GBW07428 (GSS1-8, 
GSS11-14). The recycling rate of each element was restrained in the range of 80%–120%. 

2.4. Data collection 

The elevation of sampling points was recorded during sampling. Information about the mineral species, longitude, latitude, and 
mining conditions of the study area was collected. The shortest distance between the sampling point and the mine was calculated using 
ArcGIS 10.8. The data on land-use types and soil types came from the Natural Resources Bureau of Puding County. The land-use types 
include paddy fields, dry land, tea gardens, and fruit gardens. According to the “Soil Classification System in China” (1992), the soil 
types contain yellow soil, yellow-brown soil, lime soil, paddy soil, and purple soil. Details are shown in Table S1. The data on 
pedogenic parent rock was from the 1:200,000 geological map of 91 bitmap assistants. The pedogenic parent rock includes dolomite, 
limestone, magmatite, and clastic rocks. 
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2.5. Assessment method of heavy metal pollution level 

We used the geological accumulation index (Igeo) and enrichment factor method (EF) to evaluate soil heavy metals and reveal the 
accumulation and pollution degree of heavy metals in agricultural soil in the study area.  

(1) Geo-accumulation index 

Igeo takes into account not only the impact of geological background but also the impact of human activities on the background 
value of soil heavy metals. The calculation formula is shown in equation (1): 

Igeo = log2

[
Cn

1.5 × Bn

]

(1)  

Igeo is the geological accumulation index; Cn is the measured value of the element n in the sample; Bn is the geochemical background 
value of the element n; 1.5 is the correction coefficient. The judgment standard for the cumulative grade of soil heavy metals is referred 
to Ref. [30]. Details are shown in Table S2.  

(2) Enrichment factor (EF) 

EF can distinguish artificial and natural sources of soil heavy metals [20]. The calculation formula is shown in equation (2): 

EF=
Ci/Bi

Cr/Br
(2)  

Ci is the measured value of heavy metal elements in the soil, Bi is the background value of the corresponding element, Cr is the 
measured value of the reference element, and Br is the background value of the reference element. Because Mn is stable and abundant 
in the crust, it is chosen as the reference element [6]. The judgment standard of the enrichment grade of soil heavy metals consults the 
literature [20]. Details are shown in Table S2. 

2.6. Absolute factor score-multiple linear regression (APCS/MLR) 

Principal component analysis (PCA) is a multivariate statistical method, which uses the idea of dimension reduction to separate 
multiple indicators into several components with little information loss. It can qualitatively identify pollution sources but cannot 
quantify source contributions [22]. APCS/MLR model is developed on the basis of PCA. First, the normalized factor fraction of heavy 
metal concentration APCS is obtained by PCA analysis, then APCS is converted into the concentration contribution of each pollution 
source to each sample [31,32]. The concrete steps are as following:  

(1) Standardize all element contents, and get the normalized factor fraction by PCA analysis. The calculation formula is shown in 
equation (3): 

Zij =
Cij − Ci

σi
(3)  

where Zij denotes the standardized concentration, Cij denotes the measured concentration of the heavy metal element, Ci denotes the 
average value of the element i, and σi denotes the standard deviation of the element i.  

(2) For all elements, introduce an artificial sample with a concentration of 0. Calculate the factor fraction of the artificial sample. 
The calculation formula is shown in equation (4): 

(Z0)i =
0 − Ci

σi
= −

Ci

σi
(4)    

(3) The APCS of each element is obtained by subtracting the factor fraction of the sample with 0 concentration from the factor 
fraction of each sample.  

(4) Use the elemental concentration to perform multiple linear regression on APCS. The obtained regression coefficient converts 
APCS into the concentration contribution of each pollution source to each sample. The formula is shown in equation (5): 

Ci = b0i +
∑n

k=1
bki × APCSk (5)  
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b0i denotes the constant obtained from the multiple linear regression of the element i; bki denotes the regression coefficient of the 
source k to the element i; APCSk denotes the fraction of the adjusted factor k; APCSk × bki represents the mass concentration 
contribution of the source k to Ci; The average value of APCSk × bki of all samples represents the average absolute contribution of the 
source. 

2.7. Self-organization mapping (SOM) 

The SOM algorithm that comes with MATLAB 2018b was adopted for SOM analysis. The mechanism of SOM is similar to the human 
brain. It can self-organize neurons with the same weight vectors as input vectors and classify the spatial distribution of neurons with 
similar functions into clusters [33]. SOM is composed of input layers and output layers. By linking weight-connection, SOM forms a 
two-dimensional grid to cluster and visualize high-dimensional input data sets [34]. The data of soil heavy metals, soil pH, and soil 
organic matter is trained by the SOM algorithm after standardization (the mean value is 0, and the variance is 1). For the input data, the 
initialized network calculates the discriminant function value by comparing the distances between each neuron and the input. The 
specific neuron with the minimum discriminant function value is the winning neuron. After the winning neuron is activated, its weight 
is strengthened. The neurons in the topological neighborhood of the winning neuron will be activated to different degrees. The weight 
will be updated and shifted. This process keeps iterating until convergence. M represents the number of SOM neurons in the 
competitive layer, which is determined by formula (6) [35]: 

M= 5
̅̅̅̅
N

√
(6) 

N denotes the total number of samples of the input layer. 
We tested different map scales from 90 to 121 and compared QE and TE containing the output data of different neuron combi-

nations. When the number of neurons in the SOM map was 110 (11 × 10), QE and TE were the smallest, which were 0.188 and 0.017, 
respectively. Therefore, 11 × 10 was selected as the number of neurons. 

The results of SOM were further processed by K-means. It is an iterative clustering algorithm to divide data space into k clusters. 
Each sample was classified to the nearest group according to distance. The optional cluster was decided according to the minimum 
Davies-Bouldin index [26]. Finally, Two clusters were selected. 

2.8. Random forest 

Random forest is based on binary segmentation data to solve the problems of classification and regression. For classification, the 
Gini coefficient is used for data segmentation. In regard to regression, the weighted mean is adopted for training [36]. Training samples 
and characteristic variables are randomly selected from original samples with returns through the bootstrap resampling technology 
and generate some training data subsets with the same scales but containing different samples. Unselected data forms out-of-bag data 
sets for testing. As weak classifiers, the trained decision trees of the corresponding number constitute a random forest. The final result 
is determined by voting on the results of each decision tree in the random forest. The random forest model has few parameters to set 
and no requirement for data type and distribution. In the training process, it is easy to adjust and insensitive to outliers. It can not only 
prevent data from over-fitting but also model all covariant elements and determine the importance of each element. This study used % 
Inc MSE (mean square error increase) to measure variable importance. The greater the parameter, the more important the variable. 
The parameter may be negative, which indicates that the variable is not helpful for prediction [36,37]. 

We used the Random Forest toolkit in MATLAB 2018b to complete the training. Taking the contents of heavy metals as dependent 
variables and the natural and human factors as independent variables, 368 topsoil samples of cultivated land in the study area were 
divided into training sets and verification sets by a proportion of 7:3. After repeated tests, when the number of decision trees was ntree 
= 100, the number of prediction variables selected by each node was mtry = 3, and the minimum data value of each node was nodesize 
= 5, the fitting effect was the best. The overall fitting accuracy R2 was Cd: 0.73, Hg: 0.79, As: 0.82, Pb: 0.84, Cr: 0.86, Cu: 0.93, Zn: 
0.83, and Ni: 0.90, implying high prediction accuracy [38]. 

2.9. Human health risk assessment 

Soil heavy metals enter the human body mainly through ways such as respiration, skin, and hand-to-mouth. Heavy metals will 
cause adverse effects on human health if they accumulate to a certain amount after long-term ingestion. The risks posed by heavy 
metals to human health include non-carcinogenic and carcinogenic risks. Hazard quotient (HQ) and cancer risk (CR) can quantitatively 
characterize non-carcinogenic and carcinogenic risks to humans that are exposed to heavy metals [39–41]. In this paper, the US EPA 
health risk assessment method is used to calculate the average daily exposure (ADD, mg⋅kg− 1 d− 1) under three exposure paths: 

ADDing =
c × IngR × EF × ED × CF

BW × AT
(7)  

ADDderm =
c × SA × AF × ABS × EF × ED × EF

BW × AT
(8)  
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ADDinh =
c × InhR × EF × ED

PEF × BW × AT
(9) 

The meanings and values of above parameters are shown in Table S3. 
According to the data of EPA Integrated Risk Information System (IRIS), Cd, As, Pb, Cr, and Ni pose both non-carcinogenic and 

carcinogenic risks, while Hg, Cu, and Zn pose only non-carcinogenic risks. Equations 10 and 11 are the calculation of single hazard 
quotient (HQ) and total hazard quotient (THQ) of heavy metals, and equations 12–14 are the calculation of single carcinogenic risk 
index (CR) and total carcinogenic risk index (TCR) of heavy metals.  

HQ = ADD/RfD                                                                                                                                                                      (10) 

THQ=
∑

HQi (11)   

CR = ADD × SF                                                                                                                                                                    (12) 

TCR=
∑

CRi (13) 

The meanings and values of above parameters are shown in Table S4. 
When THQ < 1, it indicates that the risk is small or negligible; when THQ > 1, it indicates a potential risk. The higher the HQ value, 

the higher the risk to the human body. When TCR < 1 × 10− 6, it indicates that the risk to human health is slight; when TCR 1 × 10− 6 <

TCR <1 × 10− 4, it indicates a risk; when TCR > 1 × 10− 4, it indicates a significant risk [26]. 

2.10. Human health risk assessment based on source 

By combining health risk assessment model with APCS/MLR, the carcinogenic and non-carcinogenic risks of heavy metal sources 
can be quantified. First, the quality contributions of heavy metal sources are calculated through the APCS/MLR model, then the health 
risks of different sources are calculated through the health risk assessment model [26]. The calculation formula for the acceptable daily 
intake (ADD) of the heavy metal source j is shown in equations 14–16. The calculation formula for non-carcinogenic risks of heavy 
metal sources is shown in equations 17 and 18, and the calculation formula for carcinogenic risks is shown in equations 19 and 20. 

ADDj
ki,ing =

Cj
ki × IngR × EF × ED × CF

BW × AT
(14)  

ADDj
ki,derm =

Cj
ki × SA × AF × ABS × EF × ED × EF

BW × AT
(15)  

ADDj
kiinh =

Cj
ki × InhR × EF × ED
PEF × BW × AT

(16)  

HQj
ki,t =

ADIj
ki,t

RfDt
(17)  

THQj =
∑

HQj
ki,t (18)  

CRj
ki =ADDj

ki,t × SF (19)  

TCRj =
∑

CRj
ki (20)  

where cj
ki denotes the mass contribution (mg/kg) of the heavy metal i from the source j in the sample k calculated by the APCS/MLR 

model; THQj denotes the non-carcinogenic risk of the heavy metal source j, and TCRj denotes the carcinogenic risk of the source j. 
Other parameters and values are the same as equations 7–13. 

2.11. Data statistics and analysis 

SPSS 22.0 (IBM Inc., USA) was used to complete the relevant calculations of APCS/MLR, and ArcGIS10.8 was used to draw the 
distribution map of sampling points and HMs contents. The SOM algorithm that comes with MATLAB 2018b was adopted for SOM 
analysis. The RF was trained in MATLAB2018b, and open-source code made available by Andrej Karpathy [42] of Stanford University 
was as a basis from which we created the full MATBAL implementation. other data was drawn by OriginPro (version 9.1, American 
Origin Laboratory Company). 
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3. Results and analysis 

3.1. Analysis of descriptive statistical results of heavy metal contents in the soil 

The test results of heavy metal concentration, soil pH, and soil organic matter in agricultural soil in the study area are shown in 
Table 1. The range of soil pH is 4.54–8.46, with an average value of 6.48. The soil is acidic. The concentration ranges of Cd, Hg, As, Pb, 
Cr, Cu, Zn, and Ni in soil are 0.11–6.25 mg/kg, 0.02–2.35 mg/kg, 2.23–1209.95 mg/kg, 5.58–843 mg/kg, 75.5–376 mg/kg, 12.1–355 
mg/kg, 47.9–2455 mg/kg, and 10–161 mg/kg, respectively. According to the Screening Value of Soil Pollution Risk in Agricultural 
Land (GB15618-2018), except for Hg, Pb and Ni, the average values of other elements all exceed risk screening values. Referring to the 
background values of corresponding elements in Guizhou Province [43], the sampling points of Cd, Hg, As, Pb, Cr, Cu, Zn, and Ni in soil 
that exceed background values are 22.93%, 46.98%, 50.83%, 30.94%, 94.75%, 90.33%, 93.65%, 90.33%, and 75.14%, respectively. 
The average values of heavy metals all exceed the background values of corresponding elements, indicating that the soil heavy metals 
in the study area have accumulated to different levels. Variation coefficients reflect the variability and dispersion of soil elements. 
Elements with high variation coefficients (CV) may be affected by human activities [44]. The variation coefficients of Cd, Hg, As, Pb, 
and Zn are all greater than 1, indicating that these elements may be affected by human activities. While the variation coefficients of Cr 
and Ni are less than 1, which are 0.3 and 0.4, respectively, lower than other heavy metals in the study area. They are also strong 
variations [6] with high spatial heterogeneity. It may be due to the impacts of parent rocks and the process of soil formation [1,45]. 

3.2. Analysis of soil heavy metal accumulation 

In order to clarify the enrichment degree of soil heavy metals in the study area and the impact of human activities on the 
enrichment, we calculated Igeo (Fig. 2(a)) and EF (Fig. 2(b)) of soil heavy metals in the study area. The results of Igeo show that for 
98.89% of the sampling points of Cr and Ni, Igeo ≤ 1, which means that Ni and Cr are mainly non-moderate pollution; for 72.65% of the 
sampling points of Cu, Igeo ≤ 1, non-moderate pollution; for 22.38% of the sampling points of Cu, 1 < Igeo ≤ 2, moderate pollution, and 
for 4.97% of the sampling points of Cu, 2 < Igeo ≤ 3, moderate-severe pollution. For Cd, 4.4% of sampling points are moderate-severe 
pollution, and 95.6% are non-moderate pollution. For As, 19.89% of sampling points have Igeo > 1, meaning that they are at the level of 
moderate pollution or above; 0.55% of sampling points even have 4 < Igeo ≤ 5, meaning that they are at the level of severe or extremely 
severe pollution. For Hg, 17.40% of sampling points have Igeo > 1, meaning that they are moderately polluted or above; 1.38% have 
Igeo ≤ 4, meaning that they are seriously polluted. For Pb and Zn, the proportion of sampling points having Igeo > 1 is 14.64%, meaning 
that they are at or above a moderate level of pollution; the proportion of samples with moderate-severe pollution is 10.77%; the 
proportion of sampling points with severe pollution is 3.59%; and the proportion of sampling points with severe and extremely severe 
pollution is 0.28%. The above analysis shows that point source pollution exists in As, Hg, Pb, Zn, Cd, and Cu. As in the soil of the study 
area is at the most severe pollution level, and samples are extremely polluted. It is followed by Pb and Zn, of which samples are heavily 
or extremely heavily polluted; followed by Hg and Cu, of which samples are heavily polluted; followed by Cd and Cu, of which samples 
are moderately or heavily polluted. 98.89% of the sampling points of Ni and Cr have Igeo ≤ 1, meaning that these two elements mainly 
come from natural sources [46]. 

The calculation results of EF show that the proportions of elements at a moderate enrichment level and above are relatively small, 
which are As: 18.23%, Cd: 4.42%, Cr: 13.54%, Cu: 27.9%, Hg: 15.75%, Ni: 7.18%, Pb: 16.02%, and Zn: 19.33%. However, samples 
with extremely high concentrations of As and Hg in soil account for 0.55% and 0.28% of total samples, respectively; samples with 
strong enrichment levels of As, Hg, Pb, and Zn account for 1.66%, 0.83%, 0.28% and 0.28% of total samples, respectively; the pro-
portions of elements at significant enrichment levels are: As: 4.97%, Cd: 0.28%, Cu: 6.91%, Hg: 4.7%, Pb: 5.52%, and Zn: 4.97%, 
indicating that point source pollution exists in As, Hg, Pb, Zn, and Cu. 

From Igeo and EF, it can be concluded that human activities affect soil heavy metals in the study area to varying degrees. The effects 
on As, Hg, Pb, and Zn are the strongest, followed by Cd and Cu. Cr and Ni are hardly affected. 

Table 1 
Statistic characteristics of HM concentrations and pH in the soil.   

pH Cd 
(gm/ 
kg) 

Hg 
(gm/ 
kg) 

As (gm/ 
kg) 

Pb 
(gm/ 
kg) 

Cr 
(gm/ 
kg) 

Cu 
(gm/ 
kg) 

Zn 
(gm/ 
kg) 

Ni 
(gm/ 
kg) 

Soil organic matter 
(g/kg) 

Max 8.46 6.25 2.35 1209.95 843.00 376.00 355.00 2455.00 161.00 188.66 
Mini 4.54 0.11 0.02 2.23 5.58 75.50 12.10 47.00 10.00 8.79 
mean 6.48 0.64 0.24 53.40 73.01 159.40 99.51 267.14 59.78 45.63 
CV 0.14 1.05 1.26 2.29 1.66 0.30 0.56 1.34 0.40 0.62 
abackground value – 0.66 0.11 20.00 35.20 95.90 32.00 99.50 39.10  
bRisk screening value (GB 

15618-2018) 
≤5.50 0.30 1.30 40.00 70.00 150.00 50.00 200.00 60.00  
5.5–6.50 0.30 1.80 40.00 90.00 150.00 50.00 200.00 70.00  
6.5–7.50 0.30 2.40 30.00 120.00 150.00 100.00 250.00 100.00  
>7.50 0.60 3.40 25.00 170.00 200.00 100.00 300.00 190.00   

a BV means background values of heavy metal (loid)s in the soil of Guizhou Province, which were obtained from CNEMC (1990) [45]. 
b The National Environmental Quality Standards for soil in China (GB15618-2018). 
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3.3. Source analysis of soil heavy metals 

3.3.1. Correlation analysis 
Heavy metal elements are positively correlated, indicating that they may have the same source [47]. The correlation analysis of soil 

heavy metals, pH, and soil organic matter is shown in Fig. 3. As and Hg are significantly and positively correlated (P ≤ 0.01) with a 
correlation coefficient of 0.57. Hg and Cd are significantly and positively correlated (P ≤ 0.01), with a correlation coefficient of 0.48. 
Zn is positively correlated with Cd and Pb (P ≤ 0.01), and the correlation coefficients are 0.53 and 0.49, respectively. Cu is significantly 
and positively correlated with Ni and Cr (P ≤ 0.01), and the correlation coefficients are 0.70 and 0.51, respectively; soil organic matter 
is significantly and positively correlated with Cr and Cu (P ≤ 0.01), and the correlation coefficients are 0.35 and 0.3, respectively. 
Based on the above analysis, As, Hg, and Cd may come from the same source; Zn, Cd, and Pb may come from the same source; and Cu, 
Ni, and Cr may come from the same source. Soil organic matter represents soil fertility. The higher the content of organic matter is, the 
more fertilizer is applied. Elements with good correlation with the organic matter may be affected by agricultural activities [47]. 
Therefore, Cr and Cu may be affected by agricultural activities. The correlation between pH and heavy metals is weak, indicating that 
soil pH has little effect on the accumulation of soil heavy metals, which is consistent with the results of Qin et al. [1]. 

3.3.2. SOM analysis 
The SOM diagram of soil heavy metals, soil organic matter, and pH is shown in Fig. 4. The color gradient variation of the SOM 

diagram represents the qualitative relationship between heavy metals. Yellow means high concentration. Black means low concen-
tration. Each SOM matrix mapping represents a component value of 110 reference vectors. On the component plane, similar color 

Fig. 2. Single Factor index (PI) and Potential Ecological Risk (Ei) grade statistical map of individual HMs in soil.  

Fig. 3. Correlation analysis of soil heavy metals, soil organic matter, and soil pH.  
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gradients indicate a positive correlation between variables, and the sources of heavy metals may be the same [33]. It can be seen from 
Fig. 4 that the color gradients of Cu, Ni, and Cr are similar. The high concentration occupying neurons on the left indicates that these 
three elements have a strong positive correlation. The color change gradients of Pb, Zn, and Cd are similar. The high concentration 
appears in neurons on the upper right. The color change gradients of As and Hg are similar. The high concentration appears in the 
neurons in the upper figure. 

The locations of soil samples were cluster analyzed by the K-mean algorithm and generated two different clusters (Fig. 5(a)). 
Cluster I includes 322 samples with the characteristic indicators of Cr, Cu, and Ni, mainly distributed in the northeast and southwest of 
the study area (Fig. 5(b)). The area has only one iron mine (Fig. 1), and the major human activity is agriculture. Cluster II is composed 
of 44 samples with the characteristic indicators of As, Cd, Hg, Pb, and Zn, distributed in the northeast of the study area in the shape of a 
belt (Fig. 5(b)). The area is a distribution area of the mining and smelting of lead-zinc and coal. These elements may be affected by 
mining activities. 

3.3.3. APCS/MLR analysis 
In order to further identify and quantify the sources of heavy metals in agricultural soil, PCA was used to determine the sources of 

heavy metals, and APCS/MLR was used to quantify the contributions of pollution sources. The principal component analysis of the 
KMO test was 0.63. For the Bartlett spherical test statistic, sig = 0 (0 < 0 01). Based on the principal component method, the correlation 
matrix was used for analysis. The extracted characteristic value was greater than 1. Three factors were extracted. The factor load 
matrix was orthogonally rotated by the maximum variance method, so that large factor loading was only concentrated on a few 
variables of each principal component, while the factor loading on remaining variables was 0 or close to 0. The total cumulative 
interpretation variance is 75.76% (Factor 1:40.09%, Factor 2:19.48%, Factor 3:16.20%) (Table 2), representing that these three 
principal components can interpret most of the information in heavy metal elements. The load values are classified into three types of 
“strong” load (>0.75), “moderate” load (0.75–0.50), and “weak” load (0.5–0.3) [48]. It can be seen from Table 3 that elements Zn, Pb, 
and Cd have strong loads in Factor 1, while Hg has a weak load. In Factor 2, Ni and Cr have strong loads, while Cu has a moderate load. 
As has a strong load in Factor 3, while Hg has a moderate load. 

The calculation results of APCS/MLR model show that the correlation coefficients of the regression equation of As, Cd, Cr, Cu, Hg, 
Ni, Pb, and Zn (R2) are 0.87, 0.65, 0.66, 0.56, 0.80, 0.80, 0.86, and 0.86, respectively, indicating that the APCS/MLR model has high 
accuracy [30]. According to the regression coefficients of multiple linear regression equation, the contributions of different sources of 
each heavy metal to the pollution level were calculated (Fig. 6). 

From the average contribution rates of sources (Fig. 6(a)), the sources of Pb, Zn, and Cd are mainly from Factor 1, followed by 
Factor 2. The contribution rates of Factor 1 to Pb, Zn, and Cd are 55.77%, 63.47%, and 58.98%, respectively; the contribution rates of 
Factor 2 to Pb, Zn, and Cd are 43.02%, 35.22%, and 28.97%, respectively. Additionally, Factor 3 also contributes to Cd with a 
contribution rate of 12.04%. Factor 2 is the primary source of Cr, Ni, and Cu. The contribution rates of Factor 2 to Cr, Ni, and Cu are 
98.14%, 90.64%, and 76.93%, respectively. Factor 1 also contributes to Cu with a contribution rate of 14.41%. The sources of As and 
Hg are mainly Factor 3. The contribution rates of Factor 3 to As and Hg are 88.17.9% and 45.39%. The contribution rates of Factor 1 
and Factor 2 to Hg are 32.17% and 22.44%. 

Fig. 4. SOM diagram of heavy metals concentration, Soil organic matter and pH.  
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Fig. 5. Diagram of the pattern classification of two cluster groups based on SOM (a) and diagram of the distribution of the cluster pattern of 
sampling points in the study area (b). 
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3.3.4. RF analysis 
The RF training results are shown in Fig. 7. %lnc MSE represents the weights of environmental influencing factors. The larger the 

weight value of the factor, the greater the contribution of this influencing factor to the accumulations of soil heavy metals in the study 
area. The distance to the coal mine (D2) is the most important factor interpreting As and Hg and the third most important factor 
interpreting Cd. The distance to the lead-zinc mine (D1) is an important factor interpreting Zn, the second most important factor 
interpreting Pb and Cd. The distance to the iron mine (D3) is an important factor interpreting Pb, and Zn. The soil-forming parent rock 
is the most important factor interpreting Cr and Zn, an important factor interpreting Cu, Hg, Ni, Pb, Zn and Cd. The elevation is the 
most important factor interpreting Cd, an important factor interpreting Pb and Zn. STP is the most important factor interpreting Cu and 
Ni, an important factor interpreting As and Cr. In short, the important factor interpreting As, Hg, Pb, and Zn is the distance to the mine; 
the important factors interpreting Cu, Ni, and Cr are the parent rock of soil and STP; the important factors interpreting Cd are the 
elevation, soil-forming parent rock, and the distance to the mine. 

3.3.5. Source interpretation of multiple methods 
According to the APCS/MLR model, the total contribution rate of Factor 1 is 41.56% (Fig. 6(b)). Factor 1 is mainly interpreted by Zn 

(63.47%), Pb (55.77%), and Cd (58.98%), followed by Hg (32.17%), Cu (14.41%), and As (5.99%) (Fig. 6(a)). The variation co-
efficients of Pb, Zn, and Cd are greater than 1. Igeo and EF manifest that serious point source pollution exists in these three elements, 
and they are affected by human activities. We used the ArcGIS ordinary Kriging interpolation method to figure out the spatial dis-
tribution characteristics of soil heavy metals. The spatial distribution graph of heavy metals shows that the high-value areas of Pb 
(Fig. S2 (d)) and Zn (Fig. S2 (c)) are distributed in belts in the northwest of the study area, which is also the sub-high-value distribution 
area of Cd with the distribution of nine lead-zinc mines. Correlation analysis and SOM algorithm imply that Pb, Zn, and Cd are ho-
mologous. After RF training, the distance to the lead-zinc mine, parent rock, and elevation are important factors interpreting Pb, Zn, 
and Cd. The sampling graph of the study area shows that the lead-zinc mine is distributed in the northwest of the study area, which has 
the highest elevation (Fig. S1). The stratum of this area is Cambrian, and the lithology is dolomite. The dolomite in the study area is 
also distributed. in this area. Therefore, it can be speculated that the effects of elevation and parent rock on the distributions of these 
three heavy metals are caused by lead-zinc mines. The above evidence testifies that Factor 1 mainly comes from lead-zinc smelting and 
mining. Moreover, previous research has confirmed that heavy metals, such as Pb, Cd, Cu, Zn, and As, are the major impurities in lead- 
zinc mines. During the smelting process of lead-zinc, these elements enter the surrounding soil with the dust discharged from lead-zinc 

Table 2 
Cumulative contribution rates of variances and eigenvalues of the correlation matrix between soil elements.  

Element 1 2 3 4 5 6 7 8 

characteristic value 3.21 1.56 1.30 0.69 0.55 0.34 0.26 0.10 
variance contribution rate % 40.09 19.489 16.20 8.59 6.91 4.30 3.20 1.24 
cumulative contribution rate of variance % 40.09 59.57 75.76 84.35 91.26 95.56 98.76 100.00  

Table 3 
Factor matrix after maximum rotation of soil element variance.  

Element As Cd Cr Cu Hg Ni Pb Zn 

1 
2 
3 

− 0.10 0.76 − 0.06 − 0.22 0.46 − 0.04 0.84 0.88 
− 0.06 0.22 0.81 0.70 − 0.19 0.88 − 0.39 − 0.29 
0.93 0.18 0.023 − 0.15 0.74 − 0.13 0.02 − 0.02  

Fig. 6. Contribution rates of different sources to the contents of soil heavy metals.  
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smelters, increasing the content of Pb, Cd, Cu, Zn, and As in the surrounding soil [44,49,50]. In addition, Pb is a symbol element of 
traffic sources. During driving, fuel combustion and the frictions of engines and tires will emit Pb, resulting in Pb accumulation in the 
surrounding soil [51,52]. However, some studies have shown that traffic contributes little to the Pb accumulation in the soil [19]. From 
the spatial distribution of heavy metal Pb (Fig. S2 (d)), no hot spot is found around the main road. Therefore, it is deduced that traffic 
contributes little to the Pb accumulation in the soil in the study area. So Factor 1 is defined as the source related to the mining and 
smelting of lead and zinc. 

The total contribution rate of Factor 2 is 40.43% (Fig. 6(b)), which is mainly interpreted by Cr (98.14%), Ni (90.64%), and Cu 
(76.93%), followed by Pb (43.02%), Zn (35.22%), Cd (28.97%), Hg (22.44%), and As (5.84%) (Fig. 6(a)). Correlation analysis and 
SOM algorithm show that Cu, Ni, and Cr are homologous. Many studies have verified that Cu, Cr, and Ni in soil are natural sources 

Fig. 7. Relative importance of variables obtained from the RF model (D1: The distance to the lead-zinc mine, D2:The distance to the coal mine, D3: 
The distance to the iron mine). 
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mainly from the parent rock of soil formation and are controlled by the soil weathering process [24,28]. From the spatial distribution 
map of heavy metals, it can be seen that the high concentration areas of Cr (Fig. S2 (f)), Ni (Fig. S2 (g)), and Cu (Fig. S2 (h)) are not 
located near mines. It indicates that these three elements are less affected by mining activities. The high-value areas of Cr and Ni are 
distributed in the Triassic System, Daye Formation, Permian System, Longtan Formation, Changxing Formation, etc. Parent rocks are 
limestone, sandstone, and shale. Previous research has shown that the heavy metals in sedimentary rocks are significantly affected by 
parent rocks and related to the compositions of parent rocks [53]. The high-value area of Cu is distributed in the Permian System 
Emeishan basalt formation. Studies show that the Emeishan basalt contains many copper minerals, leading to a high copper back-
ground value of the soil developed in the basalt [6,54]. According to the data on the network station of Puding County Natural Re-
sources Bureau (http://www.aspd.gov.cn/zfbm/zrzyj/dwzz/index.html), copper mines have been detected in the Emeishan basalt in 
the study area. However, because of the intense variation in the grade and thickness, the copper mines currently have no mining value. 
The soil developed from copper-rich parent rocks is easy to enrich Cu [55]. Therefore, it can be concluded that Cu in the soil of the 
study area is affected by the copper mines in the Emeishan basalt. In addition, according to the investigation and interviews in the 
sampling process, the agricultural planting in the study area mainly applies compound fertilizer, nitrogen fertilizer, and farm manure. 
Cu, As, and Zn are added to animal feed, resulting in the existence of Cu, As, and Zn in animal excrement [28,56]. The contents of Cd 
and Pb in animal excrement are far higher than the standard values of organic fertilizer [6]. However, Cu and Zn are also contained in 
pesticides. The amount of Cu and Zn entering farmland with pesticides every year cannot be ignored. Furthermore, studies have shown 
that carbonate weathering is the main source of Cd in soil, and fertilizers and pesticides also contribute to the accumulation of Cd in 
agricultural soil [57,58]. Zhang et al. [59] confirmed that the main source of Cd in the farmlands of Puding County was agricultural 
activities, such as fertilization and pesticide spraying. Through the RF algorithm, the important factors interpreting Cu, Ni, and Cr are 
soil-forming parent rocks and STP, and K2O is the third most important factor interpreting Cu. K2O. STP in the soil is primarily affected 
by the properties of parent rocks and fertilization [60–62]. K2O is an important product generated from the weathering of parent rocks 
during soil-forming [63]. Generally, the elements with good correlation with K2O are natural sources. Based on the above analysis, 
Factor 2 is defined as the mixed source of natural and agricultural. 

The total contribution rate of Factor 3 is 18.01% (Fig. 6(b)). As (88.17.9%) and Hg (45.39%) are the main pollution sources of this 
factor, followed by Cd (12.04%), Cu (8.66%), and Ni (6.72%) (Fig. 6(a)). Correlation analysis and SOM algorithm show that Hg and As 
are homologous, and the variation coefficients of Hg and As are greater than 1. Igeo and EF display that serious point source pollution 
exists in these two elements, indicating that they are affected by human activities. RF algorithm shows that the most important factor 
interpreting As and Hg is the distance to coal mines. From the spatial distribution map of As (Fig. S2 (b)), it can be seen that the high- 
value areas of As are distributed near coal and iron mines, while the high-value areas of Hg (Fig. S2 (a)) are distributed near the mines 
of lead and zinc in addition to coal and iron mines. Hg distributed near lead and zinc mines is interpreted in Factor 1. The content of As 
in coals in Guizhou is much higher than that in the United States and other countries [64]. Moreover, affected by the low-temperature 
hydrothermal solution, the content of Hg in coals in Guizhou is as high as 1.1 ppm, while the average content of Hg in coals in China is 
0.19 ppm, and in the world it is only 0.1 ppm [65]. As and Hg in coals are released into the environment during the processes of mining, 
processing, and combustion [66,67]. Accidents of As poisoning caused by coal combustion occurred in some villages in Southwest 
Guizhou [68]. Previous studies have shown that iron mining leads to the accumulation of As, Hg, Cd, Cu, and other heavy metals in the 
surrounding soil to varying degrees [69,70]. Mining activities are an important contributor to the high enrichment of soil heavy metals 
in Karst areas of Southwest China [64]. Therefore, Factor 3 is defined as the source related to the mining and smelting of coal and iron. 

3.4. Health risk assessment of soil heavy metals 

This study adopted the health risk assessment model to evaluate the health risks of soil heavy metals in the study area. The results 
are shown in Tables S5 and S6. With regard to the non-carcinogenic risks to adults and children, the THQ of Cd, Hg, Pb, Cr, Cu, Zn, and 
Ni are all less than 1, representing that the non-carcinogenic risks to the human body can be ignored. The THQ of 3.31% of sampling 
points of As to adults is greater than 1, and the THQ of 10.22% of sampling points of As to children is greater than 1. Therefore, As is the 
dominant contributor to the THQ from soil heavy metals. 

In terms of carcinogenic risks, the TCR of Cd and Ni for adults and children are all less than 10− 6, indicating that there are no 
carcinogenic risks. As, Pb, and Cr pose different degrees of carcinogenic risks to adults and children. Specifically, for adults, the TCR of 
77.96% of As sampling points is in the range of 10− 6-10− 4. The TCR of 22.04% of sampling points of As is greater than 10− 4, meaning 
significant carcinogenic risks. The TCR of 15.98% of sampling points of Pb is in the range of 10− 6-10− 4, and the TCR of 0.55% of 
sampling points of Cr is in the range of 10− 6-10− 4. For children, the TCR of 53.44% of sampling points of As is in the range of 10− 6- 
10− 4; the TCR of 46.56% of sampling points of As is greater than 10− 4; the TCR of 24.79% of sampling points of Pb is in the range of 
10− 6-10− 4, and the TCR of 51.79% of sampling points of Cr is in the range of 10− 6-10− 4. The non-carcinogenic and carcinogenic risks to 
children are all significantly higher than those to adults. These results are in accordance with previous studies [64], indicating that 
children are more vulnerable to the impact of soil heavy metals. It may be related to children’s weak resistance and poor living habits, 
such as playing close to the ground, sucking fingers, etc. Therefore, children’s hands and mouths should be kept clean, and their 
unhygienic habits, such as “eating hands,” should be corrected [71]. 

3.5. Source-based health risk assessment 

Health risk assessment is only conducive to understanding the level of health risks of heavy metals but cannot help people in 
effectively controlling health risk sources. Therefore, it is necessary to screen out the priority control factor in the pollution control of 
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soil heavy metals and identify and quantify the health risk of primary pollution sources [72]. In this paper, the contributions of 
different pollution sources to the content of soil heavy metals calculated by the APCS/MLR model are combined with the health risk 
assessment model to determine the non-carcinogenic and carcinogenic risks of heavy metal sources and their contribution rates (see 
Fig. 7). For adults and children, the THQj of three heavy metal sources is less than 1, indicating that non-carcinogenic risks can be 
ignored. For adults, Factor 3 poses the largest non-carcinogenic risks, contributing 66.18% to the total non-carcinogenic risks, followed 
by Factor 2, 28.83%, and Factor 1 poses the smallest contribution, 4.99% (Fig. 8). For children, the contribution rates of the three 
factors to the total non-carcinogenic risks are Factor 3 (56.02%) > Factor 2 (39.78%) > Factor 1 (4.20%). The range of TCRj of different 
heavy metal sources to adults is 5.03 E− 06-9-55 E− 05. The TCRj of the three factors is between 10− 6 and 10− 4, indicating that the three 
heavy metal sources all pose carcinogenic risks. The range of TCRj of different heavy metal sources to children is 1.12 E− 05-2.13 E− 04. 
Factor 1 (1.12 E− 05) and Factor 2 (1.14 E− 05) pose carcinogenic risks. Factor 3 (2.13 E− 04) poses a significant carcinogenic risk. The 
three sources pose higher carcinogenic risks to children than adults. Therefore, special attention should be paid to preventing the 
carcinogenic risks of soil heavy metals to children. The carcinogenic and non-carcinogenic risks to adults and children from different 
sources of heavy metals have the same pattern, that is, Factor 3 > Factor 2 > Factor 1. For adults, Factor 3 : 90.54%, Factor 2: 4.69%, 
Factor 1: 4.77%; for children, Factor 3:90.38%, Factor 2:4.85%, Factor 1:4.77% (Fig. 8). Interestingly, the contribution rates of heavy 
metal sources are expressed as Factor 1 > Factor 2 > Factor 3, indicating that heavy metal sources with large contribution rates do not 
necessarily pose high health risks. It is due to the higher risks of As and Cr [73]. To sum up, Factor 3 (the source related to the mining 
and smelting of coal and iron) is the priority source of pollution control. To protect the environment and human health, the mining and 
smelting of coal and iron in the study area should be controlled, and normal mining industries must restrain heavy metal emissions. 

4. Conclusion 

In this study, except for Hg, Pb, and Ni, the average values of Cd, As, Cr, Cu, and Zn exceed the risk screening values in the “Risk 
Screening Values of Agricultural Land Pollution” (GB15618-2018). Igeo and EF show that point source pollution exists in As, Hg, Pb, Zn, 
and Cu. Igeo represents that point source pollution exists in Cd. Three sources of heavy metals are quantified in this study: Factor 1, the 
source of zinc mining and smelting, with a total contribution rate of 41.56% to the sources of heavy metals; Factor 2, the mixed source 
of natural and agricultural, with a total contribution rate of 40.43% to heavy metal sources; Factor 3, the source related to the mining 
and smelting of coal and iron, with a total contribution rate of 18.10% to heavy metal sources. The three sources of heavy metals are all 
of carcinogenic risks for adults and children. The source related to the mining and smelting of coal and iron poses an even more 
significant carcinogenic risk to children. Although Factor 3 has the lowest quality contribution rate, its health risk is the highest. Factor 
3 (the mining and smelting of coal and iron) is the priority source of pollution control. This paper combines traditional source analysis 
methods (APCS/MLR and GIS) with machine learning methods (SOM and RF) to comprehensively consider the impacts of heavy metal 
concentrations, soil properties (pH, soil organic matter, K2O, etc.), and environmental factors (elevation, distance to the mine, etc.) on 
the distribution and sources of heavy metals. However, the factors considered are still defective due to limited conditions. Future 
research should incorporate irrigation water, atmospheric sedimentation, population distribution, soil maturity, and other factors. 
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Fig. 8. Health risk assessment of soil heavy metal pollution sources.  

Z. Jiang et al.                                                                                                                                                                                                           



Heliyon 9 (2023) e17246

16

Funding 

This research was supported by Geochemical Survey and Evaluation of Cultivated Land Quality in Guizhou Province (Qian Geng 
Diao 2017-02). 

Institutional review board statement 

Not applicable. 

Data availability statement 

Not applicable. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper 

Acknowledgments 

We would like to express appreciation to all of the participants from Division of Geochemical evaluation of cultivated land quality 
in guizhou province. At the some time, we would like to thank KetengEdit(www.ketengedit.com) for its linguistic assistance during the 
preparation of this manuscript. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.heliyon.2023.e17246. 

References 

[1] Y. Qin, F. Zhang, S. Xue, T. Ma, L. Yu, Heavy metal pollution and source contributions in agricultural soils developed from karst landform in the southwestern 
region of China, Toxics 10 (10) (2022) 568. 

[2] P. Liu, Z. Wu, X. Luo, M. Wen, L. Huang, B. Chen, et al., Pollution assessment and source analysis of heavy metals in acidic farmland of the karst region in 
southern China—a case study of Quanzhou County, Appl. Geochem. 123 (2020), 104764. 

[3] G. Qin, Z. Niu, J. Yu, Z. Li, P. Xiang, Soil heavy metal pollution and food safety in China: effects, sources and removing technology, Chemosphere 267 (2021), 
129205. 

[4] N. Sarwar, M. Imran, M.R. Shaheen, W. Ishaque, M.A. Kamran, A. Matloob, et al., Phytoremediation strategies for soils contaminated with heavy metals: 
modifications and future perspectives, Chemosphere 171 (2017) 710–721. 

[5] G. Luo, Z. Han, J. Xiong, Y. He, J. Liao, P. Wu, Heavy metal pollution and ecological risk assessment of tailings in the Qinglong Dachang antimony mine, China, 
Environ. Sci. Pollut. Control Ser. 28 (2021) 33491–33504. 

[6] D.B. Senoro, C.E.F. Monjardin, E.G. Fetalvero, Z.E.C. Benjamin, A.F.B. Gorospe, K.L.M. de Jesus, et al., Quantitative assessment and spatial analysis of metals 
and metalloids in soil using the geo-accumulation index in the capital Town of Romblon province, Philippines, Toxics 10 (11) (2022) 633. 

[7] X. Li, H. Liu, W. Meng, N. Liu, P. Wu, Accumulation and source apportionment of heavy metal (loid) s in agricultural soils based on GIS, SOM and PMF: a case 
study in superposition areas of geochemical anomalies and zinc smelting, Southwest China, Process Saf. Environ. Protect. 159 (2022) 964–977. 

[8] E. Atikpo, E.S. Okonofua, N.O. Uwadia, A. Michael, Health risks connected with ingestion of vegetables harvested from heavy metals contaminated farms in 
Western Nigeria, Heliyon 7 (8) (2021), e07716. 

[9] T.A. Laniyan, O.M. Morakinyo, Environmental sustainability and prevention of heavy metal pollution of some geo-materials within a city in southwestern 
Nigeria, Heliyon 7 (4) (2021), e06796. 

[10] X. Li, T. Geng, W. Shen, J. Zhang, Y. Zhou, Quantifying the influencing factors and multi-factor interactions affecting cadmium accumulation in limestone- 
derived agricultural soil using random forest (RF) approach, Ecotoxicol. Environ. Saf. 209 (2021), 111773. 

[11] Q. Yang, Z. Yang, Q. Zhang, X. Liu, X. Zhuo, T. Wu, et al., Ecological risk assessment of Cd and other heavy metals in soil-rice system in the karst areas with high 
geochemical background of Guangxi, China, Sci. China Earth Sci. 64 (7) (2021) 1126–1139. 

[12] K. Luo, H. Liu, Q. Liu, Y. Tu, E. Yu, D. Xing, Cadmium accumulation and migration of 3 peppers varieties in yellow and limestone soils under geochemical 
anomaly, Environ. Technol. 43 (1) (2022) 10–20. 

[13] B. Zhong, T. Liang, L. Wang, K. Li, Applications of stochastic models and geostatistical analyses to study sources and spatial patterns of soil heavy metals in a 
metalliferous industrial district of China, Sci. Total Environ. 490 (2014) 422–434. 

[14] Q. Zhang, G. Han, M. Liu, T. Liang, Spatial distribution and controlling factors of heavy metals in soils from puding karst critical zone observatory, southwest 
China, Environ. Earth Sci. 78 (9) (2019). 

[15] W. Pu, J. Sun, F. Zhang, X. Wen, W. Liu, C. Huang, Effects of copper mining on heavy metal contamination in a rice agrosystem in the Xiaojiang River Basin, 
southwest China, Acta Geochimica 38 (2019) 753–773. 

[16] W. Ji, Y. Lu, M. Yang, J. Wang, X. Zhang, C. Zhao, et al., Geochemical characteristics of typical karst soil profiles in Anhui province, Southeastern China, 
Agronomy 13 (4) (2023) 1067. 

[17] Z. Chen, J. Xu, R. Duan, S. Lu, Z. Hou, F. Yang, et al., Ecological health risk assessment and source identification of heavy metals in surface soil based on a high 
geochemical background: a Case Study in Southwest China, Toxics 10 (6) (2022) 282. 

[18] E. Yu, H. Liu, F. Dinis, Q. Zhang, P. Jing, F. Liu, X. Ju, Contamination evaluation and source analysis of heavy metals in karst soil using UNMIX model and Pb-Cd 
isotopes, Int. J. Environ. Res. Publ. Health 19 (19) (2022), 12478. 

Z. Jiang et al.                                                                                                                                                                                                           

http://www.ketengedit.com
https://doi.org/10.1016/j.heliyon.2023.e17246
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref1
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref1
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref2
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref2
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref3
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref3
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref4
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref4
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref5
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref5
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref6
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref6
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref7
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref7
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref8
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref8
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref9
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref9
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref10
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref10
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref11
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref11
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref12
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref12
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref13
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref13
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref14
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref14
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref15
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref15
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref16
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref16
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref17
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref17
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref18
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref18


Heliyon 9 (2023) e17246

17

[19] Y. Wang, G. Guo, D. Zhang, M. Lei, An integrated method for source apportionment of heavy metal (loid) s in agricultural soils and model uncertainty analysis, 
Environ. Pollut. 276 (2021), 116666. 

[20] G. Guo, K. Li, D. Zhang, M. Lei, Quantitative source apportionment and associated driving factor identification for soil potential toxicity elements via combining 
receptor models, SOM, and geo-detector method, Sci. Total Environ. 830 (2022), 154721. 

[21] S. Jain, S.K. Sharma, T.K. Mandal, M. Saxena, Source apportionment of PM10 in Delhi, India using PCA/APCS, UNMIX and PMF, Particuology 37 (2018) 
107–118. 

[22] Z. Xu, W. Mi, N. Mi, X. Fan, Y. Zhou, Y. Tian, Characteristics and sources of heavy metal pollution in desert steppe soil related to transportation and industrial 
activities, Environ. Sci. Pollut. Control Ser. 27 (2020) 38835–38848. 

[23] Y. Hu, H. Cheng, Application of stochastic models in identification and apportionment of heavy metal pollution sources in the surface soils of a large-scale 
region, Environ. Sci. Technol. 47 (8) (2013) 3752–3760. 

[24] T. Shi, J. Zhang, W. Shen, J. Wang, X. Li, Machine learning can identify the sources of heavy metals in agricultural soil: a case study in northern Guangdong 
Province, China, Ecotoxicol. Environ. Saf. 245 (2022), 114107. 

[25] T. Kohonen, Self-organized formation of topologically correct feature maps, Biol. Cybern. 43 (1) (1982) 59–69. 
[26] J. Li, G. Wang, F. Liu, L. Cui, Y. Jiao, Source apportionment and ecological-health risks assessment of heavy metals in topsoil near a factory, Central China, 

Exposure and Health 13 (1) (2021) 79–92. 
[27] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32. 
[28] H. Zhang, S. Yin, Y. Chen, S. Shao, J. Wu, M. Fan, et al., Machine learning-based source identification and spatial prediction of heavy metals in soil in a rapid 

urbanization area, eastern China, J. Clean. Prod. 273 (2020), 122858. 
[29] Q. Zhang, G. Han, M. Liu, T. Liang, Spatial distribution and controlling factors of heavy metals in soils from puding karst critical zone observatory, southwest 

China, Environ. Earth Sci. (9) (2019) 78. 
[30] W.H. Zhang, Y. Yan, R.L. Yu, G.R. Hu, The sources-specific health risk assessment combined with APCS/MLR model for heavy metals in tea garden soils from 

south Fujian Province, China, Catena 203 (2021), 105306. 
[31] J. Lv, Multivariate receptor models and robust geostatistics to estimate source apportionment of heavy metals in soils, Environ. Pollut. 244 (2019) 72–83. 
[32] Z. Jin, J. Lv, Integrated receptor models and multivariate geostatistical simulation for source apportionment of potentially toxic elements in soils, Catena 194 

(2020), 104638. 
[33] Y. Xu, X. Wang, G. Cui, K. Li, Y. Liu, B. Li, Z. Yao, Source apportionment and ecological and health risk mapping of soil heavy metals based on PMF, SOM, and 

GIS methods in Hulan River Watershed, Northeastern China, Environ. Monit. Assess. 194 (3) (2022) 1–17. 
[34] T. Li, X. Li, W. Luo, G. Cai, Combined classification and source apportionment analysis for trace elements in western Philippine Sea sediments, Sci. Total 

Environ. 675 (2019) 408–419. 
[35] M.A.H. Bhuiyan, S.C. Karmaker, M. Bodrud-Doza, M.A. Rakib, B.B. Saha, Enrichment, sources and ecological risk mapping of heavy metals in agricultural soils 

of dhaka district employing SOM, PMF and GIS methods, Chemosphere 263 (2021), 128339. 
[36] W. Zhou, H. Yang, L. Xie, H. Li, L. Huang, Y. Zhao, T. Yue, Hyperspectral inversion of soil heavy metals in Three-River Source Region based on random forest 

model, Catena 202 (2021), 105222. 
[37] Y. Hu, H. Cheng, A method for apportionment of natural and anthropogenic contributions to heavy metal loadings in the surface soils across large-scale regions, 

Environ. Pollut. 214 (2016) 400–409. 
[38] H. Zhang, A. Yin, X. Yang, M. Fan, S. Shao, J. Wu, et al., Use of machine-learning and receptor models for prediction and source apportionment of heavy metals 

in coastal reclaimed soils, Ecol. Indicat. 122 (2021), 107233. 
[39] USEPA, Exposure Factors Handbook, Final, US Environmental Protection Agency, Washington, DC, 2011 [EPA/600/R-09/052F]. 
[40] USEPA, Integrated Risk Information System (IRIS). Visited: 2016-3-5, USEPA, 2016. Available at: https://www.cfpub.epa.gov/ncea/iris/search/index.cfm? 

keyword¼. 
[41] B. Li, J. Deng, Z. Li, J. Chen, F. Zhan, Y. He, et al., Contamination and health risk assessment of heavy metals in soil and Ditch sediments in long-term mine 

Wastes area, Toxics 10 (10) (2022) 607. 
[42] A. Karpathy, Random Forest for Matlab, 2012. GitHub. 
[43] CNEMC(China National Environmental Monitoring Center), The Soil Background Value in China, China Environmental Science Press, Beijing in Chinese, 1990. 
[44] S. Yang, Y. Qu, J. Ma, L. Liu, H. Wu, Q. Liu, et al., Comparison of the concentrations, sources, and distributions of heavy metal (loid) s in agricultural soils of two 

provinces in the Yangtze River Delta, China, Environ. Pollut. 264 (2020), 114688. 
[45] F. Chen, Q. Wang, F. Meng, M. Chen, B. Wang, Effects of long-term zinc smelting activities on the distribution and health risk of heavy metals in agricultural soils 

of Guizhou province, China, Environ. Geochem. Health (2020) 1–16. 
[46] M.J. Kang, Y.K. Kwon, S. Yu, P.K. Lee, H.S. Park, N. Song, Assessment of Zn pollution sources and apportionment in agricultural soils impacted by a Zn smelter in 

South Korea, J. Hazard Mater. 364 (2019) 475–487. 
[47] H. Liu, S. Anwar, L. Fang, L. Chen, W. Xu, L. Xiao, et al., Source apportionment of agricultural soil heavy metals based on PMF model and multivariate statistical 

analysis, Environ. Forensics (2022) 1–9. 
[48] J. Wang, G. Liu, H. Liu, P.K. Lam, Multivariate statistical evaluation of dissolved trace elements and a water quality assessment in the middle reaches of Huaihe 

River, Anhui, China, Sci. Total Environ. 583 (2017) 421–431. 
[49] M.J. Kang, Y.K. Kwon, S. Yu, P.K. Lee, H.S. Park, N. Song, Assessment of Zn pollution sources and apportionment in agricultural soils impacted by a Zn smelter in 

South Korea, J. Hazard Mater. 364 (2019) 475–487. 
[50] J. Li, G. Wang, F. Liu, L. Cui, Y. Jiao, Source apportionment and ecological-health risks assessment of heavy metals in topsoil near a factory, Central China, 

Water Quality, Exposure and Health (1) (2020) 13. 
[51] Q. Guan, F. Wang, C. Xu, N. Pan, J. Lin, R. Zhao, et al., Source apportionment of heavy metals in agricultural soil based on PMF: a case study in Hexi Corridor, 

northwest China, Chemosphere 193 (2018) 189–197. 
[52] L. Chai, Y. Wang, X. Wang, L. Ma, Z. Cheng, L. Su, Pollution characteristics, spatial distributions, and source apportionment of heavy metals in cultivated soil in 

Lanzhou, China, Ecol. Indicat. 125 (2021), 107507. 
[53] X. Zhang, S. Wei, Q. Sun, S.A. Wadood, B. Guo, Source identification and spatial distribution of arsenic and heavy metals in agricultural soil around Hunan 

industrial estate by positive matrix factorization model, principle components analysis and geo statistical analysis, Ecotoxicol. Environ. Saf. 159 (2018) 
354–362. 

[54] Y.A. Kettanah, Copper mineralization and alterations in Gercus basalt within the Gercus formation, northern Iraq, Ore Geol. Rev. 111 (2019), 102974. 
[55] A.Y. Opekunov, M.G. Opekunova, S.Y. Janson, V.A. Bychinskii, V.V. Somov, S.Y. Kukushkin, E.E. Papyan, Mineral and geochemical characteristics of soils and 

bottom sediments in the area affected by mining dumps (a case study of the Sibay ore deposit), IOP Conf. Ser. Earth Environ. Sci. 817 (1) (2021), 012078 (IOP 
Publishing). 

[56] R. Zhao, Q. Guan, H. Luo, J. Lin, L. Yang, F. Wang, et al., Fuzzy synthetic evaluation and health risk assessment quantification of heavy metals in Zhangye 
agricultural soil from the perspective of sources, Sci. Total Environ. 697 (2019), 134126. 

[57] B. Pla, A. Zw, B. Xl, B. Mw, A. Lh, C. Bc, et al., Pollution assessment and source analysis of heavy metals in acidic farmland of the karst region in southern 
China—a case study of quanzhou county, Appl. Geochem. 123 (2020). 

[58] H. Yuan an, K. He, Z. Sun, G. Chen, H. Cheng, Quantitative source apportionment of heavy metal (loid) s in the agricultural soils of an industrializing region and 
associated model uncertainty, J. Hazard Mater. 391 (2020), 122244. 

[59] Q. Zhang, G.L. Hah, Speciation characteristics and risk assessment of soil heavy metals from puding karst critical zone, guizhou province, Huan Jing ke Xue=
Huanjing Kexue 43 (6) (2022) 3269–3277. 

[60] Shan Yang, Xunyang He, Yirong Su, Wei Zhang, Kelin Wang, Effects of lithology and land use patterns on karst soil fertility in Northwest Guangxi, Chin. J. Appl. 
Ecol. (6) (2010) 7. 

Z. Jiang et al.                                                                                                                                                                                                           

http://refhub.elsevier.com/S2405-8440(23)04454-7/sref19
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref19
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref20
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref20
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref21
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref21
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref22
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref22
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref23
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref23
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref24
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref24
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref25
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref26
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref26
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref27
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref28
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref28
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref29
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref29
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref30
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref30
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref31
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref32
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref32
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref33
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref33
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref34
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref34
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref35
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref35
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref36
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref36
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref37
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref37
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref38
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref38
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref39
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref40
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref40
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref41
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref41
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref42
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref43
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref44
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref44
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref45
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref45
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref46
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref46
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref47
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref47
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref48
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref48
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref49
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref49
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref50
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref50
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref51
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref51
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref52
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref52
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref53
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref53
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref53
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref54
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref55
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref55
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref55
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref56
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref56
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref57
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref57
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref58
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref58
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref59
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref59
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref60
http://refhub.elsevier.com/S2405-8440(23)04454-7/sref60


Heliyon 9 (2023) e17246

18

[61] H. Zhang, L.N. Wu, K.C. Ouyang, Z.W. Feng, Responses of Riparian Soil Carbon and Phosphorus to Land Use Evolution in Karst Areas. Yangtze River, China 
(008), 053, 2022. 

[62] J. Lv, Z. Zhang, S. Li, Y. Liu, Y. Sun, B. Dai, Assessing spatial distribution, sources, and potential ecological risk of heavy metals in surface sediments of the nansi 
lake, eastern China, J. Radioanal. Nucl. Chem. 299 (3) (2014) 1671–1681. 

[63] Xiaomeng Cheng, Bin-Bin Sun, Chao Wu, Ling He, Dao-ming Zeng, Chen Zhao, Characteristics and health risk of heavy metals in farmland soil of typical 
pyrolysis mining area in central Zhejiang Province, Environ. Sci. 1 (2022) 43. 

[64] J. Liu, B.S. Zheng, H.V. Aposhian, Y.S. Zhou, M.L. Chen, A.H. Zhang, M.P. Waalkes, Chronic arsenic poisoning from burning high-arsenic-containing coal in 
Guizhou, China, J. Peripher. Nerv. Syst. 7 (3) (2002) 208. 

[65] L. Zheng, G. Liu, C.L. Chou, The distribution, occurrence and environmental effect of mercury in Chinese coals, Sci. Total Environ. 384 (1–3) (2007) 374–383. 
[66] V.K. Mishra, A.R. Upadhyay, V. Pathak, B.D. Tripathi, Phytoremediation of mercury and arsenic from tropical opencast coalmine effluent through naturally 

occurring aquatic macrophytes, Water, Air, Soil Pollut. 192 (2008) 303–314. 
[67] Y. Kang, G. Liu, C.L. Chou, M.H. Wong, L. Zheng, R. Ding, Arsenic in Chinese coals: distribution, modes of occurrence, and environmental effects, Sci. Total 

Environ. 412 (2011) 1–13. 
[68] Y. Zhao, J. Zhang, W. Huang, Z. Wang, Y. Li, D. Song, et al., Arsenic emission during combustion of high arsenic coals from Southwestern Guizhou, China, 

Energy Convers. Manag. 49 (4) (2008) 615–624. 
[69] S.M. Diami, F.M. Kusin, Z. Madzin, Potential ecological and human health risks of heavy metals in surface soils associated with iron ore mining in Pahang, 

Malaysia, Environ. Sci. Pollut. Res. 23 (2016) 21086–21097. 
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