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With the fast evolution of high-throughput technology, longitudinal gene expression experiments have become affordable and
increasingly common in biomedical fields. Generalized estimating equation (GEE) approach is a widely used statistical method
for the analysis of longitudinal data. Feature selection is imperative in longitudinal omics data analysis. Among a variety of
existing feature selection methods, an embedded method—threshold gradient descent regularization (TGDR)—stands out due to
its excellent characteristics. An alignment of GEE with TGDR is a promising area for the purpose of identifying relevant
markers that can explain the dynamic changes of outcomes across time. We proposed a new novel feature selection algorithm
for longitudinal outcomes—GEE-TGDR. In the GEE-TGDR method, the corresponding quasilikelihood function of a GEE
model is the objective function to be optimized, and the optimization and feature selection are accomplished by the TGDR
method. Long noncoding RNAs (lncRNAs) are posttranscriptional and epigenetic regulators and have lower expression levels
and are more tissue-specific compared with protein-coding genes. So far, the implication of lncRNAs in psoriasis remains
largely unexplored and poorly understood even though some evidence in the literature supports that lncRNAs and psoriasis are
highly associated. In this study, we applied the GEE-TGDR method to a lncRNA expression dataset that examined the response
of psoriasis patients to immune treatments. As a result, a list including 10 relevant lncRNAs was identified with a predictive
accuracy of 70% that is superior to the accuracies achieved by two competitive methods and meaningful biological
interpretation. A widespread application of the GEE-TGDR method in omics longitudinal data analysis is anticipated.

1. Introduction

With fast evolution of high-throughput technology, longitu-
dinal omics experiments have become affordable and
increasingly common in many biomedical fields for explor-
ing dynamically or temporally changed biological systems
or processes. Usually, the analysis strategies focus on analyz-
ing individual time points separately. As many investigators
have pointed out [1–4], a failure to incorporate information
contained in the dependent structure of time course data

results in inefficient estimation of the standard errors, leading
to an inadequate statistical power. Especially in big omics
studies, this problem stands out since the sample size of such
data is usually small. Furthermore, an oversimplified consid-
eration by combining the results from marginal analysis at
individual time points tends to fail to detect a meaningful
pattern of changes over time.

The generalized estimating equation (GEE) approach [5]
is a well-established and widely used statistical method to
analyze longitudinal data. GEE considers the first two
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marginal moments (i.e., mean and variance) of data and a
working correlation matrix to model correlated responses,
artfully avoiding the specification of full joint likelihood
function. The appeal of GEE lies in that it yields consistent
estimators for the parameters of interest, even if the working
correlation structure is incorrectly specified. Naturally, GEE
has been modified or extended to identify differentially
expressed genes over time for high-throughput data. Such
modifications and/or extensions are not simple due to the
high dimensionality of omics data, although some efforts
have been made [1, 2, 6].

Like its crosssectional counterpart, feature selection is
imperative in the learning process for longitudinal omics
data. Feature selection is aimed at eliminating irrelevant
genes, avoiding overfitting, speeding up the learning process,
and achieving a final model that is parsimonious (i.e., the
number of selected genes is as least as possible). Conse-
quently, a modification to GEE to analyze high-dimensional
data necessitates the involvement of feature selection. In the
literature, there are several such algorithms. For example,
Wang et al. [2] used a smoothly clipped absolute deviation
(SCAD) penalty term [7] which is a novel extension to the
L1 penalty to equip the GEE models with feature selection
capacity. The L1 penalty, also known as LASSO [8], forces
genes with small estimated coefficients out of the final model,
rendering a sparse solution by the means of which feature
selection occurs. However, two subsequent works on this
topic [1, 6] showed that this algorithm usually fails to con-
verge when the number of covariates is much larger than
the number of samples. This drawback is more apparent
and fatal in longitudinal omics data, where the sample size
is typically smaller than that of a crosssectional study.

Among a variety of existent feature selection algorithms,
we have devoted dramatic efforts on the threshold gradient
descent regularization (TGDR) [9] method (see the Methods
section for its description). Previously, we had extended
TGDR for classification task of multiple groups (>2) and
for identification of subgroup-specific prognostic genes with
a survival outcome [10–14]. By applying these TGDR exten-
sions to different types of omics data including microarray,
RNA sequencing, and mass spectrometry (MS) data, we have
shown that TGDR and its respective extensions have many
merits including easy-to-moderate programming intensity,
good predictive performance, and biologically meaningful
implications of the resulting signatures. In a recent work
[4], we show that the TGDR algorithm can be regarded as
an optimization strategy and that the final models given by
TGDR have superior predictive performance and more
meaningful biological interpretation than the LASSO models
optimized by the coordinate descent method [15]. Therefore,
an integration of GEE with TGDR may overcome the draw-
backs of existing approaches for the purpose of longitudinal
feature selection.

Long noncoding RNAs (lncRNAs) are posttranscrip-
tional and epigenetic regulators and have the characteristics
of lower expression levels and more tissue-specific compared
with protein-coding genes [16]. Once being regarded as evo-
lutionary junks, lncRNAs have been demonstrated to play
essential roles in many complex diseases, especially in cancer

[16]. As pointed out by our previous study [17], psoriasis is
an ideal model for examining the effects of targeted immune
treatments given that it is well characterized by molecular
profiles, displays low placebo effects, and possesses easily
accessible diseased tissues. So far, the implication of lncRNAs
in psoriasis remains largely unexplored and poorly under-
stood. Among the limited research carried out to explore the
roles of lncRNAs play in psoriasis; however, some encouraging
results have turned up. For example, a very recent study [18]
has shown that LOC285194 can serve as a sponger for miR-
616 that regulates the expression of GATA3 though binding
to its 3′-untranslated region usingWestern blotting, quantita-
tive real-time PCR, and dual-luciferase reporter assays. Specif-
ically, the expression level of LOC285194 was lower in the
affected skin of patient with psoriasis compared to the unaf-
fected skin. Furthermore, Rakhshan et al. [19] showed that
one SNP (i.e., rs12826786) of the HOX Transcript Antisense
RNA (HOTAIR) is associated with a higher risk of developing
psoriasis (TC+TT versus CC: OR = 1:59, p = 0:02). Therefore,
we believe that the roles of lncRNAs play in psoriasis deserve
to be explored deeply and widely.

In this article, we proposed a new feature selection algo-
rithm, referred to as GEE-TGDR, specifically for longitudinal
data mining and feature selection. In the GEE-TGDR
method, the corresponding quasilikelihood function of a
GEE model is the objective function to be optimized, while
the optimization and feature selection are accomplished by
the TGDRmethod. We applied this method to a longitudinal
microarray gene expression data that is aimed at assessing
the treatment efficacy of two immune therapies for psoriasis
patients and identified the relevant lncRNAs that can predict
the temporal changes of psoriasis area and severity index
(PASI) scores that is utilized to determine if a patient with
psoriasis responds to the treatments, with the objectives of
revealing the underlying mechanisms of these two treatments
from the perspective of lncRNAs.

Following the structures of a review by [20], the article is
organized as follows. In Section 2, the details about the pro-
posed GEE-TGDR method are given. In Section 3, the appli-
cation of the GEE-TGDR method to psoriasis longitudinal
lncRNA expression data and the analysis results are pre-
sented. Then, the biological relevance of identified lncRNA
signature to psoriasis is discussed in detail. In Section 4, the
limitations of the present study in addition to contributions
and future work are discussed. Lastly, conclusions are given.

2. Materials and Methods

2.1. Experimental Data. The microarray dataset [17] used to
characterize the proposed GEE-TGDR algorithm was in the
Gene Expression Omnibus (GEO) database (https://www
.ncbi.nlm.nih.gov/geo/) under the accession number of
GSE85034. There were 179 arrays in this experiment, includ-
ing the gene expression profiles of 30 patients with moderate
to severe psoriasis at the baseline nonlesion skins and baseline
lesion skins and at weeks 1, 2, 4, and 16. Of the 30 patients, half
were administrated with adalimumab (ADA), and the other
half were treated with methotrexate (MTX). One patient on
the ADA arm had no expression measurements of week 16
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since his/her psoriasis area and severity index (PASI) score
already had experienced a 75% decrement at the week 4. In
original paper, a treatment response was based on a reduction
of 75% in PASI score after week 12 or later. Longitudinal pro-
files of PASI scores (baseline lesion skins, at weeks 1, 2, and 4)
were the outcomes of interest, and the lncRNA expression
values of the baseline lesional skins serve as potential predic-
tors to investigate if they are relevant to the PASI scores of pso-
riasis patients over time.

In this study, the preprocessed data were directly down-
loaded from the GEO database. No alternative preprocessing
had been carried out. By matching the gene symbols of
lncRNAs in the GENCODE (https://www.gencodegenes.org/
) database (version 32) to those of genes annotated by the Illu-
mina HumanHT-12 V 4.0 bead chips, 662 unique lncRNAs
were identified and included in the downstream analysis.

2.2. Statistical Methods. In this paper, we conceive a new
novel feature selection algorithm called GEE-TGDR specifi-
cally for selecting relevant features associated with the tem-
poral changes of longitudinal outcomes, in which GEE is
equipped with TGDR just as its name implies. We briefly
described both GEE and TGDR methods before proceeding
to the proposed integration. Here, to keep it the most rele-
vant, we focused on the case of continuous outcomes.

2.2.1. Threshold Gradient Descent Regularization. For contin-
uous outcomes, the TGDR algorithm is based on a linear
model, where a response variable Yi (i = 1,⋯, n, n is the sam-
ple size) is modelled by a P-dimensional vector of observed
covariates Xip (here, p = 1,⋯, P) as E ðY ∣ XÞ = XTβ. Here,

β’s represent the coefficients of covariates for the magnitudes
of association between covariates and the outcome. For con-
tinuous outcomes, a normal distribution is usually assumed,
and then, the corresponding likelihood function is used as a
response function/an objective function in the TGDR algo-
rithm.With some algebraic simplification, the response func-
tion can be written as

Res βð Þ = n−1 〠
n

i=1
Yi − XT

i β
� �2

: ð1Þ

The TDGR algorithm started from that the β’s were ini-
tially set at zero’s (corresponding to the null model). Using
Δv to denote a small positive increment (e.g., 0.01) in the gra-
dient descent search, and for iteration k,

(1) Upon current estimate βðkÞ, a negative gradient matrix
g with its pth component as gp

ðkÞ are calculated as

g kð Þ
p = n−1 〠

n

i=1
Xip Yi − XT

i β
kð Þ

� �
: ð2Þ

(2) Let f ðkÞ represent the threshold vector of size P at
iteration k and I ðxÞ is an indicator (if the condition

x is true, this indicator returns 1; otherwise, its value
is 0), then its pth component (for the pth gene) is

f kð Þ
p = I ∣g kð Þ

p ∣≥τ ×maxl∈ 1,2,⋯Pð Þ ∣g kð Þ
l ∣

� �� �
: ð3Þ

(3) Update βp
ðk+1Þ = βp

ðkÞ + Δv × gp
ðkÞ × f p

ðkÞ and k = k
+ 1

(4) Repeat steps 1-3 for K times. K can be regarded as a
tuning parameter, with a large value corresponding
to a dense model (more nonzero coefficients) and a
small value to a sparse model (less nonzero coeffi-
cients). The optimal value of K is determined by
crossvalidations (CVs).

In the TGDR method, no explicit penalty term is added
to the objective function (i.e., response function). The regu-
larization on coefficients (thus the selection of features) is
made possible by introducing the threshold function f ðkÞ in
step 2, which determines if the gradient of a coefficient is
large enough to descent or more precisely speaking to be
updated. For more detailed description of the TGDRmethod,
the works [9, 21] are referred.

2.2.2. Generalized Estimating Equation. In the longitudinal
notation, the jth time point/measurement of the ith subject,
a t-dimensional vector of response variables Yij (here, i = 1,
⋯, n and j = 1,⋯, t) and covariates Xijp (here, p = 1,⋯, P
represents pth covariate) are observed. Thus Yi: =
ðYi1,⋯, YitÞT denotes the vector of responses at t different
time points for subject i, and Xij = ðXij1,⋯, XijPÞT is P covar-
iates for subject i at time point j.

In the GEE model, the first two marginal moments of Yij

are denoted by μij ðβÞ = E ðYij ∣ XijÞ (the expectation of Yij

given Xij) and σ2ðβÞ =V ðYijÞ (the variance of Y). Here, β’s
are the coefficients representing the magnitude of association
between covariates and outcomes, with βjp representing how
attribute p is associated with the value of outcome Y :j (mean-

ing the outcome at time point j). Those β’s are parameters of
interest. Furthermore, the distribution of Yij is assumed to
belong to an exponential family with a canonical link func-
tion. Let μi ðβÞ = ðμi1 ðβ1Þ,⋯, μit ðβtÞÞT and Ai ðβÞ = diag ð
σ2

i1 ðβ1Þ,⋯, σ2it ðβtÞÞ, then under a canonical link function
Vi ðβÞ = Ai

1/2ðβÞRi ðαÞAi
1/2ðβÞ. Here, Ri ðαÞ is an t × t work-

ing correlation matrix with α as the finite dimensional
parameter vector for correlations, which would be usually
estimated by the residual-based moment method. In a GEE
model, the quasilikelihood function can be written as

QL βð Þ = n−1 〠
n

i=1
Yi: − μi βð Þð ÞTV−1

i βð Þ Yi: − μi βð Þð Þ: ð4Þ
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Four structures are commonly used for the working correla-
tion matrix Ri ðαÞ—first-order autoregressive (AR1),
exchangeable, unstructured, and independent structure.

2.2.3. GEE-TGDR. The conventional TGDR method only
deals with univariate outcomes. As far as longitudinal out-
comes that are multivariate are concerned, the method needs
to be extended.

In this study, we proposed to replace the likelihood func-
tion with the corresponding quasilikelihood function and to
extend TGDR as GEE-TGDR. With Δv denoting a small pos-
itive increment (e.g., 0.01) in gradient descent search, then at
k iteration,

(1) Upon current estimate βðkÞ, a negative gradient
matrix g with its ðj, pÞth component as gjp

ðkÞ are
calculated

g kð Þ
jp = n−1 〠

n

i=1
XT
ijpA

1/2
i β kð Þ
� �

R−1 αð ÞA− 1/2ð Þ
i β kð Þ

� �
Yi: − μi β kð Þ

� �� �
:

ð5Þ

(2) Let f ðkÞj represent the threshold vector of size P for the

jth time point (j = 1, ::, t) at iteration k, then its pth

component (for the pth gene) is

f kð Þ
jp = I ∣g kð Þ

jp ∣≥τ ×max g kð Þ
jl

���
���

� �� �
, ∀l ∈ 1, 2,⋯Pð Þ: ð6Þ

(3) Update βðk+1Þ
jp = βðkÞ

jp + Δv × gðkÞ
jp × f ðkÞjp and k = k + 1

(4) Calculate the residuals, viz, Yi: − μi ðβðkÞÞ, and based
on them, to estimate the nuisance parameters
involved in R ðαÞ (for different correlation structures,
the parameters are different) and Ai ðβðkÞÞ. Of note,
since at different time points, we have different
threshold function, the selected genes at different
time points are expected to differ. In this way, the
selection of critical time points is possible

(5) Repeat steps 1-4 for K times. K is a tuning parameter,
the same as in the conventional TGDR method. The
optimal value of K is also determined by CVs

In this study, we only developed the GEE-TGDR algo-
rithm for continuous outcomes given in the motivated data-
base; PASI scores which are continuous were the outcomes of
interest, then the corresponding expectations of Yi

’s given
Xi

’s are ½Xi1
Tβ1,⋯, Xit

Tβt �. Here, let j = 1, 2, ::, t represent
the time points measured; then Xij are for the gene expres-
sion profiles at time point j for subject i, and βj are for the
corresponding coefficients of those gene expression values

at time point j. Figure 1 gives the graphical illustration of
the GEE-TGDR algorithm for continuous longitudinal
outcomes.

Since the outcomes were continuous, the mean squared
error (MSE) statistic was calculated to evaluate the perfor-
mance of resulting gene signatures. It is worth pointing out
that for the outcomes of other types, an extension suitable
for the underlying data type of GEE-TGDR algorithm is
straightforward, with the corresponding quasilikelihood
function serving as the objective function/response function.

2.3. Statistical Language. Statistical analysis was carried out
in the R language version 3.6.1 (http://www.r-project.org).

3. Results

3.1. Identified LncRNA Signatures. In this study, we propose
to extend the feature selection algorithm TDGR to account
for correlation structure of longitudinal data. This is accom-
plished by defining the objective function of TDGR as the
corresponding quasilikelihood function, which as in GEE is
specified based on the first two moments and a working cor-
relation matrix. TDGR-GEE is described in the Materials and
Methods section. In this section, we illustrate the application
of the proposed method while looking for biomarkers that
predict clinical resolution of psoriasis after being treated with
two immune therapies.

Gene expression profiles of baseline lesional skin biopsies
were obtained for 30 subjects followed up to 16 weeks after
treatment with adalimumab and methotrexate. Clinical reso-
lution at weeks 1, 2, and 4 was measured by PASI. In this
example, we would like to identify a signature of genes whose
baseline expression values correlate with changes in PASI,
our continuous longitudinal outcome. WE used 662 lnRNA
as covariates in the proposed GEE-TGDRmodel, under 4 dif-
ferent working correlation structures. The performance sta-
tistics (i.e., MSEs) and identified lncRNA genes are
presented in Table 1.

In this application, the results obtained under working
correlation structures exchangeable, unstructured, and inde-
pendent barely differ, with similar sets of biomarkers leading
to similar performance. This reflects a well-known robust
characteristic of GEE, where when predictors are correctly
given, the GEE estimates remain consistent even if the corre-
lation structures are misspecified. Under the AR1 structure,
GEE-TGDR identified only one lncRNA as being related to
PASI scores, leading to an underfitting and inferior to the
performance when compared to the other three correlation
structures.

Due to the patient burden and budgetary restrictions,
longitudinal omics data are usually very short and unevenly
spaced. In this case, AR1 is not well suited and the unstruc-
tured correlation may be the most suitable structure, even
though that this structure corresponds to a model with more
nuisance parameters involved in the corresponding working
correlation structure.

Crossvalidation (CV) results gave us an idea for the var-
iability in the model performance in this regard; CV results
indicated that all correlation structures but AR1 structure
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provided similar results, with both the exchangeable and
independent structures having the least MSEs but a bigger
variability and the unstructured structure having a larger
MSE but the smaller variations.

Even though that at individual time points, the identified
features varied substantially for the unstructured, exchange-
able, and independent working correlation structures
(Figure 2), the unions of lncRNA lists across time are essen-
tially the same, including 9 lncRNAs identified by all these
three structures and one lncRNA selected by the independent
structure alone (Figure 3).

3.2. Comparison with Competing Methods. In order to further
characterize the GEE-TGDRmethod, a comparison with two
competing methods was made. One competing method
under consideration is the GEE-screening method [1] in
which a GEE model was fit with the PASI scores over time
as the outcome and the expression values of a certain lncRNA
as the covariate. The GEE-screening method filtered genes
one by one. Of note, in the GEE-TGDR method and the
GEE-screening model, we only considered the unstructured
working correlation structure. In the other competing
method, namely, linear mixed model-based screening

Update 𝛽jp(k+1) = 𝛽jp(k) + Δv × gjp(k) × fjp(k) and k = k +1. Then
calculate the residuals and update variances and correlation matrix 

k = K

Stop

No

Yes 

𝛽(0) = 0, k = 0, 

Δ

𝜈 = 0.01

Compute the gradient matrix gand threshold matrix f based on the current 𝛽(k),
their (j, p) component are: 

Figure 1: Flowchart of the proposed GEE-TGDR algorithm.

Table 1: Results of psoriasis lncRNA longitudinal data.

Ave. of
MSE (5-
fold CVs)

SD of
MSE
(CVs)

MSE
(all
data)

Identified lncRNAs (using all data)

Baseline Week 1 Week 2 Week 4

AR1 14.456 3.258 2.101 RAMP2-AS1 RAMP2-AS1 RAMP2-AS1 RAMP2-AS1

Unstructured 3.725 0.498 0.793
XIST

RAMP2-AS1
MIR205

LRRC75A-AS1
PAXIP1-AS1

LINC00667 RAMP2-
AS1 MIR205

LRRC75A-AS1 TMEM99
LINC01018 PAXIP1-AS1
LINC01139 RAMP2-AS1

TMEM99
LINC01018
PAXIP1-AS1
LINC01139
RAMP2-AS1

Exchangeable 2.758 1.649 0.767
XIST

RAMP2-AS1
MIR205

LRRC75A-AS1 XIST
LINC01139 SDHAP2

RAMP2-AS1

TMEM99 LINC01139
RAMP2-AS1

TMEM99
XIST LINC01018
PAXIP1-AS1
LINC01139
RAMP2-AS1

Independent 2.675 1.694 0.760

SNHG5
LINC01139
RAMP2-AS1
MIR205

SNHG5 RAMP2-AS1
MIR205

SNHG5 TMEM99 RAMP2-
AS1

MIR205

SNHG5
XIST LINC01018

LINC01139
RAMP2-AS1
MIR205

Only baseline expression values were used. AR1: autoregressive order 1; MSE: mean squared error; SD: standard deviation; CV: crossvalidation.
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method, a GEE model was replaced by a linear mixed model
(the outcome and the covariate are the same as those in the
GEE-screening model), and the intercept term was regarded
as a random effect. The lncRNAs with corresponding p
values of the coefficients <0.05 were selected as being relevant
in both competing methods. Then, a support vector machine
model was fit using the response status as the outcome and
the identified lncRNAs by a specific method as predictors.
According to the 10-fold crossvalidation results (to estimate
the predictive performance of each method), the GEE-

TGDR method achieved the best predictive accuracy
(Table 2). Of note, even GEE-TGDR has the best perfor-
mance compared to the other two competitive methods, its
predictive accuracy is estimated as 70%, which is far from
100%, leaving a large space to be improved.

3.3. Biological Relevance. In order to gain biological insight-
identified biomarkers, we evaluated the relevance to psoriasis
of the 10 identified lncRNA using disease confidence scores,
where a high score represents a solid support by the literature

Unstructured

1

1

1

31

1

1

0

00

0

0

0

0

0

Week 1

Base
lin

e

Week 2

Week 4

(a)

2

2

0

0

0

0

0

0

0

0

1

1

1

1

1
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e

Week 1 Week 2

Week 4

Exchangeable

(b)

2

3

1

1

0 0

0

0

00
0

0

0

0

0

Base
lin

e

Week 1 Week 2

Week 4

Independent 

(c)

Figure 2: Venn diagram of identified lncRNAs for baseline, at weeks 1, 2, and 4, respectively, by different working correlation structures. (a)
Under the unstructured working correlation structure. (b) The exchangeable working structure. (c) The independent working structure.

LRRC75A-AS1
SDHAP2
PAXIP1-AS1

-

LINC01018
XIST
LINC01139
RAMP2-AS1 (AR1, too)
MIR205
TMEM99

SNHG5 

1

0

6

0

Exch

Unstr

Indep

0 0

3

Figure 3: Venn diagram of integrated lncRNAs by three working correlation structures.
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according to the GeneCards database. None of the 10
lncRNAs were directly related to psoriasis while 5 lncRNAs,
listed in a descending order for the confidence scores and
thus descending support by the literature according to the
GeneCards database, MIR205, XIST, SNHG5, LINC01139,
and SDHAP2 were associated with immunity.

Little meaningful information was extracted from cur-
rently annotated lncRNA databases, no surprisingly since
that psoriasis remains largely unexplored from the perspec-
tive of lncRNAs. We thus focused on studying the mRNAs
correlated or targeted by these lncRNAs. Specifically, we
identified the genes whose baseline lesional expression was
strongly correlated with at least one of the 10 lnRNA
(∣Spearman correlation coefficient ∣ >0:6, 5) and identified
225 mRNAs genes. According to the GeneCards database
[22], approximately 30% of these mRNAs (64) were directly
related to psoriasis, most notably IL10, FABP5, KRT16,
CCR6, IL18, STAT3,GATA3, and SERPINB3, providing some
validation of the lncRNA biomarkers identified by the GEE-
TGDR method. In contrast, among the 29 target mRNAs
identified by the lncRNA Disease 2.0 database [23] as tar-
geted by the 10 lnRNA panel (all of which were identified
by the correlation approach), GeneCards claimed that
CCR10, AOC3, UBB, andWNK4 were directly related to pso-
riasis, but only CCR10 had a large confidence score for its rel-
evancy to psoriasis. Of note, among the 10 lncRNAs, only
RAMP2-AS1, PAX1P1-AS1, TMEM99, and LIN01018 have
many correlated mRNAs, but the other five have few or no
correlated mRNAs at all.

3.4. Enriched Pathways by Target mRNAs. A gene-set over-
representation analysis was carried out on the 225 mRNAs
identified as targeted by the 10 lnRNA biomarker panel using
the STRING software [24] on KEGG and GO collections.
About 346 enriched biological process (BP) terms, 23 molec-
ular function (MF) terms, and 21 cellular component (CC)
terms were identified in the GO collection reflecting the
immune pathophysiology of the disease. The top 3 enriched
KEGG pathways [25] reflected the inflammatory processes
not only identifying inflammatory bowel diseases
(FDR < 0:001) and cytokine-cytokine receptor interaction
(FDR = 0:005) but also zeroing on the hallmark pathway in
psoriasis: Th17 differentiation (FDR = 0:031).

Lastly, among the 225 mRNA, we selected the top 10 in
terms of psoriasis-relevance (confidence score for relevancy > 15
) and constructed a lncRNA-mRNA interaction network, visual-
ized by Cytoscape software [26] (Figure 4). We observed that the
target mRNAs are highly connected, with IL10 serving as a hub
gene. It is well-known that IL10 is an immunosuppressive cyto-
kine and enables to maintain immunological homeostasis [27].
Based on this, we anticipate that identified lncRNAsmay regulate
the expression of important cytokines such as IL10 and warrant
further investigation.

4. Discussion

4.1. Limitations and Future Work. At current stage, the GEE-
TGDR method has several limitations. First, no grouping
structure is taken into account, and thus, the GEE-TGDR
method belongs to the conventional embedded feature selec-
tion category. So far, accumulated studies [28–31] have
shown that a pathway-based method that considers grouping
information is superior to its gene-based counterpart in
which grouping information is ignored. Thus, how to extend
the proposed GEE-TGDRmethod to account for correlations
among genes is a research avenue we will pursue in the near
future.

Second, the TGDRmethod is much slower than the coor-
dinate descent (CD) [15] method as shown by our previous
study [4]. Given that the GEE-TGDR extension has the
TGDR method as an optimization strategy, its speed of con-
vergence is expected to be very slow. Amethod that combines
the merits of these two algorithms together is definitely in
demand. Alternatively, a sine cosine algorithm [20] may be
integrated into the gradient descent step for a faster updating
and a better tuning of hyperparameters (tuning parameters).
Furthermore, the step increment Δv is fixed at a constant
value in the current version. In the future, this parameter will
be modified to update along the iterations, as in the Adam
algorithm, which may boost the computing efficiency and
avoid being stuck in a local minimum value as well.

Third, the GEE-TGDR method only takes time-invariant
covariates in its current version. For longitudinal gene
expression profiles, a summary score would be utilized to
summarize each gene’s expression values over time as one
overall value. Consequently, covariates became time-
invariant again. For example, the mean values of lncRNA
expression profiles at baseline and week 1 can be used to rep-
resent the corresponding lncRNAs and then as the covariates
to investigate they are associated with PASI scores at week 1,
week 2, and week 4 or the change of PASI scores at those time
points from the baseline levels. On the other hand, the
GEE-TGDR method can be certainly extended to handle
time-varying covariates, which can examine the impact of
dynamic changes in gene expression values on the out-
comes of interest and thus facilitate a timely adjustment
on treatment strategies accordingly. Lastly, right now, the
only type of outcomes is continuous; yet certainly, it can
be extended to handle outcomes of other types, with the
corresponding quasilikelihood function acting as the objec-
tive function.

Table 2: Comparison between the GEE-TGDR method and two
competing algorithms.

Method Size Predictive error

GEE-TGDR 9 30%

GEE-based screening 50 40%

Linear mixed model-based screening 27 33.33%
∗The predictive errors were calculated on the basis of 10-fold
crossvalidations. Here, the response status, i.e., if the PASI score
experienced a reduction of 75% from the baseline affected skin after week
12 or later. Size: the number of identified lncRNAs by a specific method;
here, the sizes trained on the whole dataset were given; in crossvalidations,
these numbers were subject to changes since the training sets were a subset
of the whole dataset. For GEE-TGDR- and GEE-based screening, only
unstructured working correlation matrix was considered.
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4.2. Contributions. In this study, we propose a new feature
selection algorithm that is capable of analyzing longitudinal
outcomes and investigating the associations between gene
expression profiles and the temporal changes of outcomes.
In the psoriasis application, overfitting might be possible on
the basis of the large discrepancy in MSE statistics between
the whole training set and the crossvalidations. Even worse
but more realistic, overfitting and underfitting may accom-
pany each other to exist in a feature selection process. Since
for real-world applications, the true relevant genes are
unknown so the biological relevance is usually resorted to
abstract some insight about the appropriation of identified
gene lists. Nevertheless, for psoriasis and the underlying
mechanism of immune treatments to combat this disease, lit-
tle has been investigated from the perspective of lncRNAs to
mine such relevant information. To the best of our knowl-
edge, our work here is one of first efforts to unveil the mech-
anisms of psoriasis and its immune treatments using lncRNA
expression profiles and a feature selection method specific for
longitudinal data.

After the limitations of the GEE-TGDR method are
addressed in the near future, we believe that a lncRNA signa-
ture will be harvested to tell precisely which patients would
respond to a specific treatment from those who would not
and thus facilitating personalized regimens or at least com-
plementing other molecular markers for precise treatment
strategies.

5. Conclusions

In this study, we proposed a novel feature selection
algorithm—GEE-TGDR—capable of handling longitudinal
outcomes and identifying relevant genes associated with the
temporal changes of such outcomes.

Our future work will focus on eliminating the limitations
of the GEE-TGDR method. In addition, extensions of the

current procedure to analyze other types of outcomes rather
than continuous ones and a more efficient and faster imple-
mentation of updating coefficients are at the top of this list.

It is worth mentioning that besides dealing with longitu-
dinal clinical outcomes, the GEE-TGDR can be adopted to
inference the associations between lncRNAs and mRNAs
and thus construct lncRNA-mRNA interaction networks.
For example, using well-known cancer-related mRNAs as
outcomes, the lncRNAs that may potentially regulate/target
those mRNAs could be found with the aid of the GEE-
TGDRmethod, which is also one of our future works. There-
fore, we anticipate a widespread application of the GEE-
TGDR method in omics data analysis.
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