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Drug Repurposing Using Molecular Network
Analysis Identifies Jak as Targetable Driver in
Necrobiosis Lipoidica

Alysia N. Hughes1, Xing Li1, Julia S. Lehman2,3, Steven A. Nelson1, David J. DiCaudo1,
Rekha Mudappathi4,5,6, Angelina Hwang1, Jacob Kechter1, Mark R. Pittelkow1, Aaron R. Mangold1 and
Aleksandar Sekulic7,8
Drug repurposing is an attractive strategy for therapy development, particularly in rare diseases where tradi-
tional drug development approaches may be challenging owing to high cost and small numbers of patients. In
this study, we used a drug identification and repurposing pipeline to identify candidate targetable drivers of
disease and corresponding therapies through application of causal reasoning using a combination of open-
access resources and transcriptomics data. We optimized our approach on psoriasis as a disease model,
demonstrating the ability to identify known and, to date, unrecognized molecular drivers of psoriasis and link
them to current and emerging therapies. Application of our approach to a cohort of tissue samples of nec-
robiosis lipoidica (an unrelated; rare; and, to date, molecularly poorly characterized cutaneous inflammatory
disorder) identified a unique set of upstream regulators, particularly highlighting the role of IFNG and the
Jakesignal transducer and activator of transcription pathway as a likely driver of disease pathogenesis and
linked it to Jak inhibitors as potential therapy. Analysis of an independent cohort of necrobiosis lipoidica
samples validated these findings, with the overall agreement of drug-matched upstream regulators above 96%.
These data highlight the utility of our approach in rare diseases and offer an opportunity for drug discovery in
other rare diseases in dermatology and beyond.
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INTRODUCTION
New drug development generally takes 10e15 years and
costs >$2 billion (Pushpakom et al, 2019). Only 10% of
drugs that successfully complete phase 1 clinical trial are
approved by the United States Food and Drug Administration
(FDA) (Dowden and Munro, 2019). Repurposing of existing
drugs can reduce the time, risk, and cost associated with drug
development, offering a more efficient and effective
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alternative to traditional approaches (Fetro and Scherman,
2020; Paik et al, 2015; Pushpakom et al, 2019; Roessler
et al, 2021; Sirota et al, 2011; Weth et al, 2024; Zador
et al, 2018).

Drug repurposing is particularly attractive for rare diseases
where the study of disease mechanisms and development of
potential therapies are challenging. Although individually,
rare diseases (defined as affecting <200,000 people in the
United States) affect a small percentage of the population, it
is estimated that collectively, they affect 300 million people
worldwide or 30 million people in the United States, trans-
lating to 1 in 10 in the United States, on par with the prev-
alence of type 2 diabetes (Marwaha et al, 2022) (https://www.
orpha.net/consor/cgi-bin/index.php), highlighting the need
for innovative drug discovery approaches.

Changes in gene expression patterns have been studied in
many disease states. However, identifying the root cause
leading to altered gene expression patterns and associated
disease phenotype remains challenging (Bradley and Barrett,
2017). Several groups have tackled this challenge, deploying
approaches ranging from the use of Toxicology Genomics
Database, which collates experimental data of exposures to
chemicals, drugs, and toxicants (Nguyen et al, 2023), to ap-
proaches using elegant animal models to identify gene
expression changes in model disease states, validating such
changes in human samples, and performing a focused
candidate analysis for drug targeting (Srivastava et al, 2018).
However, requirement for cell and animal models to generate
matology. This is an open access article
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initial insights in such approaches represent a significant
barrier when attempting to analyze rare disease conditions
where appropriate models and abundant patient samples
may not be available. As an alternative, causal network
analysis (causal reasoning) approaches leverage the contin-
ually expanding knowledge of molecular interaction net-
works to analyze patterns of gene expression and predict the
upstream regulators (URs) and their individual activation
states without necessitating the generation of additional
knowledge (Bradley and Barrett, 2017). Identification of UR
drivers of altered gene expression in a disease state by such
an approach can provide potential therapeutic targets that
might have otherwise been missed by conventional tran-
scriptomic analysis.

Necrobiosis lipoidica (NL) is a rare, chronic inflammatory
granulomatous disorder of the skin often associated with
diabetes mellitus with no FDA approved treatments (Hashemi
et al, 2019; Severson et al, 2022a, 2022b). NL ulcerates in up
to 35% of cases, is associated with increased pain (Hines
et al, 2023), and has malignant potential if left untreated
(Harvey et al, 2022). Current treatment modalities are inef-
fective, and the underlying molecular drivers are unknown.

In this study, we applied a drug discovery pipeline on the
basis of causal reasoning using publicly available resources
and demonstrated utility in identifying targetable URs as
drivers of aberrant cellular disease processes. We first tested
and optimized our approach using psoriasis as a disease
model with well-characterized molecular mechanisms and
have successfully mapped the disease drivers and effective
therapeutic options. We demonstrate that identification of
URs is specific to disease context because the identical
analysis of noninflammatory tissue, in this case, basal cell
carcinoma (BCC), yields a very different set of URs. Subse-
quently, we applied our approach to map the activation
networks in NL, identifying involved UR drivers and selecting
corresponding therapeutic interventions. These findings
informed drug selection for a successfully completed clinical
trial, reported separately (Hwang et al, 2024).

RESULTS
Identification of disease drivers in psoriasis and
corresponding therapies

Psoriasis is an ideal test model to predict the URs of disease
and identify potential therapeutic targets. Mapping of aber-
rantly regulated URs provides information that is not con-
tained in the expression data alone because the URs driving
the RNA transcription changes may not be differentially
expressed themselves. We examined the whole-
transcriptome profiles from 2 National Center for Biotech-
nology Information (NCBI) psoriasis datasets (GSE54456 and
GSE121212). The entire transcriptome profiling information
for GSE54456 was accessed from previously published,
publicly available data (Li et al, 2014). A total of 21,510
mapped transcripts were used in the UR analysis, including
3577 DEGs (1049 upregulated and 2538 downregulated)
(log2 fold change [FC] > 1, P < 10E-6). For GSE121212, we
obtained the raw mRNA expression data from NCBI and
identified DEGs through DESeq2 R package (Tsoi et al, 2019).
A total of 31,364 mapped transcripts were included in the UR
analysis, including 4954 DEGs (1794 upregulated and 3160
JID Innovations (2024), Volume 4
downregulated) (log2 FC > 1, P < 10E-6). The list of differ-
entially expressed genes (DEGs) between lesional and control
tissue for the GSE121212 psoriasis dataset is provided in
Supplementary Table S1. Three publicly available directional
gene regulation databases (Omnipath, Signor, and CausalR)
were utilized to map the molecular networks and identify
URs in psoriasis, using the CausalR analytical package (Ma-
terials and Methods and Figure 1). For each psoriasis dataset,
we examined 2 UR output depths termed delta 1 (D1) and
delta 2 (D2), defining the path length between the nodes in
the network, such as an UR and the downstream gene
expression. The D1 level is the shortest path length among
interacting nodes without known intermediary node
involvement. The D2 level represents longer path lengths and
indirect associations used for UR prediction. The list of all
identified URs for GSE54456 (D1 and D2) and GSE121212
(D1 and D2) is provided in Supplementary Tables S2e5,
respectively.

To identify drugs with the potential to target mapped URs,
the URs were matched to the Target Central Resource Data-
base (TCRD) (http://juniper.health.unm.edu/tcrd/), which
contained 1642 unique drugs with well-annotated mecha-
nism of action at the time of analysis (version 6.7). Matched
drugs were filtered to exclude nonsensical drugetarget re-
lationships, such as drugs inhibiting URs that were identified
as already aberrantly inactivated in disease (Materials and
Methods provides the details). To assess the degree of
agreement in identification of URs between 2 independent
psoriasis datasets (P < .01), we used Cohen’s kappa test,
which indicated substantial agreement at each depth of
analysis (Cohen’s kappa ¼ 0.61, 98.49% agreement [D1];
0.67, 96.84% agreement [D2]; 95% confidence interval ¼
0.67e0.85). Given the substantial agreement across both
psoriasis datasets, the set of overlapping URs (Table 1) was
used in subsequent analytical steps.

A total of 9 most closely related proximal drug-matched
URs at D1 predicted as drivers of molecular changes in
both psoriasis datasets were identified, including IL-12B,
IFNG, IL-23A, IL-1B, CD274 (PD-L1), CD80, IL-17A, TNF,
and IL-12A (Figure 2a). These 9 URs mapped to 19 unique
drugs, including adalimumab, certolizumab pegol, eta-
nercept, guselkumab, infliximab, ixekizumab, risankizumab,
secukinumab, tildrakizumab, and ustekinumab, representing
10 of the 11 FDA-approved biologics for psoriasis as identi-
fied at the time of the study (Figure 2b). Evaluation of a
broader network of URs that may indirectly control molec-
ular changes in psoriasis (D2) identified 25 overlapping drug-
matched URs, including AKR1B1, CCR5, CD80, EGFR,
FGFR3, FGFR4, HRH2, IFNG, IL-12A, IL-12B, IL-1B, IL-23A,
IL-6, Jak1, Jak2, Jak3, KIT, MAP2K2, poly [ADP-ribose] po-
lymerase 1, PDE3B, SRC, TACR1, toll-like receptor 7, TNF,
and tyrosine kinase 2 (TYK2). These 25 URs mapped to 74
unique drugs, of which 8 are FDA-approved biologics for
treatment of psoriasis (Table 1). Drugs targeting CD80, IL-1B,
IFNG, IL-12A, IL-12B, IL-1B, IL-23A, and TNF were identified
at both depths D1 and D2 results, whereas unique findings at
D1 included drugs targeting IL-17A and CD274 (Table 1).
Fisher’s exact test demonstrated highly significant enrichment
of current FDA-approved psoriasis biologics at both D1
(Figure 2d) and D2 (data not shown) (GSE54456: P ¼ 1.42E-
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Figure 1. Workflow for identification of URs and matched drugs in cutaneous disease. RNA-seq, RNA sequencing; UR, upstream regulator.
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15 and 9.62E-7, respectively; GSE121212: P ¼ 5.13E-12 and
1.56E-6, respectively). Kinase inhibitors were markedly rep-
resented, including those targeting Jak1, Jak2, Jak3, TYK2,
EGFR, FGFR3, FGFR4, KIT, LYN, MAP2K2, and SRC (Table 1).

Pathway analysis of URs in psoriasis

Pathway analysis was conducted using DAVID (Huang da
et al, 2009) to verify known biological processes and path-
ways of current and potential future therapeutic targets in
psoriasis. Deploying Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes databases, we conducted pathway
analysis using predicted URs for combined D1 and D2
analysis results (D1 þ D2) from combined psoriasis datasets.
This analysis identified a total of 429 overlapping URs, with
278 predicted to be active and 151 predicted to be inactive (P
< .05). Pathway analysis on all active URs corroborated
functional enrichment of expected outcomes relating to
activation of the TNFaeIL-23eT helper 17 (Th17) axis
(Rendon and Schäkel, 2019), including chemokine- and
cytokine-mediated signaling; Th17 cell differentiation; IL-17
signaling pathway; and other critical inflammatory path-
ways, including Jak signaling (Figure 3). The 27 most statis-
tically significant URs for combined D1 and D2 results (P <
.01), which were matched to drugs, mapped similarly to
TNFaeIL-23eTh17 axis pathways as well as positive regu-
lation of Jakesignal transducer and activator of transcription
(STAT) signaling and Th17 cell differentiation (Figure 2c), in
line with current understanding of the molecular pathogen-
esis in psoriasis.

To ensure that our approach is not biased toward the URs
seen in inflammatory conditions, such as psoriasis, we
applied the same analytical pipeline to publicly available
gene expression data (GSE58375) of BCC, a common skin
cancer. Histologically, BCCs are composed predominantly of
pathognomonic nests of proliferating tumor cells and, occa-
sionally, a component of immune reaction to neoplastic
growth. When compared with psoriasis, our analysis of BCC
gene expression yielded a distinct set of URs (Supplementary
Tables S6 and S7). Although psoriasis URs mapped predom-
inantly to pathways and processes related to inflammation
and immune reaction (Figures 2c and 3), the URs identified in
BCC mapped predominantly to noninflammatory pathways
(Figure 4), indicating that our approach identifies URs in a
disease-specific context.

Transcriptomic profiling and identification of disease drivers
in NL

Following the proof of principle in psoriasis, we applied our
approach to the study of NL, a disease with poorly under-
stood molecular pathogenesis and paucity of effective ther-
apies. As a discovery set, we analyzed 17 histologically
typical, archival formalin-fixed, paraffin-embedded (FFPE)
lesions and 5 control tissues. Whole-transcriptome analysis
was performed, identifying 3857 DEGs, with 2471 genes
upregulated and 1386 genes downregulated in NL (log2 FC >
1, P < .05). Unsupervised clustering of NL transcriptome data
highlights global differences between NL diseased tissues and
normal skin (Figure 5). A list of all DEGs can be found in
Supplementary Table S8.

Using the NL transcriptome data, we carried out UR
analysis as described earlier, predicting a total of 565 URs at
D1, with 282 being active and 283 inactive (P < .05). At D2,
a total of 897 predicted URs were identified, with 531 being
active and 366 being inactive (P < .05). The identified URs
(Supplementary Tables S9 and S10) were matched to avail-
able drugs using TCRD and filtered as described for psoriasis
earlier. A total of 29 URs mapped to 42 drugs at D1, and 68
URs mapped to 156 unique drugs at D2 (P < .01) (Table 2).
IFNg and Jaks (Jak1, Jak2, Jak3, TYK2) were among the most
significantly activated URs at both depths and mapped to
inhibitors of Jak/STAT pathway, including baricitinib,
fedratinib, tofacitinib, upadacitinib, and ruxolitinib
(Table 2).

Given that only a subset of disease-associated URs may
be targetable with existing drugs, we set out to identify the
cellular pathways and processes that may be over-
represented within the identified URs in NL. Such infor-
mation may be relevant for future drug development beyond
the agents currently available. To assess the main signaling
pathways and processes driving the pathogenesis of NL,
pathway analysis using Kyoto Encyclopedia of Genes and
Genomes and Gene Ontology was conducted using identi-
fied URs for merged depths (D1 þ D2). A total of 1094 URs
with 592 active and 502 inactive were used (P < .05).
www.jidinnovations.org 3
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Table 1. Table of Overlapping URs and Matched Drugs in Psoriasis (P < .01)

Drug Class Drug Name(s) UR Regulation Depth

Aldose reductase inhibitors Epalrestat AKR1B1 þ 2

Antiemetics Aprepitant, fosaprepitant, fosnetupitant, rolapitant TACR1 þ 2

Antimalarials Hydroxychloroquine TLR7 þ 2

Benzodioxoles Niperotidine HRH2 þ 2

Bipyridines Olprinone PDE3B þ 2

DMARDs Abatacept CD80 þ 1,2

Expectorants Choline theophyllinate PDE3B þ 2

H2 blockers Cimetidine, ebrotidine, famotidine, nizatidine, ranitidine, roxatidine

acetate

HRH2 þ 2

HIV entry and fusion inhibitors Maraviroc CCR5 þ 2

Immunosuppressants Belatacept CD80 þ 1,2

Inodilators Pimobendan PDE3B þ 2

IL antagonists Rilonacept IL1B þ 1,2

Jak inhibitors Baricitinib, ruxolitinib, tofacitinib, upadacitinib Jak1 þ 2

Baricitinib, fedratinib, ruxolitinib, tofacitinib, upadacitinib Jak2 þ 2

Upadacitinib, tofacitinib Jak3 þ 2

Tofacitinib TYK2 þ 2

Kinase inhibitors Afatinib, dacomitinib, erlotinib, gefitinib, icotinib, lapatinib, neratinib,

osimertinib, vandetanib

EGFR þ 2

Erdafitinib, nintedanib, pazopanib, pemigatinib FGFR3 þ 2

Nintedanib FGFR4 þ 2

Avapritinib, cabozantinib, dasatinib, imatinib, lenvatinib, pazopanib,

pexidartinib, sunitinib

KIT þ 2

Bosutinib LYN þ 2

Binimetinib, selumetinib, trametinib MAP2K2 þ 2

Dasatinib SRC þ 2

mAbs Atezolizumab, avelumab, durvalumab CD274 þ 1

Cetuximab, necitumumab EGFR þ 2

Emapalumab IFNG þ 1,2

Ustekinumab IL-12A þ 1,2

Guselkumab, tildrakizumab, ustekinumab IL-12B þ 1,2

Canakinumab IL-1B þ 1,2

Ixekizumab, secukinumab IL-17A þ 1

Guselkumab, risankizumab, tildrakizumab, ustekinumab IL-23A þ 1,2

Siltuximab IL-6 þ 2

Adalimumab, certolizumab pegol, golimumab, infliximab TNF þ 1,2

Naphthalenes Tolrestat AKR1B1 þ 2

Neurokinin (NK1) Antagonists Netupitant TACR1 þ 2

PARP inhibitors Niraparib, olaparib, rucaparib, talazoparib tosylate PARP1 þ 2

Phenylpiperazines Olmutinib EGFR þ 2

Phenylpiperidines Casopitant TACR1 þ 2

Platelet inhibitors Dipyridamole PDE3B þ 2

TNF inhibitors Etanercept TNF þ 1,2

Tyrosine Kinase inhibitor, Angiogenesis

Inhibitor, VEGF inhibitor

Sorafenib KIT þ 2

Xanthines Bufylline PDE3B þ 2

Abbreviations: PARP, poly [ADP-ribose] polymerase 1; TLR7, toll-like receptor 7; UR, upstream regulator.
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Among the top enriched activated pathways, our analysis
indicated proinflammatory responses, including increased
production of IFNg and activation of JakeSTAT signaling
(Figure 6).

To better understand whether currently druggable URs
align with most prominent pathways in NL, we used our
merged set of drug-matched URs at (D1 þ D2). A total of 66
URs with 61 active and 5 inactive were used (P < .01).
Pathway analysis on drug-matched URs revealed proin-
flammatory results similar to the earlier mapping of all URs,
highlighting the positive regulation of tyrosine
JID Innovations (2024), Volume 4
phosphorylation of STAT protein and JakeSTAT signaling
pathway as the top 3 pathways most suitable for drug
repurposing (Figure 7).

Validation of NL findings on an independent cohort

To independently assess our initial discovery of relevant URs
in NL, we carried out a validation study by applying our
pipeline to whole-transcriptome data of baseline (untreated)
NL disease tissues collected as part of a phase 2 clinical trial
measuring efficacy of topical ruxolitinib treatment in NL,
reported separately (Hwang et al, 2024). Whole-



Figure 2. Identification of targetable URs involved in the pathogenesis of psoriasis. (a) Drug-matched URs (D1; P< .01). (b) Drugs matched to URs (D1; P< .1).

(c) Top 10 KEGG pathway results for overlapping drug-matched URs (D1 þ D2, P < .01). (d) Enrichment of FDA-approved biologics in psoriasis (D1; P < .01).

D1, delta 1; D2, delta 2; FDA, Food and Drug Administration; KEGG, Kyoto Encyclopedia of Genes and Genomes; UR, upstream regulator.
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transcriptomic analysis was performed on lesional and
adjacent normal (control) skin tissue before therapy (n ¼ 12
and 12, respectively). Transcriptomic analysis of 10 NL and
Figure 3. Pathway analysis of all identified URs involved in pathogenesis of pso

.05). (b) Top 10 KEGG pathway results for all overlapping URs (D1 þ D2, P < .0

Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; STAT, signal transd
11 healthy skin samples (3 samples removed from analysis as
technical outliers) identified 5914 DEGs (log2 FC > 1, P <
.05), of which 3210 were found to be upregulated, and 2704
riasis. (a) Top 10 GO pathway results for all overlapping URs (D1 þ D2, P <

5). D1, delta 1; D2, delta 2; FDA, Food and Drug Administration; GO, Gene

ucer and activator of transcription; Th17, T helper 17; UR, upstream regulator.
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Figure 4. Pathway analysis using all identified URs in BCC. (a) Top 10 GO-identified pathways (D1þD2, P < .05). (b) Top 10 KEGG-identified pathways (D1 þ
D2, P < .05). BCC, basal cell carcinoma; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; UR, upstream regulator.

AN Hughes et al.
NL Therapy Selection through Molecular Network Analysis

6

were downregulated. The list of all DEGs can be found in
Supplementary Table S11.

UR analysis on whole-transcriptome data predicted a total
of 473 URs at D1 and 705 URs at D2 (P < .05), with a final
filtered list of 21 URs mapping to 35 unique drugs at D1 and
55 URs mapping to 147 unique drugs at D2 (Table 3) (P <
.01). Combining all D1- and D2-level data resulted in 879
total URs, with 493 active and 386 inactive URs (P < .05). A
total of 58 URs (54 active and 4 inactive) were matched to
currently available drugs at P < .01.

Pathway analysis of all identified and drug-matched URs in
our validation cohort supported the findings in the discovery
cohort, with enrichment of several key proinflammatory re-
sponses, including the JakeSTAT pathway activation among
the top-ranking results (Figure 8). Statistical comparisons of
drug-matched URs identified at each depth for both NL co-
horts demonstrate significant overlap (P < .01). At D1, 15
drug-matched URs overlapped across both NL cohorts, cor-
responding to a 97.25% agreement (Cohen’s kappa ¼ 0.58;
95% confidence interval ¼ 0.67e0.85). At D2, 48 total drug-
matched URs overlapped across both NL cohorts, corre-
sponding to a 96.3% agreement (Cohen’s Kappa ¼ 0.76; 95%
confidence interval ¼ 0.67e0.85). Table 4 summarizes the
overlap of predicted URs and mapped drugs for both NL
cohorts. Among the most significantly overlapping drug-
matched URs at combined D1 and D2 depths were IFNg
and all 4 Jaks (Table 4). Assessing the top-ranked URs and
matched drugs for practical utility, including the route of
administration (systemic vs topical) and risk for adverse
events, we prioritized Jaks as potential first targets. These
findings offered a support for a clinical study of ruxolitinib in
NL, which was recently completed and reported separately
(Hwang et al, 2024).
JID Innovations (2024), Volume 4
DISCUSSION
In this study, we present and validate a drug identification
and repurposing pipeline to identify candidate targetable
drivers of disease and corresponding therapies through
application of causal reasoning using a combination of
open-access resources and transcriptomics data. Our
workflow was first tested using 2 published datasets of
psoriasis, demonstrating the ability to enrich significantly for
current FDA-approved therapies and map known psoriasis
targets and pathways, including components of the TNFa
eIL-23eTh17 axis, with established role in T-cellemediated
plaque psoriasis (Rendon and Schäkel, 2019). In addition,
our pipeline identified emerging candidates for targeted
therapy, detecting TYK2 as a driver of disease, which was
subsequently approved by the FDA. Furthermore, we iden-
tified additional URs, some of which have known roles in
inflammation, but which to date remain unexplored in
psoriasis, thus providing potential future therapeutics
targets.

Our analysis identified relevant URs in a disease-specific
context. Although we identified a highly concordant set of
URs between the 2 independent psoriasis datasets, subjecting
BCC tumor tissue expression data to the same analysis yiel-
ded a distinct set of URs that are predominantly mapped on
noninflammatory pathways and cellular processes, high-
lighting those involved in cell growth and proliferation. Our
Gene Ontology analysis did identify a minor immune
signature in BCC tissues as well, although at much lower
statistical significance than in psoriasis or NL. This could be
related to the fact that inflammatory reaction in BCC tissues is
not uncommon. However, given that our analysis leveraged
publicly available BCC expression data, we cannot determine
the proportion of BCC samples that may have included



Figure 5. Heatmap illustrating

unsupervised clustering of

differentially expressed genes

between 17 NL and 5 ctrl samples of

NL, discovery cohort. P < .01; log2
FC > 1. ctrl, control; FC, fold change;

GO, Gene Ontology; NL, necrobiosis

lipoidica.
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histologic evidence of inflammation. Given the significant
increase in the understanding of immune system molecular
interactions, it is also possible that such information may be
relatively overrepresented in currently available relational
databases, resulting in higher sensitivity for identifying such
processes.
We applied our approach to a discovery cohort of NL,
implicating IFNG activation and the JakeSTAT pathway as a
likely driver of disease pathogenesis, and identified inhibi-
tion of JakeSTAT pathway as potential therapy. Subsequent
analysis of an independent NL cohort further validated our
original findings with a reported 97.25 and 96.3% overall
www.jidinnovations.org 7
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Table 2. Predicted URs and Matched Drugs in NL
(Discovery Cohort, P < .01)

UR Regulation Depth Drug Action_Type

ADRB2 þ 2 Alprenolol, bopindolol,

bupranolol, carteolol,

carvedilol, labetalol,

levobunolol,

metipranolol, nadolol,

nebivolol, olodaterol,

oxprenolol, penbutolol,

propranolol, sotalol,

timolol

Antagonist

AGTR1 þ 2 Azilsartan medoxomil,

candesartan cilexetil,

eprosartan, fimasartan,

irbesartan, losartan,

olmesartan medoxomil,

saralasin, tasosartan,

telmisartan, valsartan

Antagonist

AKR1B1 þ 2 Epalrestat, tolrestat Inhibitor

ALK þ 2 Alectinib, brigatinib,

ceritinib, crizotinib,

lorlatinib

Inhibitor

ALOX5 þ 2 Balsalazide,

benoxaprofen,

meclofenamic acid,

mesalazine, olsalazine,

sulfasalazine, zileuton

Inhibitor

AR � 2 Danazol, drostanolone

propionate, ethylestrenol,

fluoxymesterone,

mestanolone,

methyltestosterone,

nandrolone, nandrolone

decanoate, nandrolone

phenpropionate,

oxandrolone,

oxymetholone,

stanozolol, testosterone,

testosterone cypionate,

testosterone enantate,

testosterone propionate,

testosterone undecanoate

Agonist

BTK þ 2 Acalabrutinib, ibrutinib,

zanubrutinib

Inhibitor

CCR5 þ 2 Maraviroc Antagonist

CD19 þ 2 Blinatumomab Antibody

binding

CD274 þ 2 Atezolizumab, avelumab,

durvalumab

Antibody

binding

CD4 þ 1,2 Ibalizumab Antibody

binding

CD79B þ 2 Polatuzumab vedotin Antibody

binding

CD80 þ 1,2 Abatacept, belatacept Inhibitor

CD86 þ 1,2 Abatacept, belatacept Inhibitor

CSF1R þ 1 Pazopanib, pexidartinib,

sunitinib

Inhibitor

CSF2RB þ 2 Tagraxofusp Binding agent

CTSL þ 2 Teicoplanin aglycone Inhibitor

EGFR þ 2 Afatinib, dacomitinib,

erlotinib, gefitinib,

icotinib, lapatinib,

neratinib, olmutinib,

osimertinib, vandetanib

Inhibitor

EGFR þ 2 Cetuximab,

necitumumab

Antibody

binding

ERBB3 þ 2 Tucatinib Inhibitor

(continued )

Table 2. Continued

UR Regulation Depth Drug Action_Type

ERBB4 þ 2 Afatinib, dacomitinib,

neratinib

Inhibitor

FGF23 - 1 Burosumab Antibody

binding

FGFR3 þ 2 Erdafitinib, nintedanib,

pazopanib, pemigatinib,

erdafitinib, nintedanib

Inhibitor

FYN þ 1,2 Dasatinib Inhibitor

HCK þ 1,2 Bosutinib Inhibitor

HRH2 þ 2 Cimetidine, ebrotidine,

famotidine, niperotidine,

nizatidine, ranitidine,

roxatidine acetate

Antagonist

IFNAR2 þ 2 Ropeginterferon alfa-2b Binding agent

IFNG þ 1,2 Emapalumab Antibody

binding

IGF1R þ 2 Teprotumumab Antagonist

IL-12A þ 1,2 Ustekinumab Antibody

binding

IL-12B þ 1,2 Guselkumab,

tildrakizumab,

ustekinumab

Antibody

binding

IL-1B þ 1,2 Canakinumab Antibody

binding

IL-1B þ 1,2 Rilonacept Inhibitor

IL-1R1 þ 2 Anakinra Antagonist

IL-23A þ 1,2 Guselkumab,

risankizumab,

tildrakizumab,

ustekinumab

Antibody

binding

IL-2RB þ 1,2 Daclizumab, denileukin

diftitox

Antibody

binding

IL-2RG þ 2 Daclizumab, denileukin

diftitox

Antibody

binding

IL-3RA þ 2 Tagraxofusp Binding agent

IL-4R þ 2 Dupilumab Antibody

binding

IL-5RA þ 2 Benralizumab Antibody

binding

IL-6 þ 2 Siltuximab Antibody

binding

ITGB1 þ 2 Natalizumab Antibody

binding

ITGB2 þ 1 Lifitegrast Antagonist

ITK þ 1,2 Pazopanib Inhibitor

Jak1 þ 1,2 Baricitinib, ruxolitinib,

tofacitinib, upadacitinib

Inhibitor

Jak2 þ 2 Baricitinib, fedratinib,

ruxolitinib, tofacitinib,

upadacitinib

Inhibitor

Jak3 þ 1,2 Tofacitinib, upadacitinib Inhibitor

KIT þ 1,2 Avapritinib,

cabozantinib, dasatinib,

imatinib, lenvatinib,

pazopanib, pexidartinib,

sorafenib, sunitinib

Inhibitor

LCK þ 1,2 Dasatinib, pazopanib Inhibitor

LTK þ 2 Lorlatinib Inhibitor

LYN þ 1,2 Bosutinib Inhibitor

MAP2K1 þ 2 Binimetinib, cobimetinib,

selumetinib, trametinib

Inhibitor

MAP2K2 þ 2 Binimetinib, selumetinib,

trametinib

Inhibitor

(continued )
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Table 2. Continued

UR Regulation Depth Drug Action_Type

NFKB1 þ 2 Cepharanthine Inhibitor

NTRK2 þ 2 Larotrectinib, lorlatinib Inhibitor

PARP1 þ 2 Olaparib, rucaparib,

talazoparib tosylate

Inhibitor

PDE3B þ 2 Bufylline, choline

theophyllinate,

dipyridamole, olprinone,

pimobendan

Inhibitor

PDGFRB þ 2 Dasatinib, imatinib,

nintedanib, pazopanib,

sorafenib, sunitinib

Inhibitor

PRKAA1 þ 2 Cepharanthine Inhibitor

PSMB8 þ 2 Bortezomib Inhibitor

PTGER3 � 1 Dinoprostone,

misoprostol

Agonist

PTK2 þ 2 Lorlatinib Inhibitor

PTK2B þ 2 Lorlatinib Inhibitor

RET þ 2 Alectinib, cabozantinib,

lenvatinib, sorafenib,

sunitinib, vandetanib

Inhibitor

S1PR1 � 1 Fingolimod, ozanimod Agonist

S1PR1 � 1 Siponimod Modulator

SRC þ 2 Bosutinib, dasatinib Inhibitor

SYK þ 1 Fostamatinib Inhibitor

TACR1 þ 2 Aprepitant, casopitant,

fosaprepitant, netupitant,

rolapitant

Antagonist

TLR7 þ 1,2 Hydroxychloroquine Antagonist

TLR9 þ 1,2 Hydroxychloroquine Antagonist

TNF þ 1,2 Adalimumab,

certolizumab pegol,

golimumab, infliximab

Antibody

binding

TNF þ 1,2 Etanercept Inhibitor

TNFSF11 þ 2 Denosumab Antibody

binding

TNFSF13B þ 1,2 Belimumab Antibody

binding

TXK þ 1,2 Ibrutinib Inhibitor

TYK2 þ 2 Tofacitinib Inhibitor

Abbreviations: NL, necrobiosis lipoidica; PARP1, poly [ADP-ribose]
polymerase 1; TLR, toll-like receptor; TYK2, tyrosine kinase 2; UR,
upstream regulator.
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agreement (D1 and D2 depths, respectively) of drug-
matched URs, including the regulators of JakeSTAT
pathway signaling. This supports recent anecdotal observa-
tions of the efficacy of JakeSTAT inhibitors in NL (Damsky
et al, 2020; McPhie et al, 2021; Nugent et al, 2022). Taken
together, our work in psoriasis and NL supports the utility of
our approach to identify effective candidate targets and
matching therapies for application in inflammatory cuta-
neous diseases and potentially other disorders where well-
characterized, targetable pathways may be mediating dis-
ease pathogenesis. Finally, our data indicate that archival
FFPE specimens can be used for this type of analysis because
we demonstrated high concordance of results between our
FFPE discovery set and the fresh-frozen tissue validation set.
This is particularly attractive when working with rare con-
ditions where fresh-frozen tissues may be hard to access,
Our approach has several limitations. The open-access
resources have expanding but still incomplete coverage of
gene regulation and drugetarget relationships. Despite suc-
cessful identification of 10 of 11 FDA-approved biologics in
the psoriasis validation cohort, our method did not identify
brodalumab. Although brodalumab is included in TCRD as
targeting IL-17RA, none of the 3 relational databases con-
tained information regarding the specific regulation of IL-
17RA. Consequently, IL-17R was not flagged as a UR and
was not matched to brodalumab. Other IL-17 inhibitors such
as ixekizumab and secukinumab were successfully identified
among top-ranking psoriasis results. In addition, although
TYK2 was successfully identified as a candidate for thera-
peutic intervention across both psoriasis datasets, deucra-
vacitinib, a recently approved treatment for moderate-to-
severe plaque psoriasis, was not identified because it was
not included as part of the TCRD drugetarget database at the
time of this study. Literature-based searches were necessary
in supplementing the database limitations. Finally, causal
reasoningebased UR prediction relies on the knowledge
base of well-established and documented directional gene
regulations; thus, our pipeline cannot identify targetable
drivers of potential unknown biological processes.

We have demonstrated successful identification of candi-
date druggable drivers and corresponding therapies in 2
different dermatologic diseases, including 1 rare disease. Our
method provides a unique opportunity to the study of other
rare diseases in dermatology and beyond. With improved
understanding of molecular networks, concomitant increase
in the scope and accuracy of relational databases, and
increasing numbers of available drugs with annotated
mechanism of action, the accuracy and value of our
approach are expected to improve over time.

MATERIALS AND METHODS
Sample selection and preparation

Psoriasis. Previously published psoriasis gene expression data

were obtained from the NCBI Gene Expression Omnibus database

for 2 datasets: GSE54456 (Greenberg et al, 2020; Li et al, 2014;

Liang et al, 2017; Tsoi et al, 2015), including 92 psoriasis cases and

82 healthy controls, and GSE121212 (Tsoi et al, 2019). GSE54456

contained 28 psoriasis samples and 38 healthy controls.

BCC. Previously published BCC expression data were obtained

from the NCBI Gene Expression Omnibus database for GSE58375

(Atwood et al, 2015), including 13 BCC cases and 8 healthy

controls.

NL: discovery cohort. A database search across 3 Mayo Clinic

sites (Rochester, Arizona, and Florida) identified 42 cases of active

NL and 11 unmatched control FFPE tissues. All cases were verified

for diagnosis of NL clinically by a dermatologist and histopatho-

logically by 2 board-certified dermatopathologists (SAN and DJD). A

total of 18 NL and 5 control samples produced high-quality RNA-

sequencing libraries and were included in RNA-sequencing analysis.

One sample was removed as outlier through principal component

analysis owing to low read depth (8 million reads), and 17 cases and

5 controls were utilized for downstream analyses.

NL: validation cohort. Tissue biopsies were obtained from pa-

tients in a pilot clinical trial (n ¼ 24, reported separately). Punch

biopsies (3 mm) of NL lesions and adjacent normal skin at baseline
www.jidinnovations.org 9
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Figure 6. Pathway analysis using all identified URs in NL, discovery cohort. (a) Top 10 GO-identified pathways (D1 þ D2, P < .05). (b) Top 10 KEGG-identified

pathways (D1 þ D2, P < .05). GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; NL, necrobiosis lipoidica; STAT, signal transducer and

activator of transcription; UR, upstream regulator.

AN Hughes et al.
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10
were flash frozen and utilized for RNA isolation and transcriptomic

sequencing. Two lesional samples and 1 control sample were

removed from transcriptomic analyses as outlier samples because of
Figure 7. Mapping of drug-matched URs in NL discovery cohort to biological pa

(D1 þ D2, P < .01). (b) Top 10 KEGG pathway results for drug-matched URs (D

Encyclopedia of Genes and Genomes; NL, necrobiosis lipoidica; PI3K, phosphoi

helper; UR, upstream regulator.

JID Innovations (2024), Volume 4
histologically subtle disease and inadequate sample volume. A total

of 10 lesional and 11 healthy control samples were utilized for

downstream analyses.
thways and processes. (a) Top 10 GO pathway results for drug-matched URs

1 þ D2, P < .01). Akt, protein kinase B; GO, Gene Ontology; KEGG, Kyoto

nositide 3-kinase; STAT, signal transducer and activator of transcription; Th, T



Table 3. Predicted URs and Matched Drugs in NL
(Validation Cohort, P < .01)

UR Regulation Depth Drug Action_Type

ADORA3 þ 2 Bufylline, choline
theophyllinate,
theophylline

Antagonist

ADORA3 þ 2 Fostamatinib Inhibitor

ADRA2B þ 2 Phenoxybenzamine,
phentolamine,

tolazoline, yohimbine

Antagonist

ADRB2 þ 2 Alprenolol, bopindolol,
bupranolol, carteolol,
carvedilol, labetalol,

levobunolol,
metipranolol, nadolol,
nebivolol, olodaterol,
oxprenolol, penbutolol,
propranolol, sotalol,

timolol

Antagonist

AGTR1 þ 2 Azilsartan medoxomil,
candesartan cilexetil,
eprosartan, fimasartan,
irbesartan, losartan,

olmesartan medoxomil,
saralasin, tasosartan,
telmisartan, valsartan

Antagonist

AKR1B1 þ 2 Epalrestat, tolrestat Inhibitor

ALOX5 þ 2 Balsalazide,
benoxaprofen,

meclofenamic acid,
mesalazine, olsalazine,
sulfasalazine, zileuton

Inhibitor

BTK þ 2 Acalabrutinib, ibrutinib,
zanubrutinib

Inhibitor

CCR5 þ 2 Maraviroc Antagonist

CD19 þ 1,2 Blinatumomab Antibody
binding

CD274 þ 1,2 Atezolizumab,
avelumab, durvalumab

Antibody
binding

CD4 þ 1,2 Ibalizumab Antibody
binding

CD79B þ 2 Polatuzumab vedotin Antibody
binding

CD80 þ 1,2 Abatacept, belatacept Inhibitor

CD86 þ 1,2 Abatacept, belatacept Inhibitor

CHRM4 - 1 Aclatonium Agonist

CSF2RB þ 2 Tagraxofusp Binding
agent

CTSL þ 1,2 Teicoplanin aglycone Inhibitor

EGFR þ 2 Afatinib, dacomitinib,
erlotinib, gefitinib,
icotinib, lapatinib,
neratinib, olmutinib,

osimertinib, vandetanib

Inhibitor

EGFR þ 2 Cetuximab,
necitumumab

Antibody
binding

ERBB4 þ 2 Afatinib, dacomitinib,
neratinib

Inhibitor

FGFR3 þ 2 Erdafitinib, nintedanib,
pazopanib, pemigatinib

Inhibitor

FGFR4 þ 2 Erdafitinib, nintedanib Inhibitor

HRH2 þ 2 Cimetidine, ebrotidine,
famotidine,

niperotidine, nizatidine,
ranitidine, roxatidine

acetate

Antagonist

(continued )

Table 3. Continued

UR Regulation Depth Drug Action_Type

IFNG þ 1,2 Emapalumab Antibody
binding

IL-12A þ 1,2 Ustekinumab Antibody
binding

IL-12B þ 1,2 Guselkumab,
tildrakizumab,
ustekinumab

Antibody
binding

IL-1B þ 1,2 Canakinumab Antibody
binding

IL-1B þ 1,2 Rilonacept Inhibitor

IL-2RB þ 1,2 Daclizumab, denileukin
diftitox

Antibody
binding

IL-2RG þ 2 Daclizumab, denileukin
diftitox

Antibody
binding

IL-3RA þ 2 Tagraxofusp Binding
agent

IL-4R þ 2 Dupilumab Antibody
binding

IL-5RA þ 2 Benralizumab Antibody
binding

IL-6ST þ 2 Sarilumab, tocilizumab Antibody
binding

ITGB1 þ 2 Natalizumab Antibody
binding

ITK þ 1,2 Pazopanib Inhibitor

Jak1 þ 2 Baricitinib, ruxolitinib,
tofacitinib, upadacitinib

Inhibitor

Jak2 þ 2 Baricitinib, fedratinib,
ruxolitinib, tofacitinib,

upadacitinib

Inhibitor

Jak3 þ 2 Tofacitinib, upadacitinib Inhibitor

KDR þ 2 Apatinib, axitinib,
cabozantinib,

erdafitinib, lenvatinib,
nintedanib, pazopanib,
regorafenib, sorafenib,
sunitinib, tivozanib,

vandetanib

Inhibitor

KDR þ 2 Ramucirumab Antibody
binding

KIT þ 2 Avapritinib,
cabozantinib, dasatinib,
imatinib, lenvatinib,

pazopanib,
pexidartinib, sorafenib,

sunitinib

Inhibitor

LCK þ 1,2 Dasatinib, pazopanib Inhibitor

LYN þ 1,2 Bosutinib Inhibitor

MAP2K1 þ 2 Binimetinib,
cobimetinib,

selumetinib, trametinib

Inhibitor

MAP2K2 þ 2 Binimetinib,
selumetinib, trametinib

Inhibitor

NFKB1 þ 2 Cepharanthine Inhibitor

P2RY12 þ 2 Cangrelor, clopidogrel,
prasugrel, ticlopidine

Antagonist

PARP1 þ 2 Niraparib, olaparib,
rucaparib, talazoparib

tosylate

Inhibitor

PDE3B þ 2 Bufylline, choline
theophyllinate,
dipyridamole,

olprinone, pimobendan

Inhibitor

PTK2 þ 2 Lorlatinib Inhibitor

(continued )
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Table 3. Continued

UR Regulation Depth Drug Action_Type

RARG � 1 Acitretin, adapalene,
alitretinoin, tazarotene,
tretinoin, trifarotene

Agonist

RXRG � 2 Alitretinoin, bexarotene,
etretinate

Agonist

SRC þ 2 Bosutinib, dasatinib Inhibitor

SYK þ 1 Fostamatinib Inhibitor

TACR1 þ 2 Aprepitant, casopitant,
fosaprepitant,

netupitant, rolapitant

Antagonist

THRA � 1,2 Dextrothyroxine,
liothyronine

Agonist

TLR7 þ 1,2 Hydroxychloroquine Antagonist

TLR9 þ 1,2 Hydroxychloroquine Antagonist

TNF þ 1,2 Adalimumab,
certolizumab pegol,

golimumab, infliximab

Antibody
binding

TNF þ 1,2 Etanercept Inhibitor

TYK2 þ 2 Tofacitinib Inhibitor

Abbreviations: NL, necrobiosis lipoidica; PARP1, poly [ADP-ribose]
polymerase 1; TLR, toll-like receptor; TYK2, tyrosine kinase 2; UR,
upstream regulator.

AN Hughes et al.
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RNA library preparation and sequencing

NL. For the NL discovery cohort samples, paraffin was removed

using Citrisolv, and RNA was isolated from 5 � 10 mm FFPE tissue

sections, using the QIAcube instrument and Qiagen miRNeasy FFPE

Kit, following manufacturer’s instructions. RNA-sequencing libraries

were constructed from 100 ng of quality-controlled RNA (Agilent

Tapestation) using the Illumina TruSeq RNA Access kit. The initial

library construction used 17 cycles of PCR amplification after liga-

tion of full-length sequencing adaptors, and exon enrichment was

performed as 4-plex reactions with 200 ng of each respective library.

All other steps followed the manufacturer’s instructions. Each pool of

4 enriched RNA-sequencing libraries were sequenced on a single

Illumina HiSeq4000 flow cell using an 82 � 82 paired end read

format, and FASTQ files were generated using bcl2fastq, version

2.18.0.12 (Illumina). Fresh-frozen tissues from the NL validation

cohort were processed, sequenced, and analyzed through standard

RNA pipeline (Kalari et al, 2014).

Transcriptomic analysis

Psoriasis data analysis. The entire transcriptome profiling in-

formation for GSE54456, including up and downregulated genes,

was accessed from previously published, publicly available data (Li

et al, 2014). A total of 21,510 mapped transcripts were used in the

UR analysis, including 3577 DEGs (1049 upregulated and 2538

downregulated) (log2 FC > 1, P < 10E-6). For GSE121212, we ob-

tained the raw mRNA expression data from NCBI and identified

DEGs through DESeq2 R package (Tsoi et al, 2019). A total of

31,364 mapped transcripts were included in the UR analysis,

including 4954 DEGs (1794 upregulated and 3160 downregulated)

(log2 FC > 1, P < 10E-6).

BCC data analysis. The counts data for this study were acquired

through the recount2 package in R (Collado-Torres et al, 2017),

leveraging its extensive repository housing >70,000 uniformly pro-

cessed human RNA-sequencing samples sourced from The Cancer
JID Innovations (2024), Volume 4
Genome Atlas, Sequence Read Archive, and Genotype-Tissue

Expression datasets. After downloading and loading the Ranged-

SummarizedExperiment (rse) object into R, the counts data were

accessed using the command assays(rse)$counts. This approach

enabled the retrieval of comprehensive coverage count matrices

essential for downstream analysis in the study. A total of 1760 DEGs

(1164 upregulated and 596 downregulated) were identified through

DESeq2 analysis (log2 FC > 1, adjusted P < .05). One normal

sample was removed as an outlier on the basis of principal

component analysis.

NL data analysis. Whole-transcriptome analysis was performed,

and reads were aligned to the NCBI Build 38 reference genome

(hg38) using MAPRSeq 3.0, with an average mapping rate of 93.59�
2.47% (mean � SD) in the discovery cohort and 94.02 � 1.60%

(mean � SD) in the validation cohort. Gene expression levels were

obtained for 40,760 genes/transcripts annotated in the RefSeq

database in the discovery cohort and 38,645 in the validation

cohort. Obtained gene expression levels were used as input for

downstream UR analysis. For both NL cohorts, differential gene

expression (DEG) analysis was conducted using DESeq2 R package

(Love et al, 2014), with criteria for significant DEGs assigned as log2
FC > 1 and P < .05 after adjusting for false discovery rate.

UR analysis and drug matching

For both psoriasis and NL cohorts, whole-transcriptome profiles

were assigned a trinary code to indicate directionality on the basis of

differential gene expression analysis (þ1, 0, �1 representing upre-

gulated, no change, and downregulated, respectively). Annotated

directional gene regulation relationships (in the format of .sif files)

from 3 publicly available gene regulation databases/sources—

Omnipath (OmnipathR_2.0.0) (Türei et al, 2016), SignoR (version

2.0) (Perfetto et al, 2016), and CausalR (Bradley and Barrett, 2017)—

were utilized in UR prediction through application of the CausalR

(CausalR_1.22.0) software package (Bradley and Barrett, 2017). Two

depths of predicted URs were considered for downstream analysis:

D1, which utilizes direct gene regulation associations with the

shortest path length to inform UR prediction, and D2, including a

broader network of indirect associations.

Meta analysis using metaRNASeq_1.0.3 was performed on UR

data from all 3 database outputs at each depth to assess overall

significance (Rau et al, 2014). The resulting D1 and D2 UR lists were

filtered for significance (Fisher’s combined P < .01) and drug

matched using MySQL Workbench (https://www.mysql.com/

products/workbench/) and the TCRD (version 6.7.0) (Oprea et al,

2018; Sheils et al, 2021). Drug matches were manually filtered for

accuracy through comparisons of UR activation state and drug ac-

tivity, and resulting erroneous matches with no clinical utility were

removed (ie, all null drug activities, activated UR mapped to agonist,

inactive UR mapped to antagonist, etc). Cohen’s Kappa statistical

test was used to assess agreement across psoriasis and NL cohorts for

drug-matched URs identified at each depth of the analysis.

Pathway analysis

Gene function and pathway enrichment analyses based on Gene

Ontology terms and Kyoto Encyclopedia of Genes and Genomes

pathway were performed using DAVID (Huang da et al, 2009) to

identify significantly enriched pathways associated with active URs

for D1- and D2-merged results on all or drug-matched URs. For

psoriasis, pathway analysis was performed on the overlap of all URs

(Fisher’s combined P < .05) and drug-matched URs across both

https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/


Figure 8. Pathway analysis of all identified and drug-matched upstream regulators involved in pathogenesis of NL, validation cohort. (a) Top 10 GO pathway

results for all identified URs (D1 þ D2, P < .05). (b) Top 10 GO pathway results for drug-matched URs (D1 þ D2, P < .01). (c) Top 10 KEGG pathway results for

all identified URs (D1 þ D2, P < .05). (d) Top 10 KEGG pathway results for drug-matched URs (D1 þ D2, P < .01). Akt, protein kinase B; GO, Gene Ontology;

KEGG, Kyoto Encyclopedia of Genes and Genomes; NL, necrobiosis lipoidica; PI3K, phosphoinositide 3-kinase; STAT, signal transducer and activator of

transcription; Th, T helper; UR, upstream regulator.
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datasets (Fisher’s combined P < .01). For BCC, pathway analysis was

performed on the overlap of all URs (Fisher’s combined P < .05). For

NL cohorts, data were analyzed for each dataset separately. Pathway

analysis was performed on all URs (Fisher’s combined P < .05) and

drug-matched URs identified at combined depths (Fisher’s combined

P < .01).
Enrichment calculations

To assemble the list of FDA-approved psoriasis drugs for enrichment

calculations, we performed searches on the FDA database. Most

drugs were exported from FDALabel by selecting Human RX as la-

beling types as well as by selecting simple search, psoriasis, and

indications and usage. The resulting drug list was deduplicated and
www.jidinnovations.org 13
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Table 4. Table of Overlapping URs and Matched
Drugs in NL (P < .01)

UR Regulation Depth Drug Action_Type

ADRB2 þ 2 Alprenolol, bopindolol,
bupranolol, carteolol,
carvedilol, labetalol,

levobunolol,
metipranolol, nadolol,
nebivolol, olodaterol,
oxprenolol, penbutolol,
propranolol, sotalol,

timolol

Antagonist

AGTR1 þ 2 Azilsartan medoxomil,
candesartan cilexetil,
eprosartan, fimasartan,
irbesartan, losartan,

olmesartan medoxomil,
saralasin, tasosartan,
telmisartan, valsartan

Antagonist

AKR1B1 þ 2 Epalrestat, tolrestat Inhibitor

ALOX5 þ 2 Balsalazide,
benoxaprofen,

meclofenamic acid,
mesalazine, olsalazine,
sulfasalazine, zileuton

Inhibitor

BTK þ 2 Acalabrutinib, ibrutinib,
zanubrutinib

Inhibitor

CCR5 þ 2 Maraviroc Antagonist

CD19 þ 2 Blinatumomab Antibody
binding

CD274 þ 2 Atezolizumab,
avelumab, durvalumab

Antibody
binding

CD4 þ 1,2 Ibalizumab Antibody
binding

CD79B þ 2 Polatuzumab vedotin Antibody
binding

CD80 þ 1,2 Abatacept, belatacept Inhibitor

CD86 þ 1,2 Abatacept, belatacept Inhibitor

CSF2RB þ 2 Tagraxofusp Binding
agent

CTSL þ 2 Teicoplanin aglycone Inhibitor

EGFR þ 2 Afatinib, dacomitinib,
erlotinib, gefitinib,
icotinib, lapatinib,
neratinib, olmutinib,

osimertinib, vandetanib

Inhibitor

EGFR þ 2 Cetuximab,
necitumumab

Antibody
binding

ERBB4 þ 2 Afatinib, dacomitinib,
neratinib

Inhibitor

FGFR3 þ 2 Erdafitinib, nintedanib,
pazopanib, pemigatinib

Inhibitor

FGFR4 þ 2 Erdafitinib, nintedanib Inhibitor

HRH2 þ 2 Cimetidine, ebrotidine,
famotidine, niperotidine,
nizatidine, ranitidine,
roxatidine acetate

Antagonist

IFNG þ 1,2 Emapalumab Antibody
binding

IL-12A þ 1,2 Ustekinumab Antibody
binding

IL-12B þ 1,2 Guselkumab,
tildrakizumab,
ustekinumab

Antibody
binding

IL-1B þ 1,2 Canakinumab Antibody
binding

IL-1B þ 1,2 Rilonacept Inhibitor

(continued )

Table 4. Continued

UR Regulation Depth Drug Action_Type

IL-2RB þ 1,2 Daclizumab, denileukin
diftitox

Antibody
binding

IL-2RG þ 2 Daclizumab, denileukin
diftitox

Antibody
binding

IL-3RA þ 2 Tagraxofusp Binding
agent

IL-4R þ 2 Dupilumab Antibody
binding

IL-5RA þ 2 Benralizumab Antibody
binding

ITGB1 þ 2 Natalizumab Antibody
binding

ITK þ 1,2 Pazopanib Inhibitor

Jak1 þ 2 Baricitinib, ruxolitinib,
tofacitinib, upadacitinib

Inhibitor

Jak2 þ 2 Baricitinib, fedratinib,
ruxolitinib, tofacitinib,

upadacitinib

Inhibitor

Jak3 þ 2 Tofacitinib, upadacitinib Inhibitor

KIT þ 2 Avapritinib,
cabozantinib, dasatinib,
imatinib, lenvatinib,

pazopanib, pexidartinib,
sorafenib, sunitinib

Inhibitor

LCK þ 1,2 Dasatinib, pazopanib Inhibitor

LYN þ 1,2 Bosutinib Inhibitor

MAP2K1 þ 2 Binimetinib,
cobimetinib,

selumetinib, trametinib

Inhibitor

MAP2K2 þ 2 Binimetinib,
selumetinib, trametinib

Inhibitor

NFKB1 þ 2 Cepharanthine Inhibitor

PARP1 þ 2 Niraparib, olaparib,
rucaparib, talazoparib

tosylate

Inhibitor

PDE3B þ 2 Bufylline, choline
theophyllinate,

dipyridamole, olprinone,
pimobendan

Inhibitor

PTK2 þ 2 Lorlatinib Inhibitor

SRC þ 2 Bosutinib, dasatinib Inhibitor

SYK þ 1 Fostamatinib Inhibitor

TACR1 þ 2 Aprepitant, casopitant,
fosaprepitant, netupitant,

rolapitant

Antagonist

TLR7 þ 1,2 Hydroxychloroquine Antagonist

TLR9 þ 1,2 Hydroxychloroquine Antagonist

TNF þ 1,2 Adalimumab,
certolizumab pegol,

golimumab, infliximab

Antibody
binding

TNF þ 1,2 Etanercept Inhibitor

TYK2 þ 2 Tofacitinib Inhibitor

Abbreviations: NL, necrobiosis lipoidica; PARP1, poly [ADP-ribose]
polymerase 1; TLR, toll-like receptor; TYK2, tyrosine kinase 2; UR,
upstream regulator.
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corrected for erroneous matches. All drugs with general FDA

approval and all drug combinations were excluded. Any additional

FDA-approved drugs from psoriasis.org were included, resulting in a

final list of 30 FDA-approved drugs for treatment of psoriasis at the

time of the study. For biologics with defined mechanism of action,

we focused this list to include a total of 11 approved biologics. All

http://psoriasis.org
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filtered drug matches identified for psoriasis cohorts at each depth

(Fisher’s combined P < .01) were compared with this list of biologics

to assess overall enrichment through application of the Fisher’s exact

statistical test.
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