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Abstract

Aims

To identify clinically meaningful clusters of patients with similar glycated hemoglobin

(HbA1c) trajectories among patients with type 2 diabetes.

Methods

A retrospective cohort study using unsupervised machine learning clustering methodologies

to determine clusters of patients with similar longitudinal HbA1c trajectories. Stability of

these clusters was assessed and supervised random forest analysis verified the clusters’

reproducibility. Clinical relevance of the clusters was assessed through multivariable analy-

sis, comparing differences in risk for a composite outcome (macrovascular and microvascu-

lar outcomes, hypoglycemic events, and all-cause mortality) at HbA1c thresholds for each

cluster.

Results

Among 60,423 patients, three clusters of HbA1c trajectories were generated: stable (n =

45,679), descending (n = 6,084), and ascending (n = 8,660) trends, which were reproduced

with 99.8% accuracy using a random forest model. In the clinical relevance assessment,

HbA1c levels demonstrated a J-shape association with the risk for outcomes. HbA1c level

thresholds for minimizing outcomes’ risk differed by cluster: 6.0–6.4% for the stable cluster,

<8.0% for the descending cluster, and <9.0 for the ascending cluster.

Conclusions

By applying unsupervised machine learning to longitudinal HbA1c trajectories, we have

identified clusters of patients who have distinct risk for diabetes-related complications.

These clusters can be the basis for developing individualized models to personalize glyce-

mic targets.
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Introduction

Intensive glycated hemoglobin (HbA1c) control is not always recommended given the incon-

sistent evidence that lowering HbA1c levels may be associated with increased risk for mortality

and other type 2 diabetes-related outcomes [1–6]. Recent guidelines from the American Dia-

betes Association and the European Association for the Study of Diabetes suggest creating

individualized targets to account for the heterogeneity within the population of people with

type 2 diabetes [7,8].While the variability in glycemic values over time has been shown to be

an important independent risk factor for mortality [9], cardiovascular complications [10], and

cognitive performance [11], current guidelines do not address how to incorporate glycemic

level trajectories when characterizing individual risk.

Creating sub-groups of this complex population may help to identify underlying common

characteristics for improving the appropriateness of treatment goals. This is supported by a

growing body of evidence showing that stratification of a population into more homogenous

sub-groups can achieve better prediction of individualized models [12,13]. There are multiple

methodologies to do so, including clustering using laboratory data trajectories with demon-

strated utility in differentiating stages of chronic diseases [14,15]. Machine learning algorithms

have also been used to discover hidden patterns in complex datasets through unsupervised

methodologies, which can yield clusters of individuals with similar behaviors or characteristics.

These techniques can be valuable in identifying groups of patients with type 2 diabetes who

have distinct risk profiles that are different from previous findings.

As part of a larger study to create a tool that provides individualized HbA1c targets for opti-

mal long-term type 2 diabetes risk management, this sub-study aimed to: (1) characterize clus-

ters of similar patients based on HbA1c trajectories over three years and (2) evaluate the

clinical relevance of these clusters by assessing the associated risk for type 2 diabetes outcomes

for each cluster.

Methods

Setting and data source

All-cause mortality, demographic, clinical, and laboratory data were obtained from the Clalit

Health Services (Clalit) healthcare data warehouse. Clalit is the largest of the four payer/pro-

vider health funds in Israel, providing healthcare services to over four million patients, approx-

imately 53% of the total Israeli population. This study was performed using deidentified

electronic health record (EHR) data from Clalit’s fully integrated database, which centralizes

data from community clinics, hospital visits, laboratory tests and results, and medication dis-

pensing. This study was approved by Clalit’s internal ethics review board.

Study design

This study is a longitudinal retrospective cohort study among patients with type 2 diabetes

having disease duration of three to seven years prior to January 1, 2010 (index date). The first

part of this study derived clusters employing unsupervised machine learning techniques using

each patient’s HbA1c history taken from the three years prior to the index date. The second

part, also addressing the first objective, uses a supervised machine learning model to determine

the clusters’ reproducibility. Finally, we tested the clinical relevance of the derived clusters by

evaluating multivariable five-year risk for type 2 diabetes outcomes with the baseline period

from January 1, 2003 through December 31, 2009 and the follow-up period from January 1,

2010 through December 31, 2014 (Fig 1).
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Study population

The study population consists of Clalit members included in the Clalit diabetes registry who

are identified via an algorithm previously described in detail [16]. These patients with short to

medium duration type 2 diabetes were selected to allow sufficient time for disease-related

complications to develop, but not too long to have developed irreversible damage. Addition-

ally, patients included had at least three years of continuous membership at Clalit prior to the

index date. Patients were excluded if they had concurrent chronic conditions, such as cancer,

chronic infectious disease (AIDS, Hepatitis B/C/Delta), or hepatic cirrhosis.

Longitudinal HbA1c measures

We assembled HbA1c trajectories based on available and imputed laboratory data, excluding

extreme outliers (defined as seven standard deviations from the cohort mean). HbA1c trajecto-

ries were aggregated into four time periods of nine months (t1, t2, t3, t4) and the average were

used when there were multiple measurements in each time frame. The decision to use nine-

month time frames was based on the observation that more than 80% of the study cohort had

two consecutive HbA1c tests within nine months.

Only patients who had HbA1c measures in at least three of the four nine-month time peri-

ods were included in the unsupervised cluster analysis; otherwise, they were designated as a

separate group labeled ‘Undefined Cluster.’ Among patients with HbA1c measures in only

three of the four time periods, missing time frame values were imputed using linear models

based on the other three HbA1c values. The imputed dataset was randomly divided into a

training set (60% of the dataset) and a validation set (40%). Four separate models were created

for imputation, one for each nine-month time period (S1 Fig).

Clusters generation

A longitudinal unsupervised trajectory clustering methodology was implemented using the

“traj” R package (version 1.2) [17,18]. The methodology includes feature engineering by gener-

ating 24 different features derived from HbA1c trajectories (S1 Table). The most relevant of

these HbA1c measures were selected using factor analysis. The selected measures were then

used for cluster generation. The optimal number of clusters were calculated using the

“NbClust” algorithm (R package) as described by Charrad et al. [19]. The calculation of the

optimal number of clusters was based on the most frequent number recommended by 26 dif-

ferent methods [19]. This is the standard number of methods included in the analysis package,

which assumes a voting approach in determining the optimal number of clusters.

Fig 1. Study design. Abbreviations: t1, t2, t3 and t4 are the four nine-month periods HbA1c measures used for cluster analysis.

https://doi.org/10.1371/journal.pone.0207096.g001
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This study utilized K-means clustering of the selected features, similar to how Jacob et al.

[20] used K-means clustering to uncover patterns in metabolite levels of pregnant patients’

data. The K-means default parameters were defined by the traj functions. K-means is an algo-

rithm that characterizes the clusters by searching for the optimal centers of the data points on

a multidimensional space, using randomly and iteratively resampled data points until the dis-

tance between those centers and the other points in the same cluster is minimized. The stability

of the clusters was assessed using fixed point cluster analysis as described by Hennig [21]. A

Jaccard similarity index of 0.95 or higher, indicates that the cluster is highly stable [22,23].

Reproducibility of clusters using a supervised algorithm

One limitation of unsupervised algorithms is that they cannot always be reproduced on new

data. In order to support the reproducibility of our findings on any new dataset, a supervised

random forest algorithm was developed on a training subset, 60% of the original data, and the

resulting algorithm was validated using a test dataset. This algorithm assembles multiple itera-

tions of decision trees to determine how accurately it can yield the predicted clusters that were

produced with the unsupervised algorithm. Through discovery of the rules that were used by

the unsupervised K-means algorithm, the random forest algorithm classifies the individuals

into clusters. The accuracy was assessed as the number of correctly predicted clusters divided

by the number of patients in the dataset. The advantage of this kind of algorithm is that it

yields very accurate models and prevents overfitting.

Clinical relevance assessment of clusters

The clinical relevance of the clusters was determined by comparing the five-year risk for type 2

diabetes outcomes at various levels of HbA1c across the cluster groups. This HbA1c was

defined as the first test value after the index date (post-index HbA1c) during the follow-up

period. Patients without a post-index HbA1c value were excluded from this clinical relevance

assessment.

Type 2 diabetes outcomes were defined as a composite outcome of macrovascular and

microvascular complications, hypoglycemic events and all-cause mortality, and the first event

to occur in the follow-up period indicated an outcome. Macrovascular outcomes were any

incident event of one of the following conditions: myocardial infarction (MI), unstable angina

pectoris (UAP), coronary artery bypasses graft (CABG), percutaneous transluminal coronary

angioplasty (PTCA), and cerebrovascular accident (CVA). Microvascular complications were

the first recorded new diagnosis of diabetic retinopathy (DR), diabetic neuropathy (DNeu),

diabetic nephropathy (DNeph), a lower extremity ulcer (LEU), or a lower extremity amputa-

tion (LEA) (S2 Table). All diagnoses prior to the index date were considered prevalent comor-

bidities and were not considered outcomes.

In addition to post-index HbA1c, covariates included in our analyses were age (in years),

sex, socio-economic status (SES, as low, medium, and high categories), obesity (BMI of 30 kg/

m2 or higher), smoking status (current smokers, former smokers, non-smokers, and

unknown), diagnosis of hypertension, diagnosis of congestive heart failure, history of hypogly-

cemic episodes, and if chronic disease medications were dispensed (at least one or more dis-

pensed medication of any of the following: cholesterol lowering drugs, agents acting on the

renin-angiotensin system, insulin, and hypoglycemic agents). All these variables were collected

as of the index date, with the last measure of multiple values used when relevant.

The risk for the composite outcome was assessed at different HbA1c levels for each cluster,

grouped according to eight categories: <6.0% (<42 mmol/mol), 6.0–6.4% (42–47 mmol/mol,

reference group), 6.5–6.9% (47–53 mmol/mol), 7.0–7.4% (53–58 mmol/mol), 7.5–7.9% (58–64

Patient clusters based on HbA1c trajectories

PLOS ONE | https://doi.org/10.1371/journal.pone.0207096 November 14, 2018 4 / 12

https://doi.org/10.1371/journal.pone.0207096


mmol/mol), 8.0–8.4% (64–69 mmol/mol), 8.5–8.9% (69–75 mmol/mol) and�9.0% (�75

mmol/mol).

Statistical analysis

For continuous variables, p values where calculated using ANOVA. In case of heteroscedasti-

city (measured using the Bartlett test), White correction was applied. For categorical variables,

Chi square test was used if all the cells were higher than 5. In cases where one cell or more had

5 or less observations, the Kruskal-Wallis test was used. Multivariable logistic regression mod-

els were generated by adjusting post-index HbA1c categories for all covariates. All analyses

were performed using the R statistical software version 3.2.2 and the previously named pack-

ages [24].

Results

We identified 85,783 patients meeting the inclusion criteria, of which 60,423 patients (70.4%)

with 217,133 associated HbA1c valid measures were included in the sample for clustering.

Table 1 shows the main demographic and clinical characteristics of the overall study popu-

lation and each of the patient clusters. The mean age of the study cohort was 63.6 years, 52.6%

of the patients were female, 28.3% had a low SES, and 30.0% had a high SES. The mean post-

index HbA1c was 7.5% (58 mmol/mol).

Cluster generation

Of the 24 measures generated through feature engineering [17,18], the most relevant measures

selected by factor analysis were the change in HbA1c values from t1 to t4, mean of the absolute

first differences in HbA1c values, and the ratio of the maximum absolute second difference to

mean absolute first difference of HbA1c values. The NbClust algorithm indicated that the rec-

ommended number considered as the optimal number of clusters was three (S1 Text and S3

Table).

The distribution of the clusters was as follows: stable cluster: 45,679 patients with a stable

HbA1c trend over time; decreasing cluster: 6,084 patients with a descending trend over time;

and ascending cluster: 8,660 patients with an ascending trend over time. undefined cluster

included 25,360 patients and was also included in the analyses for comparison. The Jaccard

similarity indexes for the resulting clusters were 0.99 for the stable cluster, 0.99 for the decreas-

ing cluster, and 0.98 for the ascending cluster. Fig 2 shows the median trajectory (with the

lower and upper 10%) for each cluster.

Reproducibility of the clusters using a supervised algorithm

The random forest model for classifying patients into specific clusters had an accuracy of

99.8% in the test dataset.

Baseline characteristics by clusters

Table 1 shows a comparison of the baseline characteristics of the study population by clusters.

The stable cluster had the oldest population while the ascending cluster had the youngest pop-

ulation (66.0 [12.0] vs. 59.9 [12.0] years old, p<0.001). The stable cluster had a higher propor-

tion of women (55.4%) compared to the other clusters that had approximately 50% women

each (p<0.001), and a lower proportion of current smokers (15.8% vs. 21.7%-23.0%,

p<0.001). The stable and undefined clusters had the highest proportion of patients with high

SES (31.2% and 30.7%, respectively) while the descending cluster had the highest proportion
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Table 1. Demographic and clinical baseline characteristics for the overall study population and for the longitudinal trajectory clusters.

Characteristic Overall

Population

Stable cluster Descending

cluster

Ascending

cluster

Undefined

Cluster

p-value

(n = 85,783) (n = 45,679) (n = 6,084) (n = 8,660) (n = 25,360)

Age� Mean (SD) 63.6 (13.4) 66.0 (12.0) 62.0 (12.2) 59.9 (12.0) 61.0 (15.4) <0.001

Sex Female 45,129 (52.6%) 25,313 (55.4%) 3,061 (50.3%) 4,362 (50.4%) 12,393 (48.9%)

Male 40,654 (47.4%) 20,366 (44.6%) 3,023 (49.7%) 4,298 (49.6%) 12,967 (51.1%) <0.001

SES Low 24,186 (28.3%) 11,866 (26.0%) 2,257 (37.2%) 2,887 (33.5%) 7,176 (28.4%)

Medium 35,678 (41.7%) 19,465 (42.7%) 2,349 (38.7%) 3,525 (40.9%) 10,339 (40.9%) <0.001

High 25,673 (30.0%) 14,239 (31.2%) 1,468 (24.2%) 2,213 (25.7%) 7,753 (30.7%)

Missing (%) 246 (0.3%) 109 (0.2%) 10 (0.2%) 35 (0.4%) 92 (0.4%)

HbA1c (%)† Mean (SD) 7.5 (1.7) 7.1 (1.2) 7.8 (1.8) 8.7 (1.9) 7.7 (2.0)

Median (IQR) 7.0 (6.4–8.0) 6.8 (6.4–7.5) 7.4 (6.6–8.7) 8.3 (7.3–9.9) 7.0 (6.3–8.6) <0.001

HbA1c (mmol/mol) † Mean (SD) 58.3 (18.4) 54.2 (13.4) 62.1 (19.7) 71.9 (21.2) 60.4 (22.2)

Median (IQR) 53.0 (46.5–63.9) 50.8 (46.5–

58.5)

57.4 (48.6–71.6) 67.2 (56.3–84.7) 53.0 (45.4–70.5) <0.001

Missing (%) 3,900 (4.5%) 519 (1.1%) 88 (1.4%) 93 (1.1%) 3,200 (12.6%)

Diabetes Duration (months) Mean (SD) 62.4 (14.1) 60.8 (14.1) 65.6 (13.8) 64.0 (14.0) 62.6 (14.1)

Median (IQR) 63.0 (50.0–75.0) 60.0 (48.0–

73.0)

68.0 (55.0–78.0) 65.0 (52.0–77.0) 63.0 (50.0–75.0) <0.001

Smoking status Non smoker 55,112 (65.2%) 30,375 (67.1%) 3,746 (62.0%) 5,290 (61.5%) 15,701 (64.0%)

Current smoker 16,020 (19.0%) 7,151 (15.8%) 1,312 (21.7%) 1,913 (22.2%) 5,644 (23.0%) <0.001

Past smoker 13,343 (15.8%) 7,770 (17.2%) 981 (16.2%) 1,400 (16.3%) 3,192 (13.0%)

Missing (%) 1,308 (1.5%) 383 (0.8%) 45 (0.7%) 57 (0.7%) 823 (3.2%)

BMI Mean (SD) 30.3 (5.9) 30.3 (5.7) 30.7 (6.0) 31.4 (6.1) 29.8 (6.0) <0.001

(kg/m2)

<18.5 320 (0.4%) 137 (0.3%) 26 (0.4%) 23 (0.3%) 134 (0.6%)

18.5–24.9 13,250 (15.8%) 6,907 (15.3%) 857 (14.2%) 1,002 (11.7%) 4,484 (18.8%) <0.001

25–29.9 31,346 (37.5%) 17,254 (38.1%) 2,151 (35.7%) 2,878 (33.5%) 9,063 (38.1%)

30–34.9 23,488 (28.1%) 12,845 (28.4%) 1,766 (29.3%) 2,608 (30.4%) 6,269 (26.3%)

35+ 15,236 (18.2%) 8,085 (17.9%) 1,232 (20.4%) 2,076 (24.2%) 3,843 (16.2%)

Missing (%) 2,143 (2.5%) 451 (1.0%) 52 (0.9%) 73 (0.8%) 1,567 (6.2%)

Previous Macrovascular 8,923 (10.4%) 5,032 (11.0%) 787 (12.9%) 939 (10.8%) 2,165 (8.5%) <0.001

Comorbidities Microvascular 18,307 (21.3%) 10,099 (22.1%) 1,930 (31.7%) 2,504 (28.9%) 3,774 (14.9%) <0.001

Hypoglycemia 8,019 (9.3%) 3,742 (8.2%) 828 (13.6%) 801 (9.2%) 2,648 (10.4%) <0.001

Hypertension 29,828 (34.8%) 16,584 (36.3%) 2,421 (39.8%) 3,299 (38.1%) 7,524 (29.7%) <0.001

Non-CKD 65,257 (91.5%) 34,812 (90.0%) 4,586 (91.8%) 6,952 (93.4%) 18,907 (93.4%) <0.001

CKD

CKD 3A 4,009 (5.6%) 2,601 (6.7%) 238 (4.8%) 310 (4.2%) 860 (4.2%)

CKD 3B 1,187 (1.7%) 732 (1.9%) 75 (1.5%) 89 (1.2%) 291 (1.4%)

CKD 4 270 (0.4%) 158 (0.4%) 27 (0.5%) 32 (0.4%) 53 (0.3%)

CKD5/RRT 615 (0.9%) 361 (1.0%) 65 (1.3%) 61 (0.9%) 128 (0.7%)

Unknown 14,445 (16.8%) 7,015 (15.4%) 1,093 (18.0%) 1,216 (14.0%) 5,121 (20.2%)

(Continued)
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of patients with low SES (37.2%, p<0.01). The stable cluster’s patients had the lowest average

index glycemic level (HbA1c: 7.1 [1.2]%, 54.2 [13.4] mmol/mol) while the ascending cluster’s

patients had the highest average level (HbA1c: 8.7 [1.9]%, 72 [21.2] mmol/mol, p<0.001). The

ascending cluster had the highest proportion of patients being treated only with non-insulin

hypoglycemic medications (79.5% in the ascending cluster vs 75.3% for the descending and

stable clusters, p<0.001), while the descending cluster had the highest proportion of patients

treated with insulin (and a possible additional non-insulin medication) (16.7% vs 11.9% for

the ascending cluster and 4.4% for the stable cluster, p<0.001). The stable cluster had 20.2%

Table 1. (Continued)

Characteristic Overall

Population

Stable cluster Descending

cluster

Ascending

cluster

Undefined

Cluster

p-value

(n = 85,783) (n = 45,679) (n = 6,084) (n = 8,660) (n = 25,360)

Type 2 diabetes treatment

medication class

Insulin (fast-acting) 1,818 (2.1%) 792 (1.7%) 392 (6.4%) 341 (3.9%) 293 (1.2%) <0.001

Insulin (non-exclusively

fast-acting)

4,147 (4.8%) 1,704 (3.7%) 852 (14.0%) 895 (10.3%) 696 (2.7%) <0.001

Biguanides 59,572 (69.4%) 34,479 (75.5%) 5,162 (84.8%) 7,390 (85.3%) 12,541 (49.5%) <0.001

Sulfonamides 13,436 (15.7%) 6,582 (14.4%) 1,735 (28.5%) 2,223 (25.7%) 2,896 (11.4%) <0.001

Thiazolidines 1,044 (1.2%) 527 (1.2%) 249 (4.1%) 149 (1.7%) 119 (0.5%) <0.001

DDP-4 Inhibitors 2,030 (2.4%) 1,133 (2.5%) 198 (3.3%) 420 (4.8%) 279 (1.1%) <0.001

Non-Insulin only 58,582 (68.3%) 34,402 (75.3%) 4,583 (75.3%) 6,883 (79.5%) 12,714 (50.1%)

Type 2 diabetes treatment type Insulin +/- Non-insulin 4,892 (5.7%) 2,029 (4.4%) 1,014 (16.7%) 1,030 (11.9%) 819 (3.2%) <0.001

No treatment 22,309 (26.0%) 9,248 (20.2%) 487 (8.0%) 747 (8.6%) 11,827 (46.6%)

Other chronic medications Beta-blockers 22,830 (26.6%) 13,687 (30.0%) 1,602 (26.3%) 2,162 (25.0%) 5,379 (21.2%) <0.001

Ca-Blockers 18,348 (21.4%) 11,292 (24.7%) 1,258 (20.7%) 1,596 (18.4%) 4,202 (16.6%) <0.001

ACE/ARB 33,663 (39.2%) 19,459 (42.6%) 2,819 (46.3%) 3,722 (43.0%) 7,663 (30.2%) <0.001

Statins 36,220 (42.2%) 21,485 (47.0%) 2,805 (46.1%) 3,711 (42.9%) 8,219 (32.4%) <0.001

Note: Values for continuous variables were presented as mean (SD) and median (IQR). For categorical variables, the n (%) format was used.

Abbreviations: SD, standard deviation; IQR, interquartile range; SES, socioeconomic status; HbA1c, glycated hemoglobin; BMI, body mass index; CKD, chronic kidney

disease; RRT, renal replacement therapy; DDP-4 inhibitor, dipeptidyl peptidase-4 inhibitor; Ca-blocker, calcium blocker; ACE, Angiotensin-converting-enzyme

inhibitors; ARB, Angiotensin II receptor blockers.

�Age at the date of the index HbA1c measure.
†First HbA1c level after the index date (post-index HbA1c).

https://doi.org/10.1371/journal.pone.0207096.t001

Fig 2. Historical HbA1c trajectories by cluster. Abbreviations: t1, t2, t3 and t4 are the four nine-month periods HbA1c measures used for cluster analysis. The graphs

show the median, 10 and 90 percentiles of HbA1c measures for each time frame of nine months (a total of three years). The stable cluster demonstrated stable levels of

HbA1c over time. The ascending and descending clusters demonstrated non-stable levels with an increasing and decreasing trend, respectively.

https://doi.org/10.1371/journal.pone.0207096.g002
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no treatment compared to the 8.0% in both the descending and ascending clusters, while the

undefined cluster had the highest proportion of untreated patients (46.6%).

Clinical relevance assessment by clusters

The descending and ascending clusters showed the higher proportion of baseline prevalent

and incident outcomes for micro and macrovascular complications compared to the stable

cluster (p<0.001) (Tables 1 and 2).

Hypoglycemic events were more frequent in patients in the descending cluster in both the

baseline and follow-up periods (p<0.001). Mortality was also higher in the descending cluster

(15.3% vs 11.0% and 12.3% for the stable and ascending clusters, respectively; p<0.001). The

undefined cluster showed relatively low levels of micro and macrovascular complications, but

had higher mortality rates (14.8%).

Fig 3 shows the risk levels for the composite outcome by the post-index level of HbA1c after

adjustment for potential confounders. There were 3,900 (4.5%) patients with a missing post-

index HbA1c value who were not included in this analysis, of which 82% pertain to the NA

group. A J-shape was observed among all clusters with higher risk for lower levels of HbA1c.

The risk increased with the increase of HbA1c levels in all clusters. For the stable cluster, the

risk was significant at an HbA1c level below 6.0% (42 mmol/mol) and for levels of 7.0% (53.0

mmol/mol) and higher. For the descending cluster risk was significant at 8.0–8.4% (64–69

mmol/mol) and at 9.0% (75 mmol/mol) and higher, and for the ascending cluster, at 9.0% (75

mmol/mol) and higher. The undefined cluster had a significantly higher risk at an HbA1c level

of 7.5% (58 mmol/mol) or higher, similar to the stable cluster.

Discussion

By stratifying a population with type 2 diabetes according to patients’ HbA1c trajectories,

reproducing these clusters through supervised learning techniques, and testing these clusters

Table 2. Outcomes for the overall study population and for the longitudinal trajectory clusters.

Characteristic Overall Population Stable Cluster Descending Cluster Ascending Cluster Undefined Cluster p-value

(n = 85,783) (n = 45,679) (n = 6,084) (n = 8,660) (n = 25,360)

Microvascular outcomes ‡ DR 4,902 (5.7%) 2,260 (4.9%) 569 (9.4%) 719 (8.3%) 1,354 (5.3%) <0.001

DNeu 7,499 (8.7%) 4,128 (9.0%) 634 (10.4%) 1,105 (12.8%) 1,632 (6.4%) <0.001

DNeph 5,641 (6.6%) 3,070 (6.7%) 469 (7.7%) 724 (8.4%) 1,378 (5.4%) <0.001

LEU 3,582 (4.2%) 1,677 (3.7%) 406 (6.7%) 490 (5.7%) 1,009 (4.0%) <0.001

LEA 823 (1.0%) 307 (0.7%) 116 (1.9%) 108 (1.2%) 292 (1.2%) <0.001

Microvascular 18,248 (21.3%) 9,687 (21.2%) 1,704 (28.0%) 2,496 (28.8%) 4,361 (17.2%) <0.001

Hypoglycemic events 9,131 (10.6%) 4,809 (10.5%) 1,070 (17.6%) 1,201 (13.9%) 2,051 (8.1%) <0.001

Macrovascular outcomes ‡ MI 3,720 (4.3%) 1,837 (4.0%) 328 (5.4%) 409 (4.7%) 1,146 (4.5%) <0.001

UAP 3,454 (4.0%) 1,801 (3.9%) 263 (4.3%) 430 (5.0%) 960 (3.8%) <0.001

CABG 1,431 (1.7%) 713 (1.6%) 126 (2.1%) 164 (1.9%) 428 (1.7%) 0.007

PTCA 4,658 (5.4%) 2,454 (5.4%) 394 (6.5%) 542 (6.3%) 1,268 (5.0%) <0.001

CVA 4,915 (5.7%) 2,570 (5.6%) 437 (7.2%) 523 (6.0%) 1,385 (5.5%) <0.001

Macrovascular 12,093 (14.1%) 6,367 (13.9%) 1,000 (16.4%) 1,331 (15.4%) 3,395 (13.4%) <0.001

All-cause mortality 11,283 (13.2%) 5,640 (12.3%) 930 (15.3%) 951 (11.0%) 3,762 (14.8%) <0.001

Abbreviations: DR, diabetic retinopathy; DNeu, diabetic neuropathy; DNeph, diabetic nephropathy; LEU, low extremity ulcers; LEA, low extremity amputations; MI,

myocardial infarction; UAP, unstable angina pectoris; CABG, coronary artery bypass graft; PTCA, percutaneous transluminal coronary angioplasty; CVA,

cerebrovascular disease.
‡Outcomes refer to the first incident event occurring after the index HbA1c measure date (follow up period).

https://doi.org/10.1371/journal.pone.0207096.t002
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for clinical relevance in terms of risk for outcomes, this study offers empirically-derived

patient groups that can be used as a first step toward modeling individualized HbA1c targets.

This methodology differentiates clusters of patients with distinct baseline characteristics and

differential risk patterns for type 2 diabetes outcomes. The results also emphasize the impor-

tance of examining risk factors for chronic diseases like type 2 diabetes as trajectories of the

course they take over time, rather than as single measurements. The reproducibility and stabil-

ity of these generated clusters provides the ability to translate these clusters to other popula-

tions that have similar characteristics to the population used in this study, such as moderate

diabetes disease duration.

Employing an unsupervised machine learning clustering technique offers an advantage

over using population-based risk models, in which the most common characteristics influenc-

ing the vast majority of patients are identified, at the expense of potentially masking important

characteristics relevant to smaller sub-groups of individuals. Such population-based models

have been shown to fail when applied to some individual patients to determine individualized

risk [25]. As an alternative, it has been proposed that "personalized" predictive models be built

for patients based on the information of clinically similar patients [26]. Therefore, the strength

of employing an unsupervised algorithm technique to determine patient clusters is that the

Fig 3. Adjusted odds ratios for the risk of having a future composite type 2 diabetes outcome. Red circles represent a significantly increase in risk (p<0.05) and

black circles represent risk that is not significantly different to that of the reference group (6.0–6.4%).

https://doi.org/10.1371/journal.pone.0207096.g003
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patterns of features in the data are not predetermined, but rather, derived from what can be

uncovered in the data through this methodology.

The groups of patients generated in the clustering analysis make sense clinically, as the pro-

gression of the disease may be different for those who are stable compared to those whose

HbA1c level is increasing (unstable) or decreasing (responding to treatment). While interna-

tional guidelines generally recommend targeting HbA1c to a value below 7.0%, except for

older and the most comorbid patients, this study has identified at least two groups of patients

for whom an HbA1c value associated with the lowest risk profile deviates from this recommen-

dation. the descending and ascending clusters are classifications of patients with type 2 diabe-

tes whose associated risk for outcomes indicates wider target HbA1c ranges. Risk of

complications among the ascending cluster patients was only significant at the higher levels of

HbA1c, which may signal that HbA1c is not the most important risk factor in this group of

patients, thereby warranting further exploration to identify more relevant factors. The narrow-

est range of target HbA1c levels from 6.0–7.0%, was found for the stable cluster, in agreement

with the upper bound of guideline recommendations. However, the significantly higher risk of

type 2 diabetes complications associated with HbA1c <6.0% in this cluster, deviates from the

guideline recommendation and is consistent with J-shaped risk curves found in previous stud-

ies [3].

There are several limitations in the study that should be taken into consideration. One limi-

tation is that the algorithm applied in the Clalit population with type 2 diabetes requires at

least one HbA1c measurement to be taken every nine months, over a period of three years, but

the time between measures may vary among other populations, which should be checked.

Another limitation is the large number of patients in the database who had missing HbA1c val-

ues and therefore not enough data to determine trajectories. We decided to analyze these

patients separately, as the undefined cluster, and not to impute missing HbA1c values because

the underlying analysis relied on the observed HbA1c value trajectories, and we did not want

to introduce excessive bias based on too many imputed values. A third limitation is that this

study only takes into account the five-year risk for type 2 diabetes outcomes (macrovascular,

microvascular, hypoglycemic events, or all-cause mortality) among patients with relatively

short duration (3–7 years) of type 2 diabetes. For some of the patients, the risk of outcomes

may be higher with a longer follow-up period and thus, may generate a more comprehensive

risk score. Finally, the study period was not long enough for us to study fluctuations in the tra-

jectories of HbA1c, and with longer study periods, these clusters would likely be further

refined.

Our results confirm the importance of stratifying the heterogeneous population with type 2

diabetes into more homogeneous groups through the discovery of new patterns in data. To

identify relevant clusters of patients with moderate diabetes disease duration in a different con-

text, this three-step process of conducting unsupervised learning, reproducing results in super-

vised learning models, and testing these clusters for clinical relevance can be replicated. This

methodology can be built upon to develop more precise models that identify any individual’s

HbA1c target ranges with the lowest associated risk of future complications.

Supporting information

S1 Checklist. STROBE checklist of items that should be included in reports of cohort stud-

ies.

(DOCX)

S1 Fig. Imputation of missing HbA1c trajectory measures.

(DOCX)

Patient clusters based on HbA1c trajectories

PLOS ONE | https://doi.org/10.1371/journal.pone.0207096 November 14, 2018 10 / 12

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207096.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207096.s002
https://doi.org/10.1371/journal.pone.0207096


S1 Table. Trajectory features derived from the original longitudinal HbA1c measures.

(DOCX)

S2 Table. Diseases definition for comorbidities and outcomes.

(DOCX)

S3 Table. The resulting indexes obtained by running 26 different methods available in the

“NbClust” algorithm in R (those result are retrieved using the following code ‘nbcl$All.

index’).

(DOCX)

S1 Text. Selection of the number of clusters.

(DOCX)

Acknowledgments

The authors thank Carly Davis-Pask, MPH, of the Clalit Research Institute for her editorial

work on this manuscript.

Author Contributions

Conceptualization: Tomas Karpati, Maya Leventer-Roberts, Becca Feldman, Itamar Raz, Ran

Balicer.

Data curation: Tomas Karpati.

Formal analysis: Tomas Karpati, Maya Leventer-Roberts, Itamar Raz, Ran Balicer.

Methodology: Tomas Karpati, Maya Leventer-Roberts, Itamar Raz, Ran Balicer.

Project administration: Tomas Karpati, Maya Leventer-Roberts.

Supervision: Maya Leventer-Roberts, Becca Feldman, Ran Balicer.

Validation: Tomas Karpati.

Visualization: Tomas Karpati.

Writing – original draft: Tomas Karpati, Chandra Cohen-Stavi.

Writing – review & editing: Maya Leventer-Roberts, Becca Feldman, Chandra Cohen-Stavi.

References
1. Shurraw S, Hemmelgarn B, Lin M, Majumdar SR, Klarenbach S, Manns B, et al. (2011) Association

between glycemic control and adverse outcomes in people with diabetes mellitus and chronic kidney

disease: a population-based cohort study. Arch Intern Med 171: 1920–1927. https://doi.org/10.1001/

archinternmed.2011.537 PMID: 22123800

2. Ismail-Beigi F, Moghissi E, Tiktin M, Hirsch IB, Inzucchi SE, Genuth S (2011) Individualizing glycemic

targets in type 2 diabetes mellitus: implications of recent clinical trials. Ann Intern Med 154: 554–559.

https://doi.org/10.7326/0003-4819-154-8-201104190-00007 PMID: 21502652

3. Arnold LW, Wang Z (2014) The HbA1c and all-cause mortality relationship in patients with type 2 diabe-

tes is J-shaped: a meta-analysis of observational studies. Rev Diabet Stud 11: 138–152. https://doi.

org/10.1900/RDS.2014.11.138 PMID: 25396402

4. Kontopantelis E, Springate DA, Reeves D, Ashcroft DM, Rutter MK, Buchan I, et al. (2015) Glucose,

blood pressure and cholesterol levels and their relationships to clinical outcomes in type 2 diabetes: a

retrospective cohort study. Diabetologia 58: 505–518. https://doi.org/10.1007/s00125-014-3473-8

PMID: 25512005

Patient clusters based on HbA1c trajectories

PLOS ONE | https://doi.org/10.1371/journal.pone.0207096 November 14, 2018 11 / 12

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207096.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207096.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207096.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207096.s006
https://doi.org/10.1001/archinternmed.2011.537
https://doi.org/10.1001/archinternmed.2011.537
http://www.ncbi.nlm.nih.gov/pubmed/22123800
https://doi.org/10.7326/0003-4819-154-8-201104190-00007
http://www.ncbi.nlm.nih.gov/pubmed/21502652
https://doi.org/10.1900/RDS.2014.11.138
https://doi.org/10.1900/RDS.2014.11.138
http://www.ncbi.nlm.nih.gov/pubmed/25396402
https://doi.org/10.1007/s00125-014-3473-8
http://www.ncbi.nlm.nih.gov/pubmed/25512005
https://doi.org/10.1371/journal.pone.0207096


5. Li W, Katzmarzyk PT, Horswell R, Wang Y, Johnson J, Hu G (2016) HbA1c and all-cause mortality risk

among patients with type 2 diabetes. Int J Cardiol 202: 490–496. https://doi.org/10.1016/j.ijcard.2015.

09.070 PMID: 26440458

6. Currie CJ, Peters JR, Tynan A, Evans M, Heine RJ, Bracco OL, et al. (2010) Survival as a function of

HbA1c in people with type 2 diabetes: a retrospective cohort study. The Lancet 375: 481–489.

7. American Diabetes A (2017) Standards of Medical Care in Diabetes-2017 Abridged for Primary Care

Providers. Clin Diabetes 35: 5–26. https://doi.org/10.2337/cd16-0067 PMID: 28144042

8. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. (2015) Management of

hyperglycaemia in type 2 diabetes, 2015: a patient-centred approach. Update to a position statement of

the American Diabetes Association and the European Association for the Study of Diabetes. Diabetolo-

gia 58: 429–442. https://doi.org/10.1007/s00125-014-3460-0 PMID: 25583541

9. Ma WY, Li HY, Pei D, Hsia TL, Lu KC, Tsai LY, et al. (2012) Variability in hemoglobin A1c predicts all-

cause mortality in patients with type 2 diabetes. J Diabetes Complications 26: 296–300. https://doi.org/

10.1016/j.jdiacomp.2012.03.028 PMID: 22626873

10. Lee MY, Hsiao PJ, Huang YT, Huang JC, Hsu WH, Chen SC, et al. (2017) Greater HbA1c variability is

associated with increased cardiovascular events in type 2 diabetes patients with preserved renal func-

tion, but not in moderate to advanced chronic kidney disease. PLoS One 12: e0178319. https://doi.org/

10.1371/journal.pone.0178319 PMID: 28591149

11. Ravona-Springer R, Heymann A, Schmeidler J, Moshier E, Godbold J, Sano M, et al. (2014) Trajecto-

ries in glycemic control over time are associated with cognitive performance in elderly subjects with type

2 diabetes. PLoS One 9: e97384. https://doi.org/10.1371/journal.pone.0097384 PMID: 24887092

12. Brown S-A (2016) Patient Similarity: Emerging Concepts in Systems and Precision Medicine. Frontiers

in Physiology 7.

13. Lee J, Maslove DM, Dubin JA (2015) Personalized mortality prediction driven by electronic medical

data and a patient similarity metric. PLoS One 10: e0127428. https://doi.org/10.1371/journal.pone.

0127428 PMID: 25978419

14. Shoji H., Shusaku T. (2007) Cluster Analysis of Trajectory Data on Hospital Laboratory Examinations.

AMIA Annu Symp Proc: 324–328. PMID: 18693851

15. Tsumoto S, Hirano S (2008) Mining Trajectories of Laboratory Data using Multiscale Matching and

Clustering. 626–631.

16. Karpati T, Cohen-Stavi CJ, Leibowitz M, Hoshen M, Feldman BS, Balicer RD (2014) Towards a subsid-

ing diabetes epidemic: trends from a large population-based study in Israel. Popul Health Metr 12: 32.

https://doi.org/10.1186/s12963-014-0032-y PMID: 25400512

17. Leffondre K, Abrahamowicz M, Regeasse A, Hawker GA, Badley EM, McCusker J, et al. (2004) Statisti-

cal measures were proposed for identifying longitudinal patterns of change in quantitative health indica-

tors. J Clin Epidemiol 57: 1049–1062. https://doi.org/10.1016/j.jclinepi.2004.02.012 PMID: 15528056

18. Sylvestre MP, McCusker J, Cole M, Regeasse A, Belzile E, Abrahamowicz M (2006) Classification of

patterns of delirium severity scores over time in an elderly population. Int Psychogeriatr 18: 667–680.

https://doi.org/10.1017/S1041610206003334 PMID: 16640798

19. Charrad M, Ghazzali N, Boiteau V, Niknafs A (2014) NbClust: AnRPackage for Determining the Rele-

vant Number of Clusters in a Data Set. Journal of Statistical Software 61.

20. Jacob S, Nodzenski M, Reisetter AC, Bain JR, Muehlbauer MJ, Stevens RD, et al. (2017) Targeted

Metabolomics Demonstrates Distinct and Overlapping Maternal Metabolites Associated With BMI, Glu-

cose, and Insulin Sensitivity During Pregnancy Across Four Ancestry Groups. Diabetes Care 40: 911–

919. https://doi.org/10.2337/dc16-2453 PMID: 28637889

21. Hennig C (2007) Cluster-wise assessment of cluster stability. Computational Statistics & Data Analysis

52: 258–271.

22. Ben-Hur A, Elisseff A, Guyon I (2002) AStability Based Method for Discovering Structure in Clustered

Data. Proceedings of the Pacific Symposium on Biocomputing: 6–17.

23. Bryan J (2004) Problems in gene clustering based on gene expression data. Journal of Multivariate

Analysis 90: 44–66.

24. (2015) R: A Language and Environment for Statistical Computing. R Core Team. Vienna, Austria: R

Foundation for Statistical Computing.

25. Gerstein HC, Miller ME, Byington RP, Goff DC Jr., Bigger JT, Buse JB, et al. (2008) Effects of intensive

glucose lowering in type 2 diabetes. N Engl J Med 358: 2545–2559. https://doi.org/10.1056/

NEJMoa0802743 PMID: 18539917

26. Ng K, Sun J, Hu J, Wang F (2015) Personalized Predictive Modeling and Risk Factor Identification

using Patient Similarity. AMIA Summits on Translational Science Proceedings: 132–136.

Patient clusters based on HbA1c trajectories

PLOS ONE | https://doi.org/10.1371/journal.pone.0207096 November 14, 2018 12 / 12

https://doi.org/10.1016/j.ijcard.2015.09.070
https://doi.org/10.1016/j.ijcard.2015.09.070
http://www.ncbi.nlm.nih.gov/pubmed/26440458
https://doi.org/10.2337/cd16-0067
http://www.ncbi.nlm.nih.gov/pubmed/28144042
https://doi.org/10.1007/s00125-014-3460-0
http://www.ncbi.nlm.nih.gov/pubmed/25583541
https://doi.org/10.1016/j.jdiacomp.2012.03.028
https://doi.org/10.1016/j.jdiacomp.2012.03.028
http://www.ncbi.nlm.nih.gov/pubmed/22626873
https://doi.org/10.1371/journal.pone.0178319
https://doi.org/10.1371/journal.pone.0178319
http://www.ncbi.nlm.nih.gov/pubmed/28591149
https://doi.org/10.1371/journal.pone.0097384
http://www.ncbi.nlm.nih.gov/pubmed/24887092
https://doi.org/10.1371/journal.pone.0127428
https://doi.org/10.1371/journal.pone.0127428
http://www.ncbi.nlm.nih.gov/pubmed/25978419
http://www.ncbi.nlm.nih.gov/pubmed/18693851
https://doi.org/10.1186/s12963-014-0032-y
http://www.ncbi.nlm.nih.gov/pubmed/25400512
https://doi.org/10.1016/j.jclinepi.2004.02.012
http://www.ncbi.nlm.nih.gov/pubmed/15528056
https://doi.org/10.1017/S1041610206003334
http://www.ncbi.nlm.nih.gov/pubmed/16640798
https://doi.org/10.2337/dc16-2453
http://www.ncbi.nlm.nih.gov/pubmed/28637889
https://doi.org/10.1056/NEJMoa0802743
https://doi.org/10.1056/NEJMoa0802743
http://www.ncbi.nlm.nih.gov/pubmed/18539917
https://doi.org/10.1371/journal.pone.0207096

