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Purpose: Pulmonary emphysema is the pathological prototype of chronic obstructive pulmonary 

disease and is also associated with other lung diseases. We considered that observation with 

different approaches may provide new insights for the pathogenesis of emphysema.

Patients and methods: We reviewed tissue blocks of the lungs of 25 cases with/without emphy-

sema and applied a three-dimensional observation method to the blocks. Based on the three-dimen-

sional characteristics of the alveolar structure, we considered one face of the alveolar polyhedron 

as a structural unit of alveoli and called it a framework unit (FU). We categorized FUs based on 

their morphological characteristics and counted their number to evaluate the destructive changes 

in alveoli. We also evaluated the number and the area of pores of Kohn in FUs. We performed 

linear regression analysis to estimate the effect of these data on pulmonary function tests.

Results: In multivariable regression analysis, a decrease in the number of FUs without an 

alveolar wall led to a significant decrease in the diffusing capacity of the lung for carbon 

monoxide (DLCO) and DLCO per unit alveolar volume, and an increase in the area of pores 

of Kohn had a significant effect on an increase in residual capacity.

Conclusion: A breakdown in the lung framework and an increase in pores of Kohn are associ-

ated with a decrease in DLCO and DLCO per unit alveolar volume with/without emphysema.

Keywords: lung, pathology, COPD, pulmonary function, pathogenesis

Introduction
Pulmonary emphysema is characterized by a decrease in gas exchange area of 

the capillary bed due to destruction of alveoli and loss of lung tissue. Pulmonary 

emphysema is the pathological prototype of chronic obstructive pulmonary disease 

(COPD) and is also associated with other lung diseases.1–6 Because COPD is a 

heavy burden and the leading cause of death worldwide, many studies have focused 

on emphysema and attempted to clarify its pathogenesis and morphogenesis with 

molecular, pathological, and radiological methods.7–12

However, there are some uncertain mechanisms of COPD, including negative airflow 

limitations in emphysema and the effect of abnormal diffusing capacity in ex-smokers with-

out emphysema.13,14 The exact pathogenesis of the effect of smoking related to emphysema 

is not fully understood. We consider that microscopic observation with different approaches 

may provide new insight on the understanding of the pathogenesis of emphysema. We 

hypothesize that there are microstructural changes in the early stage of emphysema. 

Various lung studies have been performed using observation by a scanning electronic 

microscope.15–17 In cases with emphysema, Nagai et al reported an increase in pores of 

Kohn, which are pathways for collateral ventilation between two adjacent alveoli.16,18,19
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Recent advances in technology allows three-dimensional 

(3D) analysis using a confocal microscope or digital recon-

struction of pathological images.20 Onozato et al studied lung 

adenocarcinoma with digitally reconstructed 3D imaging and 

found that floating micropapillary structures are connected to 

the base of papillae with a fibrovascular core.21 We recently 

used a method for 3D observation of lung cancer22 and 

applied it in the present study to identify small morphological 

change in pulmonary emphysema.

Patients and methods
Setting and cases
Patients who had undergone lobectomy from 2013 to 2014 at 

our institution and had multiple blocks for background lung 

parenchyma were reviewed sequentially. One formalin-fixed 

paraffin-embedded block of each case was selected from the 

area of histologically unremarkable lung parenchyma with 

the observation of hematoxylin and eosin slides (Figure 1A). 

All lung tissues were similarly inflated according to the 

Department of Pathology standard operating procedures 

manual, fixed with 10% formaldehyde, and embedded into 

paraffin blocks. Cases with little unremarkable area and/or 

unsuccessful inflation were not selected. Ten cases with and 

15 cases without pathological emphysema were included. 

Pathological centriacinar emphysema in this study was con-

firmed by a pulmonary pathologist who was blinded to the 

clinical information. This study was approved by the Nagasaki 

University Hospital Clinical Research Ethic Committee 

(approval number: 15022342). The research protocol of this 

study was disclosed in the website of Clinical Research Center 

of Nagasaki University Hospital. The ethics committee does 

not require patient consent as any personal information that 

could identify the patient has been removed.

Thick sections of the lung
The selected blocks were warmed in a water bath at 50°C 

for 1 minute and cut in 300 μm thick sections with a slid-

ing microtome (Microm International GmbH; Walldorf, 

Germany). The sections were placed into a thin plastic net 

insoluble for xylene. The sections were warmed in an incuba-

tor at 60°C for 30 minutes, deparaffinized with xylene (three 

baths, for 30 minutes), and hydrated through an ethanol gradi-

ent. The sections were stained with hematoxylin and eosin, 

dehydrated with stepwise baths of alcohol, and cleared with 

xylene. During the whole staining process, tissues were kept 

inside a plastic net. The sections were then removed from the 

net, placed on a glass slide, and mounted with a cover slip.

Five low-power fields (×40 magnification, 2.4×1.6 mm) 

of unremarkable lung parenchyma for each thick section 

were randomly selected and images were obtained with a 

microscope (BX51; Olympus, Tokyo, Japan) and a digital 

camera (DP70; Olympus, Tokyo, Japan) (Figure 1B–F).

Through observation of thick sections, we found that 

the structure of alveoli was a polyhedral complex made 

up with edges of fibrous tissue and faces of alveolar mem-

brane (Figure  1B and C, Videos S1–S2). We called the 

polygonal face of the polyhedron a framework unit (FU) 

(Figure  1D–F, Videos  S1–S2), which is described in the 

“Results” section. We categorized FUs into four types 

based on their morphological characteristics: FUs without 

an alveolar wall (Figure 1D, asterisk), FUs with frag-

ments of an alveolar wall (Figure 1E), FUs with an intact 

alveolar wall with pores (Figure 1D, a single dagger, and 

Figure 1F), and FUs with an intact alveolar wall without 

pores (Figure 1D, a double dagger). The numbers of each 

type of FUs were counted in a randomly selected low-power 

field of each slide.

For those FUs with an intact alveolar wall with pores 

and those without pores of Kohn, a series of multilevel 

images were obtained at ×100 magnification. Those images 

were reconstructed to z-stack images with ImageJ (National 

Institutes of Health [NIH], Bethesda, MD, USA). Among 

FUs with an intact alveolar wall with pores, we counted the 

number of pores of Kohn, and measured the area of pores 

of Kohn in each FU. The area of each pore and summed 

area of all pores observed in one FU were evaluated as 

the percentage area of the FU. These percentage area data 

were transformed by natural logarithm to obtain a normal 

distribution.

If appropriate, measurement of FUs and pores of Kohn 

were performed two to five times in different low-power fields 

for each case. The mean values of the data were considered 

representative values of each case in statistical analysis.

Clinical data
We collected clinical data (age, sex, smoking history, the 

number of cigarettes smoked and dissected location of the 

lung), chest computed tomography (CT) images, and pul-

monary function tests (vital capacity, forced vital capacity 

[FVC], forced expiratory volume in 1 second [FEV
1
], func-

tional residual capacity, residual volume [RV], total lung 

capacity, diffusing capacity of the lung for carbon monoxide 

[DLCO], DLCO per unit alveolar volume [DLCO/VA], and 

closing volume [CV]) prior to lobectomy. For the purpose 

of statistical analysis, the dissected location of the lung 

was categorized into two groups, upper (including upper 

and middle lobes) and lower. The presence of emphysema 

was evaluated with chest CT imaging (CT emphysema) 
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and was defined as $5% low attenuation area.3,14,23–25 The 

judgment of the presence of emphysema was confirmed by 

the consensus of the two pulmonary experts. All pulmonary 

function tests, except for FEV
1
/FVC and CV, were expressed 

as % predicted; FEV
1
/FVC and CV were expressed as 

% observed and liters, respectively. Severity of airflow 

limitation was evaluated based on the COPD classification 

of the Global initiative for chronic Obstructive Lung 

Disease.2 For the purpose of statistical analysis, severity of 

airflow limitation was categorized into two groups, negative 

(no  airflow  limitation) and positive (mild, moderate, and 

severe airflow limitation).

Figure 1 Images (H&E) of the lung showing 4 μm thick (A) and 300 μm thick (B–F) sections at ×40 magnification (A and B) and ×100 magnification (C–F).
Notes: The polyhedral complex of alveoli is composed of a framework (C, arrows) and an alveolar wall. We designated the face of the alveolar polyhedron as the FU 
(D–F, white dashed lines). We categorized FUs into four types based on their morphological characteristics: 1) FUs without an alveolar wall (white dashed lines with an 
asterisk in D), 2) FUs with fragments of an alveolar wall (white dashed lines in E), 3) FUs with an intact alveolar wall with pores of Kohn (white dashed lines with a single 
dagger in D and white dashed lines in F), and 4) FUs with an intact alveolar wall without pores of Kohn (white dashed lines with a double dagger in D). The framework is 
thicker than the cut edges of the alveolar wall (E, arrowheads). The area of each pore and the sum of the area of all pores seen in one FU were evaluated by the percentage 
area of the FU (F, solid black line tracing and arrows). The black and white scale bars indicate 200 μm.
Abbreviations: FU, framework unit; H&E, hematoxylin and eosin.
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Statistical analysis
Variables were described with frequencies for categorical 

data and with median and interquartile range for quantita-

tive data. Comparisons of clinical parameters, pulmonary 

function tests, and findings in thick sections between the 

groups that were negative or positive for pathological or 

CT emphysema was performed using the Fisher’s exact test 

for categorical variables and the Wilcoxon’s rank-sum test 

for quantitative variables. Linear regression analysis was 

used to estimate the effect of 3D findings in thick sections 

on pulmonary function tests. The variables with significant 

effect on pulmonary function tests in bivariable regression 

analysis were further assessed in multivariable analysis, 

including age, the number of cigarettes smoked, pathological 

emphysema, and CT emphysema as adjustment factors. The 

multivariable model with significant P-value of F test and 

the smallest corrected Akaike information criterion was 

selected for each pulmonary function as the best model. We 

reported parameter estimates and 95% confidential interval 

of variable in the models. JMP Pro 11.2.0 (SAS, Cary, NC, 

USA) was used for statistical analysis. Two-tailed P-values 

,0.05 were considered significant.

Results
Characteristics of the cases
The mean of 4.3 low-power fields (107 in total) were available 

from 25 cases to observe and measure FUs and pores of Kohn. 

The numbers of the four types of FUs in total were 1,723 for 

FUs without an alveolar wall, 169 for FUs with fragments of 

an alveolar wall, 491 for FUs with an intact alveolar wall with 

pores, and 20 for FUs with an intact alveolar wall without pores. 

Pulmonary function tests were available in 23 of the 25 cases.

The characteristics of cases are shown in Table 1. 

According to COPD classification, 14 cases had no airflow 

limitation, while nine were considered abnormal; seven and 

two cases showed mild and moderate airflow limitation, 

respectively. No cases showed severe airflow limitation. 

When the negative and positive groups for emphysema were 

compared, pathological emphysema was associated with 

smokers, the higher number of cigarettes smoked, a lower 

Table 1 Characteristics of the cases

Characteristic Pathological emphysema P-value* CT emphysema P-value*

Negative n=15 Positive n=10 Negative n=17 Positive n=8

Age, years 65.0 (54.0, 70.0) 66.0 (60.8, 76.3) 0.345 66.0 (57.5, 75.5) 63.0 (60.3, 69.0) 0.382
Sex

Male 6 8 0.099 8 6 0.234
Female 9 2 9 2

Smoking history
Nonsmoker 14 5 0.023 13 6 1
Smoker 1 5 4 2

Number of cigarettes 
smoked, pack-year

0.0 (0.0, 0.0) 15.0 (0.0, 50.6) 0.022 0.0 (0.0, 15.0) 0.0 (0.0, 27.0) 0.938

Dissected lobe
Upper lobe 11 8 1 17 8 0.129
Lower lobe 4 2 6 0

Pulmonary function test n=13 n=10 n=15 n=8
VC, % 113.1 (98.4, 123.6) 105.3 (101.1, 124.5) 0.620 114.3 (105.9, 131.6) 103.6 (98.6, 106.6) 0.049
FVC, % 111.1 (96.4, 123.8) 104.8 (98.5, 123.9) 0.577 111.6 (106.5, 132.8) 102.3 (94.2, 105.9) 0.039
FEV1, % 108.2 (91.7, 132.9) 93.1 (81.3, 137.3) 0.292 118.1 (94.5, 145.7) 91.4 (77.6, 101.3) 0.008
FEV1/FVC, % 79.4 (75.3, 82.3) 68.6 (62.2, 73.1) 0.002 78.4 (69.6, 81.1) 67.8 (61.9, 75.1) 0.071
FRC, % 113.1 (105.7, 136.8) 98.2 (82.9, 117.0) 0.063 113.1 (105.6, 132.4) 91.2 (83.6, 110.7) 0.066
RV, % 105.7 (91.1, 108.8) 109.0 (97.7, 121.7) 0.352 105.7 (89.4, 118.6) 108.9 (95.1, 111.6) 0.651
TLC, % 107.0 (95.8, 117.8) 102.8 (97.2, 109.8) 0.664 107.8 (102.5, 121.1) 98.2 (96.9, 98.2) 0.100
DLCO, % 90.6 (80.7, 97.8) 68.9 (60.4, 80.7) 0.006 90.5 (76.6, 94.3) 65.8 (59.8, 77.0) 0.008
DLCO/VA, % 93.2 (81.9, 102.4) 69.3 (53.3, 77.8) 0.002 84.9 (75.7, 97.1) 64.0 (48.4, 81.0) 0.011
CV, L 0.41 (0.24, 0.64) 0.74 (0.54, 0.94) 0.041 0.41 (0.21, 0.71) 0.67 (0.55, 0.79) 0.081

Airflow limitation
Negative 11 3 0.013 10 4 0.657
Positive 2 7 5 4

Notes: The quantitative data were expressed as median (IQR). *Fisher’s exact test and Wilcoxon’s rank-sum test were performed for categorical and quantitative variables, 
respectively.
Abbreviations: CT, computed tomography; CV, closing volume; DLCO, diffusing capacity of the lung for carbon monoxide; DLCO/VA, DLCO per unit alveolar volume; 
FEV1, forced expiratory volume in 1 second; FRC, functional residual volume; FVC, forced vital capacity; IQR, interquartile range; RV, residual volume; TLC, total lung capacity; 
VC, vital capacity.
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FEV
1
/FVC, DLCO, and DLCO/VA, higher CV, and airflow 

limitation. On the other hand, CT emphysema was associated 

with a lower vital capacity, FVC, FEV
1
, functional residual 

capacity, DLCO, and DLCO/VA.

Structure of alveoli
Observation of thick sections showed that the structure of 

alveoli was a polyhedral complex made up with edges of 

fibrous tissue and faces of alveolar membrane (Figure 1B 

and C, Video S1). The polyhedral complex of alveoli were 

arranged in a fractal manner throughout the lung (Figure 1B). 

In this study, one face of the alveolar polyhedron was con-

sidered as one FU (Figure 1D).

Pulmonary function
When compared between negative and positive groups for 

emphysema, the number of FUs without alveolar wall was sig-

nificantly lower in cases positive for pathological emphysema 

(P=0.017, Table 2), and the area percentage of one pore and 

all pores were significantly higher in the cases positive for CT 

emphysema (P=0.012 and P=0.014, respectively, Table 2).

In bivariable regression analysis, the number of FUs 

without an alveolar wall, the number of pores in FUs, the 

percentage area of one pore, and the percentage area of all 

pores had a significant effect on DLCO, DLCO/VA, and/or 

RV (bivariable, Tables 3–5). In multivariable regression 

analysis, the number of FUs without an alveolar wall had a 

positive effect on DLCO (P=0.013, multivariable, Table 3) 

and DLCO/VA (P=0.001, multivariable, Table 4), and the 

percentage area of all pores had a positive effect on RV 

(P=0.017, multivariable, Table 5).

Discussion
In this study, we considered alveolar structure as a polyhedral 

complex according to 3D findings in thick sections. We hypoth-

esized that the faces of the polyhedron are minimal microscopic 

units of the lung. We found that a smaller number of FUs 

without an alveolar wall and a larger area of pores of Kohn 

were significantly associated with emphysematous changes in 

pulmonary function tests (lower DLCO, lower DLCO/VA, and 

larger RV, Tables 3–5). Based on these findings, we hypoth-

esized that lower diffusing capacity reflects lung tissue loss as 

a result of breakdown and merging of framework structure and 

alveoli (observed as a decrease in the number of FUs without 

an alveolar wall in this study). Another likely hypothesis is that 

an increase in pores of Kohn decreases the gas exchange area, 

capillary bed, and elastic recoil, which can increase physical 

vulnerability to maintain lung architecture.

Table 2 Comparison of FUs and pores of Kohn between groups with and without emphysema

Variables Pathological emphysema P-value* CT emphysema P-value*

Negative n=15 Positive n=10 Negative n=17 Positive n=8

Number of FUs without an alveolar wall 16.4 (14.4, 22.8) 13.3 (7.7, 17.0) 0.017 16.0 (13.7, 21.4) 12.9 (7.0, 20.6) 0.180
Number of FUs with fragments of an alveolar wall 1.0 (0.5, 1.6) 1.3 (0.3, 3.7) 0.760 1.0 (0.6, 1.8) 0.4 (0.0, 4.0) 0.414
Number of FUs with an intact alveolar wall with pores 5.2 (3.6, 5.8) 4.1 (3.1, 5.3) 0.317 4.3 (3.8, 5.8) 4.3 (2.4, 5.6) 0.540
Number of FUs with an intact alveolar wall without pores 0.0 (0.0, 0.3) 0.0 (0.0, 0.5) 0.927 0.0 (0.0, 0.2) 0.0 (0.0, 0.6) 0.974
Number of pores in FUs 5.0 (3.7, 7.5) 8.0 (4.6, 10.4) 0.088 5.7 (4.2, 7.9) 6.4 (3.4, 12.0) 0.600
Area percentage of one pore, not log-transformed, % 0.5 (0.2, 0.7) 0.4 (0.2, 1.0) 0.912 0.3 (0.2, 0.5) 0.8 (0.5, 1.1) 0.012
Area percentage of all pores, not log-transformed, % 1.6 (0.9, 3.2) 2.2 (0.9, 7.6) 0.471 1.2 (0.9, 2.5) 3.9 (2.1, 9.7) 0.014

Notes: The quantitative data were expressed as median (IQR). *Wilcoxon’s rank-sum test was performed.
Abbreviations: CT, computed tomography; FU, framework unit; IQR, interquartile range.

Table 3 Bivariable and multivariable regression analysis on DLCO

Variables Bivariable P-value Multivariable P-value

Estimate (95% CI) Estimate (95% CI)

Number of FUs without an alveolar wall 1.6 (0.4, 2.8) 0.010 1.3 (0.3, 2.4) 0.013
Age, years −0.3 (−1.1, 0.6) 0.494
Number of cigarettes smoked, pack-year 0.1 (−0.1, 0.4) 0.312 0.3 (0.1, 0.6) 0.004
Pathological emphysema

Negative Reference – Reference –
Positive −18.1 (−31.4, −4.8) 0.010 −15.9 (−29.4, −2.5) 0.022

CT emphysema
Negative Reference – Reference –
Positive −19.1 (−32.9, −5.4) 0.009 −4.6 (−17.2, 8.1) 0.456

Abbreviations: CI, confidential interval; CT, computed tomography; DLCO, diffusing capacity of the lung for carbon monoxide; FU, framework unit.
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According to our results and previous studies,16–19,26 

morphological progression of pulmonary emphysema is 

proposed as follows: alveoli with a few tiny pores of Kohn in 

the normal state (Figure 2A–A″) starts to show an increase in 

the number and size of pores of Kohn, leading vulnerability 

of the alveoli (Figure 2B–B″). The framework structure 

and alveoli merge and break down because of mechanical 

stress and/or inflammation, inducing traction of lung tis-

sue (Figure 2C–C″). Finally, remodeling of acini results in 

enlarged air spaces of emphysema (Figure 2D–D″).

Interestingly, breakdown of the lung framework and an 

increase in pores of Kohn showed significant associations 

with changes in pulmonary function, although these 

associations with pathological or radiological emphysema 

were not high (Table 2). Our finding that these small changes 

are associated with diffusing capacity stronger than patho-

logical and radiological recognition of emphysema suggests 

that small changes in alveoli are an essential part of the 

reduction of diffusing capacity of emphysema or possibly 

other diseases.

Previous studies have attempted to describe the morpho-

logical and physiological features of the lungs.15–17,26–30 We 

recently developed a histopathological approach to enable 

3D observation of the lungs with thick sections.22 Using this 

method, we showed that string-like structures, the frame-

work, and alveolar walls are assembled into a polyhedral 

complex of alveoli. Previous studies have already hypoth-

esized that alveoli form a polyhedral structure,17,26,29 which 

we confirmed with our 3D observation technique. This is 

the first report to specifically describe the framework and 

alveolar wall as an edge and face. Because the framework 

was observed reticulating throughout the lung parenchyma 

(Figure 1B), and because the thickness of framework was 

different from that of simple cut edges of the alveolar wall 

(Figure 1E), we concluded that the framework is a string-like 

component, which is totally distinct from an alveolar wall. 

This framework may contribute to preserving the shape of 

pulmonary alveolar sacs and lobules together with surfactant 

proteins. This component may be difficult to identify with 

conventional histopathological techniques.

Table 4 Bivariable and multivariable regression analysis on DLCO/VA

Variables Bivariable P-value Multivariable P-value

Estimate (95% CI) Estimate (95% CI)

Number of FUs without alveolar wall 2.6 (1.5, 3.6) ,0.001 1.8 (0.8, 2.8) 0.001
Number of pores in FUs −2.1 (−4.0, −0.3) 0.026
Percent area of all pores, log-transformed −10.0 (−18.0, −2.0) 0.016
Age, years −0.4 (−1.4, 0.5) 0.366
Number of cigarettes smoked, pack-year −0.1 (−0.5, 0.2) 0.385
Pathological emphysema

Negative Reference – Reference –
Positive −26.1 (−39.6, −12.6) ,0.001 −11.3 (−23.7, 1.0) 0.070

CT emphysema
Negative Reference – Reference –
Positive −22.5 (−38.2, −6.8) 0.007 −10.3 (−22.1, 1.5) 0.083

Abbreviations: CI, confidential interval; CT, computed tomography; DLCO/VA, diffusing capacity of the lung for carbon monoxide per unit alveolar volume; FU, framework unit.

Table 5 Bivariable and multivariable regression analysis on RV

Variables Bivariable P-value Multivariable P-value

Estimate (95% CI) Estimate (95% CI)

Number of pores in FUs 1.9 (0.2, 3.6) 0.034
Percent area of one pore, log-transformed 26.4 (0.7, 52.1) 0.045
Percent area of all pores, log-transformed 8.0 (0.3, 15.7) 0.041 7.9 (1.5, 14.3) 0.017
Age, years 0.02 (−0.9, 0.9) 0.961
Number of cigarettes smoked, pack-year 0.4 (0.1, 0.6) 0.008 0.4 (0.1, 0.6) 0.004
Pathological emphysema

Negative Reference –
Positive 7.5 (−8.7, 23.8) 0.347

CT emphysema
Negative Reference –
Positive −1.3 (−18.6, 16.0) 0.878

Abbreviations: CI, confidential interval; CT, computed tomography; FU, framework unit; RV, residual volume.
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Conclusion
Based on the 3D characteristics of alveolar structure, break-

down of the lung framework and an increase in pores of Kohn 

are associated with a decrease in a diffusing capacity with/

without emphysema.
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