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Most prostate cancers are androgen-sensitive malignancies whose growths depend

on the transcriptional activity of the androgen receptor (AR). In the 1940s, Charles

Huggins demonstrated that the surgical removal of testes in men can result in a

dramatic improvement in symptoms and can induce prostate cancer regression.

Since then, androgen deprivation therapies have been the standard first-line treatment

for advanced prostate cancer, including: surgical castration, medical castration,

antiandrogens, and androgen biosynthesis inhibitors. These therapies relieve symptoms,

reduce tumor burden, and prolong patient survival, while having relatively modest

side effects. Unfortunately, hormone deprivation therapy rarely cures the cancer itself.

Prostate cancer almost always recurs, resulting in deadly castration-resistant prostate

cancer. The underlying escape mechanisms include androgen receptor gene/enhancer

amplification, androgen receptor mutations, androgen receptor variants, coactivator

overexpression, intratumoral de novo androgen synthesis, etc. Whereas, the majority

of the castration-resistant prostate cancers continuously rely on the androgen axis,

a subset of recurrent cancers have completely lost androgen receptor expression,

undergone divergent clonal evolution or de-differentiation, and become truly androgen

receptor-independent small-cell prostate cancers. There is an urgent need for the

development of novel targeted and immune therapies for this subtype of prostate

cancer, whenmore deadly small-cell prostate cancers are induced by thorough androgen

deprivation and androgen receptor ablation.

Keywords: prostate cancer (PCa), androgen receptor (AR), androgen deprivation therapy (ADT),

castration-resistant prostate cancer (CRPC), small-cell prostate cancer (SCPC), antiandrogen

ANDROGENS AND THE ANDROGEN RECEPTOR IN THE
PROSTATE GLAND

The prostate is a walnut sized male reproductive gland located between the bladder and the penis.
It secretes the prostatic fluid that helps to nourish and transport sperm. Androgen signaling
plays a pivotal role in the development and function of a normal prostate gland. There are two
native androgens in humans, testosterone (T), and 5α-dihydrotestosterone (DHT). Testosterone is
produced mainly in the testis, with a small amount being produced in the adrenal glands in men.
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Testosterone is converted to the more potent androgen
dihydrotestosterone by the enzyme 5 alpha-reductase located
in the prostate, skin, scalp, etc. Both testosterone and
dihydrotestosterone can bind to a single nuclear receptor
protein, the androgen receptor, which is an androgen-
dependent transcriptional activator and a member of nuclear
receptor superfamily.

Similar to other nuclear hormone receptors, the androgen
receptor protein contains three main functional domains: the
NH2-terminal unstructured transcriptional activation domain,
the central DNA binding domain (DBD), and the carboxyl-
terminal ligand binding domain (LBD) (Figure 1A). Between
DBD and LBD, there is a flexible hinge region (amino acid 624–
676), which harbors a bipartite nuclear localization signal (NLS).
In the classical model, the androgen receptor binds to androgen
response elements (AREs) as a homodimer, and dimerization
is mediated by both DBD and LBD (2, 3) (Figure 1B).
Whereas, other nuclear receptors recruit LxxLLmotif-containing
coactivators such as the steroid receptor coactivator (SRC)/p160
family coactivators through their ligand binding domains, the
androgen receptor ligand binding domain preferentially engages
in the FxxLF motif-mediated NH2-terminal and carboxyl-
terminal (N/C) interaction (4–7) or recruits FxxLF motif-
containing coregulators (5, 8) (Figure 1B). Nevertheless, the
androgen receptor can still recruit the SRC/p160 family of
coactivators mainly through its unstructured NH2-terminus and
LBD (9). Moreover, the androgen receptor can also recruit an
AR-specific MAGE-A11 coactivator through its extended NH2-
terminal FxxLF motif (10).

FIGURE 1 | The unique molecular features of the androgen receptor and its coregulator recruitment. (A) The primary sequence of the androgen receptor contains

several functional domains: NH2-terminal Activation Function 1 (AF1), the central DBD, the carboxyl-terminal LBD, and two AR-specific FxxLF and WxxLF motifs.

(B) Schematic diagram of homodimeric androgen receptor bound to a palindromic androgen response element (ARE). Dimerization of the androgen receptor is

mediated by both DBD and LBD. Shown in the diagram are FxxLF motif-mediated N/C interaction, recruitment of the SRC/p160 by AF1 and AF2, recruitment of FxxLF

motif-containing ARA proteins by AF2, and recruitment of MAGE-A11 through the AR NH2-terminal extended FxxLF motif. Competition likely exists among different

FxxLF, WxxLF, and LxxLF motifs for binding to the same AF2 site on AR LBD (1). SRC, steroid receptor coactivator; ARA, AR-associated protein; AF1, activation

function 1; AF2, activation function 2, a hydrophobic cleft in the LBD; ARE, androgen response element; DBD, DNA binding domain; LBD, ligand binding domain.

In the absence of hormones, the androgen receptor is
associated with heat shock proteins and located in the cytoplasm
in an inactive conformation. Upon androgen binding, the
androgen receptor quickly undergoes conformational change,
nuclear translocation, recognition of androgen responsive
elements in the genomic DNA, and recruitment of coactivator
machineries, resulting in transcription of target genes, such as
prostate-specific antigen (PSA) and transmembrane protease
serine 2 (TMPRSS2).

Dihydrotestosterone is a significantly more potent androgen
than testosterone both in vitro and in vivo. While this variance
in potency was commonly attributed to their different binding
affinities, dihydrotestosterone actually binds to the androgen
receptor with similar or somewhat higher affinity compared
with testosterone (11, 12). In contrast, these two androgens
bind to the androgen receptor with very differing kinetics (11,
12). The rate of dissociation for dihydrotestosterone from the
androgen receptor is about three to five times slower than
testosterone (11, 12). Therefore, it is largely their binding
kinetics, rather than affinity, which accounts for the differential
androgenic activities of these two hormones. As we know, in the
field of drug discovery, the notion that drug-receptor binding
kinetics could be as important as affinity in determining drug
efficacy is becoming more widely accepted (13). In further
support of the importance of androgen binding kinetics, the
unique androgen receptor inter-domain N/C interaction slows
the rate of androgen dissociation without affecting androgen
binding affinity and is required for optimal target gene
transcription (4).
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CO-EVOLUTION OF ANDROGEN
DEPRIVATION THERAPY (ADT) AND
PROSTATE CANCER

Surgical and Medical Castration
Prostate cancer occurs in the prostate gland. It is the most
commonly diagnosed non-skin cancer and the second leading
cause of cancer death in men in the United States. Based
on his finding that the growth of prostate glands in dogs
depended on testosterone, Charles Huggins demonstrated that
surgical removal of testes in men, which produces more than 90
percent of testosterone, can result in a dramatic improvement
in symptoms and can induce regressions of prostate cancers at
any site (14). Since then, androgen deprivation therapy has been
the standard first-line treatment for advanced prostate cancer
(15). In addition to surgical castration, gonadotropin-releasing
hormone (GnRH) analogs such as leuprolide, goserelin, and
buserelin can suppress gonadotropin secretion and thus block the
production of testicular androgens. As a result of its cosmetic and
psychological concerns, medical castration via GnRH analogs has
been the mainstay treatment for advanced prostate cancer.

First-Generation Antiandrogens
Although surgical and medical castration can suppress
testosterone production in the testes, the adrenal glands
can still produce small amounts of androgens. To neutralize the
activity of these residual androgens, antiandrogens were used
to block androgen receptor signaling in prostate cancer cells
(Figure 2). For example, cyproterone acetate (CPA), a synthetic
steroid, was used as a prototypical antiandrogen (16). However,
due to its relative ineffectiveness, CPA was replaced by more
potent non-steroidal pure antiandrogens, such as Flutamide
(Eulexin), bicalutamide (Casodex), and nilutamide (Nilandron).
Unlike GnRH analogs, these antiandrogens do not prevent
androgen production in the body. Instead, the antiandrogens
bind to the androgen receptor with a relatively high affinity but
lack the ability to activate transcriptional activity of the androgen
receptor. Therefore, the antiandrogens function by competitively
blocking testosterone and dihydrotestosterone from binding to
the androgen receptor. For instance, flutamide and its active
metabolite hydroxyflutamide bind to androgen receptors with
a Ki of ∼3,395 and ∼134 nM, respectively (17). Bicalutamide
is a more potent non-steroidal antiandrogen; its affinity for
androgen receptors is two to four times more potent than
hydroxyflutamide and nilutamide (18). Bicalutamide was thus
modestly effective in prostate cancer patients who developed
resistance after flutamide treatment (19). While effective on
their own, antiandrogens are not usually used in monotherapy.
Instead, they have proven to be used in conjunction with medical
or surgical castration (20–22).

“Androgen-Independence” to
Castration-Resistance
The combination therapy of GnRH analogs and antiandrogens
has promoted the survival of prostate cancer patients (21, 23).
Unfortunately, most prostate cancers develop resistance to the
combined androgen deprivation therapy after several years,

becoming so-called “androgen-independent” prostate cancer.
Surprisingly, it was found that, even after castration, the
testosterone and dihydrotestosterone levels in locally recurrent
prostate cancer tissues remain high enough to activate androgen
receptors (24, 25). In support of this observation, the androgen
receptor target gene PSA remains expressed in recurrent prostate
cancer tissues, despite the castrate levels of androgens in
serum (24, 25). Moreover, it has been reported that in the
recurrent metastatic prostate cancers, intratumoral de novo
androgen synthesis by overexpressed steroidogenic enzymes
may contribute to elevated testosterone levels (26). Taken
together, it becomes evident that recurrent cancers after medical
or surgical castration are not truly androgen-independent
(27), as they continuously depend on androgens and the
androgen receptor to survive and grow. These recurrent cancers
have been more appropriately classified as castration-resistant
prostate cancer (28).

Mechanisms of Castration Resistance
Subsequent studies have revealed multiple mechanisms which
may contribute to the androgen receptor-dependence in
castration-resistant prostate cancer. Firstly, increased androgen
receptor expression can be caused by androgen receptor
gene amplification (29–33) or androgen receptor enhancer
amplification (34, 35). Secondly, increased expression of
androgen receptor coactivators SRC1 and TIF2 stimulates
androgen receptor activity in the presence of the weaker
androgen androstenedione (36). The expression of the MAGE-
A11 coactivator, which is recruited through androgen receptor
NH2-terminal FxxLF motif, is increased in castration-resistant
prostate cancer (37, 38). Thirdly, mutations in the androgen
receptor ligand binding domain enable the androgen receptor to
be activated by antiandrogens or other steroid hormones (39).
For instance, the androgen receptor with the LNCaP mutation
T877A can be activated by flutamide, estrogen, and progesterone
(40, 41). The androgen receptor with L701H/T877A double
mutations can be activated by glucocorticoids (42). Fourthly,
constitutively active androgen receptor variants which lack ligand
binding domains are another underlying mechanism of the
castration resistance (43–45). Additionally, growth hormones
such as epidermal growth factor (EGF) increase TIF2/GRIP1
coactivation of androgen receptor activity in recurrent cancer
cells (46). Insulin-like growth factor-1 (IGF-1), keratinocyte
growth factor (KGF), and EGF can all activate androgen receptor
activity in the absence of androgens (47).

Antiandrogen Withdrawal Syndrome
Interestingly, in some patients, when an antiandrogen is no
longer working, simply stopping the antiandrogen treatment can
stop cancer growth for a short period of time. This phenomenon
is known as antiandrogen withdrawal syndrome. Decreases in
PSA levels and/or clinical improvement after discontinuation
of antiandrogens upon disease progression have been shown
by flutamide, bicalutamide, and nilutamide withdrawal (48–
50). One mechanism of antiandrogen withdrawal syndrome is
acquired mutations in the androgen receptor ligand binding
domain includingmutation T877A andH874Y. Not surprisingly,
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FIGURE 2 | Chemical structures of androgens and antiandrogens. (A) Two main androgens, testosterone (T), and dihydrotestosterone (DHT). (B) First-generation

antiandrogens, cyproterone acetate (Androcur), Flutamide (Eulexin), Bicalutamide (Casodex), Nilutamide (Nilandron). 2-hydroxyflutamide is the major active metabolite

of flutamide in the body. (C) Representative second-generation antiandrogens, Enzalutamide (Xtandi), Apalutamide (Erleada), and Darolutamide (Nubeqa). Structures

are adopted from Wikipedia.

these mutations have converted antiandrogens to androgen
receptor agonists (51).

Second-Generation Antiandrogens
To overcome castration resistance, more potent antiandrogens,
known as second-generation antiandrogens, have been designed
to achieve maximal androgen blockade (52). These second-
generation antiandrogens include Enzalutamide (Xtandi),
Apalutamide (Erleada), and Darolutamide (Nubeqa) (Figure 2).
Enzalutamide and apalutamide are structurally similar to each
other, having 5- to 8-fold higher binding affinities for androgen
receptors in comparison to first-generation antiandrogens.
Importantly, these antiandrogens function as pure antagonists
for the androgen receptor in the presence of mutations such as
T877A. Darolutamide is structurally distinct and shows 8- to 10-
fold higher affinity for the androgen receptor than enzalutamide
and apalutamide, and can inhibit the enzalutamide-resistant
mutant androgen receptor (53). Therefore, darolutamide appears
to be an even more potent second-generation antiandrogen.
In addition to these three FDA-approved second-generation
antiandrogens, other antiandrogens are also being developed.
For instance, a potent AR inhibitor JNJ-73576253 (TRC253),
developed by Janssen Pharmaceuticals, is a pan-inhibitor of
AR, even in the presence of certain activating mutations, and is
currently in Phase 1/2A clinical trial (54).

These more potent second-generation antiandrogens
have been successful in prolonging the survival of men
with castration-resistant prostate cancer. For instance, in
men with metastatic castration-resistant prostate cancer after
chemotherapy, enzalutamide produced an overall survival benefit
of 4.8 months compared to the placebo (55). For patients with
metastatic prostate cancer who have not received chemotherapy,

enzalutamide also significantly increased progression-free
survival and overall survival (56). Moreover, enzalutamide,
apalutamide, and darolutamide all had significantly prolonged
metastasis-free survival in men with high-risk non-metastatic
castration-resistant prostate cancer (57–59). As shown by the
latest phase III trials, both enzalutamide and apalutamide could
significantly increase the progression-free survival and overall
survival for men with metastatic hormone-sensitive prostate
cancer (60–62).

In addition to the development of second-generation
antiandrogens, Abiraterone (Zytiga) was developed as an
irreversible steroid inhibitor of CYP17, a key enzyme in
androgen synthesis. Abiraterone acetate inhibits the production
of androgens in the testes, adrenal glands, and prostate tumors. In
patients with metastatic castration-resistant and chemotherapy-
resistant prostate cancer, Abiraterone produced an overall
survival benefit of 3.9 months in comparison to the placebo (63).
More recently, the phase III LATITUDE trial has shown that the
combination of Abiraterone plus prednisone with ADT conferred
significant progression-free and overall survival benefits for
patients with newly diagnosed high-risk metastatic castration-
sensitive prostate cancer (64, 65).

Repeated Resistance and Underlying
Mechanisms
Unfortunately, while second-generation antigens can prolong the
survival of castration-resistant prostate cancer patients, the relief
is temporary. Once again, castration-resistant cancers become
resistant to the newest inhibitors. The novel mutation F876L,
which is evolved in the androgen receptor ligand binding domain
during the treatment of enzalutamide, converts enzalutamide
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to an agonist (66–68). Enzalutamide-resistant prostate cancer
can also bypass androgen receptor blockade by glucocorticoid
receptor activation (69). Because the DNA binding domains
of glucocorticoid receptor and androgen receptor are highly
homologous and recognize identical DNA response elements, the
glucocorticoid receptor can substitute for the androgen receptor
to activate a subset of androgen receptor target genes which are
required for prostate cancer survival and growth. In addition, the
androgen receptor variant AR-V7 is associated with resistance
to enzalutamide and Abiraterone (70, 71). Niclosamide, a novel
inhibitor of AR-V7, may be able to overcome enzalutamide
resistance (72). The crucial steroidogenic enzyme AKR1C3 is
found to be overexpressed in enzalutamide-resistant prostate
cancer cells and mediates enzalutamide resistance (73). The
chemokine receptor CXCR7 is found to be overexpressed in
enzalutamide-resistant prostate cancer cells and can activate
MAPK to confer enzalutamide resistance (74). Up-regulation
of coactivator GREB1 may also contribute to enzalutamide
resistance (75).

One interesting observation is a reciprocal negative feedback
regulation between AR and PI3K/Akt signaling pathways in
prostate cancer. Pten loss contributed to the development of
castration-resistant prostate cancer in mouse models (76, 77). It
was thus postulated that combined inhibition of AR and PI3K
pathways may achieve more potent inhibition of tumor growth.
Indeed, in a phase Ib/II clinical trial, combination of abiraterone
with Ipatasertib, an Akt inhibitor, showedmore potent anticancer
activity than abiraterone alone in metastatic castration-resistant
prostate cancer patients (78). Moreover, the combination of
Akt inhibitor AZD5363 and enzalutamide showed synergistic
anti-prostate cancer effects in preclinical models (79) and has
been tested in a phase I clinical trial (80). However, in another
phase II clinical trial, a pan-class I PI3 kinase inhibitor BKM120
(buparlisib), with or without enzalutamide co-treatment, had
only limited efficacy in men with metastatic castration-resistant
prostate cancer (81).

AR CO-FACTORS IN PROSTATE CANCER

Eukaryotic DNA wraps around histone proteins and forms an
inhibitory chromatin structure. Gene activation by the androgen
receptor requires assistance from other transcription factors.
Among these factors, GATA2 and FoxA1 play particularly
essential roles in androgen receptor signaling in prostate cancer
cells. GATA2 belongs to the GATA family of transcription factors
which contains six members in mammals. GATA2 factors bind
to a consensus DNA sequence (A/T)GATA(A/G) and regulate
gene expression. GATA factors are expressed in a tissue-specific
manner and play fundamental roles in cell-fate specification (82).
The role of GATA2 in androgen signaling was first implicated
by the involvement of GATA2 in androgen regulation of the
PSA gene (83). Binding motifs for GATA factors and Oct1 are
enriched on AR binding regions in LNCaP cells, suggesting that
these transcription factors cooperate with AR in mediating the
androgen response (84). In addition to its co-factor function,
GATA2 might directly regulate androgen receptor mRNA and

protein expression in prostate cancer cells (85–87). Inhibition
of GATA2 by small-molecule compounds is a potential strategy
in blocking AR expression and signaling in castration-resistant
prostate cancer (86).

FoxA1 is member of the forkhead family of DNA binding
factors and plays a key role in androgen receptor-induced gene
transcription. FoxA1 functions as a pioneer factor because it can
bind to highly compacted chromatin and allows these genomic
regions to be more accessible to other transcription factors.
Therefore, FoxA1 functions to guide androgen receptor binding
to the genomic sites in prostate cancer cells (88, 89). In normal
prostate luminal epithelial cells, it plays an important role in
maintaining the differentiation status. FoxA1 mutations occur
frequently in primary and metastatic prostate cancers and may
contribute to prostate tumorigenesis and cancer progression
(90, 91). Loss of FoxA1 promotes prostate cancer progression to
neuroendocrine small-cell prostate cancer (92). FoxA1 also has
androgen receptor-independent function in prostate cancer (93).

NOVEL STRATEGIES IN
CASTRATION-RESISTANT PROSTATE
CANCER TREATMENTS

Even with the latest androgen deprivation therapies, castration-
resistant prostate cancers are rarely cured. They simply become
resistant again. Strikingly, a substantial subset of these resistant
cancers still express androgen receptors and/or their variants;
their growth and survival are still dependent on androgen
receptor signaling. Scientists in the field of prostate cancer
research are relentless in pursuing novel strategies for more
complete ablation of androgen receptor signaling.

Prompted by the clinical success of selective estrogen
receptor downregulator (SERD) Faslodex (ICI 182,780 or
Fulvestrant) (94), selective androgen receptor downregulators
(SARDs) have been developed. For instance, a SARD compound
AZD3514 (95) had undergone phase I clinical trial (96). Binding
of SERD or SARD causes severe receptor conformational
change, resulting in receptor degradation. Another strategy
is to specifically degrade the androgen receptor protein
through Proteolysis Targeting Chimeras (PROTACs). Briefly,
a PROTAC molecule consists of two covalently linked ligands:
one ligand binds to the target protein whereas the second
ligand binds to an E3 ligase system. Several AR targeting
PROTACs have been reported, including enzalutamide-derived
ARCC-4 (97) and aryloxy tetramethylcyclobutane-derived
ARD-69 (98, 99). ARCC-4 and ARD-69 represent a novel
class of drugs which directly targets the androgen receptor
protein for degradation, but their in vivo anti-prostate cancer
activities remains to be established in mouse models. Similarly,
small-molecule degraders of the Bromodomain and Extra-
Terminal (BET) family of epigenetic regulators, which are
essential for prostate cancer growth, showed in vivo anti-
cancer efficacy in a castration-resistant VCaP xenograft mouse
model (100).

Another strategy is to silence androgen receptor gene
expression at the transcriptional level. Androgen receptor
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gene expression is driven by an orphan nuclear receptor
RORγ in metastatic castration-resistant prostate cancer (101).
RORγ antagonists XY018 and SR2211 potently suppressed
the expression of the full length androgen receptor and
truncated androgen receptor variants at the transcriptional level,
consequently inhibiting prostate cancer growth in xenograft
mouse model (101). It has been shown that enzalutamide-
resistant prostate tumors are sensitive to RORγ antagonists,
suggesting that such a strategymay be able to overcome resistance
to second-generation antiandrogens. In comparison to older
strategies, this treatment can silence the expression of both full
length and truncated variant androgen receptors.

One more exciting area for cancer drug development is
the use of synthetic lethality. Because a subset of cancers
contains defects in their DNA repair system, they become
particularly vulnerable to inhibition of DNA repair enzymes.
Olaparib, an inhibitor of poly(ADP-ribose) polymerase (PARP)
1 and 2, two key enzymes involved in DNA repair, has
been approved by FDA for germline BRCA-mutated metastatic
breast cancer (102). In a phase II trial, olaparib produced
a high response rate in castration-resistant prostate cancers
with DNA-repair defects including BRCA2 loss and ATM
aberrations (103). A phase II trial further shows that olaparib
in combination with abiraterone increased progression-free
survival in men with metastatic castration-resistant prostate
cancer (104).

FUTURE PERSPECTIVE

Although androgen deprivation therapy prolongs the survival
and improves the quality of life of prostate cancer patients,
it does not cure the disease. With more complete androgen
deprivation therapies and androgen receptor ablation in the
near future, we hypothesize that more castration-resistant
prostate cancers will undergo de-differentiation, eventually lose
androgen receptor expression, and become truly androgen-
independent androgen receptor-negative small-cell prostate
cancers (105, 106) (Figure 3). These small-cell prostate cancers
have neuroendocrine markers or basal stem cell gene signatures

(109), and they will no longer respond to hormone therapy
or androgen receptor targeting therapy. There will be an
urgent need to develop novel targeted therapies for this
subtype of prostate cancer, when more small-cell prostate
cancers are induced by complete androgen deprivation and
androgen receptor ablation. It has been reported that these
cancers contain gene amplification of AURKA and MYCN,
which are promising therapeutic targets for this subtype of
cancer (106).

Recent advances in immunotherapy are revolutionizing the
treatment of cancer. For example, Sipuleucel-T (Provenge) for
CRPC is the first FDA-approved therapeutic cancer vaccine
(110). However, while the use of Sipuleucel-T prolonged overall
survival, it did not lead to PSA reduction, tumor shrinkage,
or improve disease free survival. The checkpoint blockade
therapies using antibodies to block CTLA-4 or PD-1 have
achieved long-term clinical benefits, and even cures a subset
of cancers (111). Tumor infiltrating lymphocytes (TIL) have
also shown huge promise in treating cancers (112). The success
of checkpoint blockade and TIL therapies are dependent on
the tumor mutational burden (113, 114). With more somatic
mutations, cancer cells are more likely to be recognized by T
lymphocytes as “non-self ” foreigners and thereby likely to be
eliminated by the immune system. Prostate cancer cells are
known to have low mutation rates (115, 116) and therefore
the vast majority of prostate cancers are insensitive to current
single checkpoint blockade immunotherapies. Only a small
subset of prostate cancers with mismatch repair defects or
CDK12 mutations are likely to respond to checkpoint blockade
(117, 118). Nevertheless, the combination of PD-1 and CTLA4
inhibitors in a phase II CheckMate 650 trial elicited durable
clinical responses in metastatic castration-resistant prostate
cancers (119). It is also possible that continuous androgen
deprivation therapies will cause more mutations and genomic
alternations, and render prostate cancer cells more vulnerable to
immunotherapy (117).

In addition, the recently emerging chimeric antigen receptor
(CAR) T cell therapy is a promising strategy for treatment
of castration-resistant prostate cancer. The CAR T cell

FIGURE 3 | Evolution of prostate cancer under androgen deprivation therapy. Androgen sensitive primary prostate cancers arise from prostate luminal epithelial cells,

which have undergone genetic alterations, such as mutation of PTEN tumor suppressor (107) or chromosomal rearrangement resulting in the TMPRSS2/ERG chimeric

gene (108). Upon androgen deprivation including castration and the first-generation antiandrogen treatment, most HNPC will develop into CRPC, whose survival and

growth still depends on androgen receptor signaling. After treatment with more potent androgen deprivation therapies such as second-generation antiandrogens, the

majority of CRPC manages to develop novel mechanisms to maintain active androgen signaling axis to confer resistance, whereas a subset of CRPC will irreversibly

lose androgen receptor expression, undergo divergent clonal evolution or de-differentiation, and become truly androgen-independent small-cell prostate cancer. ADT,

androgen deprivation therapy; HNPC, hormone-naïve prostate cancer; CRPC, castration-resistant prostate cancer; SCPC, small-cell prostate cancer.
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immunotherapy has recently been approved by FDA for
treatment of refractory pre-B cell acute lymphoblastic leukemia
and diffuse large B cell lymphoma (120). Because CAR-
engineered T lymphocytes recognize cancer cells through
cancer cell surface antigens, their anti-cancer activity is not
dependent on mutations in cancer cells. This is particularly
important for prostate cancers which harbor low amount of
somatic mutations. In the literature, there are several reports
of PSMA-specific CAR T-cell therapies which have shown anti-
prostate cancer activity in vitro and in mouse models (121, 122).
Additionally, CAR-engineered natural killer (NK) cell therapy
is another promising treatment for castration-resistant prostate
cancer. Taken together, with these new targeted and immune
therapies in sight, scientists and patients can be optimistic
about eventually winning the battle against castration-resistant
prostate cancer.
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