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Abstract: Low temperature is an important environmental factor limiting the widespread planting of
tropical and subtropical crops. The application of plant regulator coronatine, which is an analog of
Jasmonic acid (JA), is an effective approach to enhancing crop’s resistance to chilling stress and other
abiotic stresses. However, the function and mechanism of coronatine in promoting chilling resistance
of tomato is unknown. In this study, coronatine treatment was demonstrated to significantly increase
tomato chilling tolerance. Coronatine increases H3K4me3 modifications to make greater chromatin
accessibility in multiple chilling-activated genes. Corresponding to that, the expression of CBFs,
other chilling-responsive transcription factor (TF) genes, and JA-responsive genes is significantly
induced by coronatine to trigger an extensive transcriptional reprogramming, thus resulting in a
comprehensive chilling adaptation. These results indicate that coronatine enhances the chilling
tolerance of tomato plants by inducing epigenetic adaptations and transcriptional reprogramming.

Keywords: chilling tolerance; transcriptional reprogramming; epigenetic adaptations; coronatine;
tomato; ChIP-seq

1. Introduction

Low temperature is a major abiotic stress that adversely impacts the growth, yield, and
quality of crops. Many tropical and subtropical crops, such as tomato, rice, and maize, are
extremely sensitive to low temperatures of 0–12 ◦C and unable to tolerate freezing [1,2]. In
contrast, temperate plants such as wheat and Arabidopsis acquire freezing tolerance by expo-
sure to low temperatures above freezing, a process known as cold acclimation [1,2]. Three
cold-induced CBF (C-repeat-Binding Factor)/DREB1 (Dehydration-Responsive Element-
Binding protein 1) transcription factors (TFs) play essential roles in cold acclimation [3–7].
These CBF/DREB1 TFs directly bind to the promoters of cold-regulated (COR) genes to
induce their expression, thus enhancing the freezing tolerance of Arabidopsis [1,5,8,9]. Hun-
dreds of COR genes have been identified as CBF regulons through cbf1,2,3 (cbfs) triple
mutants [6,7]. On the other hand, cold-induced CBF regulon genes are co-regulated by
other first-wave TFs, such as WRKY33, MYB44, MYB73, ZF (ZINC FINGER), CZF1 (Cold-
induced ZINC FINGER proteins 1), CZF2, ZAT10, ERF5 (Ethylene Response Factor 5),
and so on [10]. Several first-wave TF genes, including CZF2, ZAT10, MYB44, and MYB73,
are also the direct targets of the CBFs. Therefore, the CBFs function as key regulators,
interconnecting multiple first-wave TFs to amplify cold responses [3].

CBF-like proteins are conserved and functional in a wide range of plants, such as
barley [11], rice [12], and tomato [2,12]. There are three CBF homologs (Lycopersicon
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esculentum CBF1-CBF3) in tomato. Among them, the LeCBF1 gene is significantly induced
by 4 ◦C treatment and increases the freezing tolerance of LeCBF1 transgenic Arabidopsis
plants. However, the CBF regulons in tomato are obviously smaller and less diverse in
function [2]. Through 7-day of exposure to 10 ◦C, tomato plants obtain a chilling acclimation
response, including extensive transcriptomic and metabolic adjustments, thus enhancing
chilling tolerance. More importantly, chilling and cold acclimation are regulated by similar
transcription factors and hormones [13]. Besides that, some transcription factors in tomato,
such as the basic helix–loop–helix (bHLH) transcription factor SlICE1 (Inducer of CBF
Expression 1), SlMYC2, and SlNAM1 (NAC-type transcription factor), also enhance chilling
tolerance of tomato or tobacco [14–16]. However, the LeCBF1 and SlICE1 transgenic tomato
plants are stunted in growth, thereby the application of plant regulators may be another
effective way to enhance the chilling tolerance of tomato.

When exposed to low temperatures, plants synthesize a large number of protective
substances to enhance cold tolerance. The increase in soluble sugars, such as sucrose,
raffinose, and trehalose, enhances plant cold tolerance by maintaining cell osmotic potential
and cell membrane stability [17,18]. Exogenously application of oligosaccharides, including
chitosan oligosaccharide (CSOS), cello-oligosaccharide (COS), and xylooligosaccharide
(XOS), effectively increases the content of soluble sugars and plant chilling tolerance [19].
Under chilling stress, plants accumulate polyamines to increase resistance to chilling [20,21].
In addition, plants enhance the activity of antioxidant enzymes to prevent cold-induced
oxidative stress and photosynthetic damage [22,23].

Epigenetic modifications create various chromatin states for the expression of stress-
responsive genes that is considerable for abiotic stress resistance [24,25]. Through chromatin
immunoprecipitation and deep sequencing (ChIP-seq), several types of histone modifica-
tions have been shown to be associated with gene expression in many organisms [26–29].
Osmotic stress slightly increases H3K4me3 modifications at the genomic level in Arabidop-
sis [30]. Dehydration- and ABA-induced genes present significantly broader H3K4me3
distribution profiles before and after the stress [31]. In addition, H3K27me3 modifications in
two COR genes, COR15A (Cold Regulated 15A) and GOLS3 (Galactinol Synthase 3), decrease
gradually during exposure to low temperature and function as a memory marker for recent
transcriptional activity [32,33]. Although some histone modifications have been shown to
involve in cold responses, little is known about genome-wide dynamic changes of histone
modifications induced by chilling stress.

Coronatine is a non-host-specific phytotoxin produced by Pseudomonas syringae, which
helps the pathogen obtain higher pathogenicity [34–36]. This phytotoxin mimics the
structure and function of (3R,7S)-jasmonoyl-L-isoleucine (JA-Ile), which is the bioactive
form of plant hormone JA [37,38]. A high concentration of coronatine results in adverse
impacts for several plants, including disease symptoms and leaf chlorosis [39,40], while
the low concentration of coronatine increases crop resistance to multiple abiotic stresses,
such as chilling stress in cucumber (Cucumis sativus L.), salinity stress in cotton (Gossypium
hirsutum), and drought stress in soybean (Glycine max) [41–43]. Therefore, coronatine is
an effective and environmentally friendly plant regulator in promoting stress tolerance
of crops. However, the exact molecular mechanism of its action remains unclear. Based
on previous studies, it was hypothesized that coronatine could also enhance the chilling
tolerance of tomato, and this hypothesis needed experimental verification.

In this study, the tomato resistance to chilling stress is significantly improved by
coronatine treatment. Transcriptomic analysis and genome-wide ChIP-seq analysis by
H3K4me3 showed that coronatine enhances H3K4me3 modifications in multiple chilling
responsive genes, including CBFs, other first-wave TF genes, and JA-responsive genes, to
activate their expression and amplify chilling responses, thus enhancing chilling tolerance
of tomato.
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2. Results
2.1. Coronatine Increases the Chilling Tolerance of Tomato Plants Dependent on CBF Pathway

To test the effect of coronatine on the chilling tolerance of tomato, 0–4 nM coronatine
was sprayed onto 17-day-old tomato leaves for 24 h. After 2-day chilling exposure, coro-
natine significantly enhanced the chilling tolerance of tomato seedlings compared to the
control (Figure 1a). Ion leakage and relative injured area indicate injury caused by chilling
stress. Correspondingly, coronatine treatment significantly decreased the ion leakage and
relative injured area of tomato leaves (Figure 1b,c). Furthermore, statistical analysis showed
that the most efficient concentration of coronatine was 1 nM (Figure 1a–c). These results
indicate that coronatine pretreatment is an effective way to elevate the chilling tolerance of
tomato plants.
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Figure 1. Coronatine enhances the chilling tolerance of tomato plants. (a–c) Chilling tolerance of 
tomato seedlings treated with or without coronatine. 17-day-old tomato seedlings were sprayed 
with coronatine at 0, 0.25, 0.5, 1, 2, or 4 nM concentrations for 24 h and then exposed to 4 °C for 2 
days. After recovery at 25 °C for 2 days, representative images of tomato seedlings (a) were taken, 
ion leakage (b) and injured area (c) were measured. In (a), the picture above shows the representa-
tive tomato seedlings before exposure to 4 °C, and the picture below shows the representative to-
mato seedlings after exposure to 4 °C. In (b,c), bars represent means ± S.D. (n = 10), and the letters 
indicate significant differences by one-way ANOVA test (p < 0.05). Each small dot represents a single 
plant data. 

Figure 1. Coronatine enhances the chilling tolerance of tomato plants. (a–c) Chilling tolerance of
tomato seedlings treated with or without coronatine. 17-day-old tomato seedlings were sprayed with
coronatine at 0, 0.25, 0.5, 1, 2, or 4 nM concentrations for 24 h and then exposed to 4 ◦C for 2 days.
After recovery at 25 ◦C for 2 days, representative images of tomato seedlings (a) were taken, ion
leakage (b) and injured area (c) were measured. In (a), the picture above shows the representative
tomato seedlings before exposure to 4 ◦C, and the picture below shows the representative tomato
seedlings after exposure to 4 ◦C. In (b,c), bars represent means ± S.D. (n = 10), and the letters
indicate significant differences by one-way ANOVA test (p < 0.05). Each small dot represents a single
plant data.

To further explore whether coronatine regulates tomato chilling tolerance dependent
on the CBF pathway, the expression of three SlCBFs was examined in tomato seedlings,
which were pretreated with or without 1 nM coronatine for 24 h and then exposed to 4 ◦C
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for indicated times. RT-qPCR analysis showed that the expression levels of SlCBF1 and
SlCBF2 were significantly induced by coronatine treatment (Figure 2a). Moreover, chilling-
induction of SlCBF1 was also significantly increased in coronatine treatment samples
(Figure 2a). Because coronatine is the analog of JA-Ile, JA responses in these tomato
seedlings were also determined. Expression levels of Protein Inhibitor II (PI-II) and Threonine
Deaminase (TD) [44] were significantly induced by coronatine (Figure 2b), indicating that
the coronatine treatment was efficient. These results suggest that coronatine pretreatment
positively regulates the CBF pathway to improve the chilling tolerance of tomato.
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Figure 2. Coronatine induces the expression of SlCBFs and JA-responsive genes in tomato. (a) RT-
qPCR showing the expression of SlCBFs in tomato seedlings. (b) RT-qPCR showing the expression 
of JA-responsive genes PI-II, TD and SA-responsive gene PR1 in tomato seedlings. In (a,b), 17-day-
old tomato seedlings were sprayed with or without 1 nM coronatine for 24 h, and then exposed to 
4 °C for the indicated times. Total RNA was extracted and analyzed by RT-qPCR. Tomato ACTIN2 
was used as an internal control. The expression of indicated genes in untreated control plants was 
set at 1. Bars represent means ± S.D. (n = 3). The asterisks indicate significant differences by HSD 
Tukey test (** p < 0.01, *** p < 0.001, n.s. indicates no significant difference). 
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was performed to study the transcription level of genes in wild-type (AC) tomato seed-
lings, which were pretreated with or without 1 nM coronatine for 24 h and then exposed 
to 4 °C for 0 or 12 h. Through Illumina sequencer “Novaseq 6000”, 20 million reads per 
sample were obtained, and more than 90% of these reads could be mapped to the tomato 
genome (Slycopersicum_691_ITAG4.0) (https://solgenomics.net). A total of 18,745 ex-
pressed genes were identified, which were expressed in at least one of the 12 samples 
(Supplemental Table S1). Principal component analysis (PCA) showed that the 12 samples 
were grouped into four categories (Figure S1), indicating that the samples of different 
treatments can be separated well. 

Differentially expressed genes (DEG) in 4 °C or coronatine treatment samples vs. con-
trol samples were identified based on the filter criteria Log2 (|Fold Change|) ≥ 1, p < 0.05. 
Compared to control, 1119 upregulated genes and 1180 downregulated genes were iden-
tified in 4 °C treatment samples (Figure 3a and Supplemental Table S2). Gene Ontology 
(GO) enrichment analysis showed that the chilling-regulated genes were significantly en-
riched in the biological process “microtubule-based process” and “cell death”; and the 
molecular function GO terms “protein serine/threonine kinase activity”, “molecular trans-
ducer activity”, “signaling receptor activity”, “transcription factor activity”, and so on 
(Figure 3b and Supplemental Table S2). 

Meanwhile, a total of 596 coronatine-induced genes and 88 coronatine-suppressed 
genes were identified in 1 nM coronatine treatment samples (Figure 3c), indicating that 
coronatine mainly functions in gene activation. Further GO enrichment analysis showed 
that coronatine-responsive genes were obviously enriched in biological process GO terms 
“responses to wounding” and “microtubule-based process”; and molecular function cat-
egories of transcription factor activity, identical protein binding, lipase activity, 

Figure 2. Coronatine induces the expression of SlCBFs and JA-responsive genes in tomato. (a) RT-
qPCR showing the expression of SlCBFs in tomato seedlings. (b) RT-qPCR showing the expression of
JA-responsive genes PI-II, TD and SA-responsive gene PR1 in tomato seedlings. In (a,b), 17-day-old
tomato seedlings were sprayed with or without 1 nM coronatine for 24 h, and then exposed to 4 ◦C
for the indicated times. Total RNA was extracted and analyzed by RT-qPCR. Tomato ACTIN2 was
used as an internal control. The expression of indicated genes in untreated control plants was set at 1.
Bars represent means ± S.D. (n = 3). The asterisks indicate significant differences by HSD Tukey test
(** p < 0.01, *** p < 0.001, n.s. indicates no significant difference).

2.2. Coronatine Promotes the Expression of a Wide Range of Chilling-Responsive Genes through
Transcriptional Reprogramming

To identify chilling and coronatine responsive genes in tomato, RNA-seq analysis was
performed to study the transcription level of genes in wild-type (AC) tomato seedlings,
which were pretreated with or without 1 nM coronatine for 24 h and then exposed to
4 ◦C for 0 or 12 h. Through Illumina sequencer “Novaseq 6000”, 20 million reads per
sample were obtained, and more than 90% of these reads could be mapped to the tomato
genome (Slycopersicum_691_ITAG4.0) (https://solgenomics.net). A total of 18,745 ex-
pressed genes were identified, which were expressed in at least one of the 12 samples
(Supplemental Table S1). Principal component analysis (PCA) showed that the 12 samples
were grouped into four categories (Figure S1), indicating that the samples of different
treatments can be separated well.

Differentially expressed genes (DEG) in 4 ◦C or coronatine treatment samples vs.
control samples were identified based on the filter criteria Log2 (|Fold Change|) ≥ 1,
p < 0.05. Compared to control, 1119 upregulated genes and 1180 downregulated genes were
identified in 4 ◦C treatment samples (Figure 3a and Supplemental Table S2). Gene Ontology
(GO) enrichment analysis showed that the chilling-regulated genes were significantly
enriched in the biological process “microtubule-based process” and “cell death”; and
the molecular function GO terms “protein serine/threonine kinase activity”, “molecular

https://solgenomics.net
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transducer activity”, “signaling receptor activity”, “transcription factor activity”, and so on
(Figure 3b and Supplemental Table S2).
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Figure 3. RNA-seq analysis showing differentially expressed genes (DEGs) in tomato chilling or 
coronatine responses. (a) Volcano plots showing the fold changes of gene expression levels (TPM, 
Transcripts Per Kilobase Million) in tomato seedlings exposure to 4 °C for 12 h compared with con-
trol. Genes which exceed the thresholds of Log2 (|Fold Change|) ≥ 1.0, p−value < 0.05 are shown as 
red dots (up-regulated) and blue dots (down-regulated). (b) GO classification of chilling-regulated 
genes. a, Biological Process; b, Molecular Function. (c) Volcano plots showing the fold changes of 
gene expression levels in tomato seedlings sprayed with coronatine 1 nM compared with control. 
(d) GO classification of coronatine-regulated genes. a, Biological Process; b, Molecular Function. 

Figure 3. RNA-seq analysis showing differentially expressed genes (DEGs) in tomato chilling or
coronatine responses. (a) Volcano plots showing the fold changes of gene expression levels (TPM,
Transcripts Per Kilobase Million) in tomato seedlings exposure to 4 ◦C for 12 h compared with control.
Genes which exceed the thresholds of Log2 (|Fold Change|) ≥ 1.0, p−value < 0.05 are shown as
red dots (up-regulated) and blue dots (down-regulated). (b) GO classification of chilling-regulated
genes. a, Biological Process; b, Molecular Function. (c) Volcano plots showing the fold changes of
gene expression levels in tomato seedlings sprayed with coronatine 1 nM compared with control.
(d) GO classification of coronatine-regulated genes. a, Biological Process; b, Molecular Function.

Meanwhile, a total of 596 coronatine-induced genes and 88 coronatine-suppressed
genes were identified in 1 nM coronatine treatment samples (Figure 3c), indicating that coro-
natine mainly functions in gene activation. Further GO enrichment analysis showed that
coronatine-responsive genes were obviously enriched in biological process GO terms “re-
sponses to wounding” and “microtubule-based process”; and molecular function categories
of transcription factor activity, identical protein binding, lipase activity, transmembrane
signaling receptor activity, and so on (Figure 3d, Supplemental Table S3). In addition,
1055 upregulated genes and 1180 downregulated genes were identified in coronatine
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and 4 ◦C co-treatment samples when compared to samples only treated with 4 ◦C
(Supplemental Table S4).

To further test the mechanism of coronatine enhancing chilling tolerance of tomato, the
relationship between chilling and coronatine responsive genes was analyzed. A total of 412
co-upregulated genes and 71 co-downregulated genes were identified Figures 4a and S2),
revealing that the chilling and coronatine co-responsive genes are mainly activated genes.
Among these 412 co-upregulated genes, 273 chilling-activated genes could be upregulated
by coronatine treatment alone, and the expression of other 139 chilling-activated genes
could be enhanced by coronatine and 4 ◦C co-treatment (Figures 4a and S2). Therefore,
412 genes were defined as coronatine-induced chilling responsive genes. GO enrichment
analysis showed that 412 coronatine-induced chilling responsive genes were enriched in
the biological process “microtubule-based process”; and the molecular function GO terms
“signaling receptor activity”, “molecular transducer activity”, “protein serine/threonine
kinase activity”, “calmodulin binding”, “transcription factor activity”, and “dioxygenase
activity” (Figure 4b, Supplemental Table S5). Moreover, KEGG pathway analysis revealed
that these 412 genes were mainly enriched in “signal transduction”, “environmental in-
formation processing”, “plant hormone signal transduction”, and “biosynthesis of other
secondary metabolites” (Figure S3, Supplemental Table S6). These results suggest that the
coronatine-induced chilling responsive genes are mainly involved in signal transduction
and environmental cues, which are very important for enhancing the chilling tolerance of
tomato seedlings.
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coronatine. (b) GO classification of 412 coronatine-induced chilling responsive genes. a, Biological
Process; b, Molecular Function.

2.3. Chilling-Induced CBFs, Other First-Wave TF Genes, and JA-Responsive Genes Play Essential
Roles in Coronatine-Mediated Chilling Tolerance

Multiple cold-induced TF genes in first-wave of cold response, containing WRKY33,
COLD INDUCED ZINC FINGER PROTEIN 2 (CZF2), MYB44, MYB73, and NAC domain protein,
are directly regulated by CBFs and coordinate with CBFs to amplify cold response [3,6,10].
Same as that, the expression levels of more than 20 TF genes, such as WRKYs, ZINC FINGER
proteins (ZF proteins), AUXIN RESPONSE FACTORs (ARFs), and NAC domain proteins, were
significantly upregulated by chilling, coronatine, and co-treatment (Figure 5a, Supplemental
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Table S5). Further RT-qPCR tests confirmed that these WRKYs and ZF genes were distinctly
upregulated by chilling, coronatine, and co-treatment (Figure 5b), indicating that pretreatment
of coronatine triggers the expression of multiple chilling-activated TF genes, thus coordinating
with CBFs to amplify chilling-response.
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Figure 5. Transcription factor (TF) genes peaked out from coronatine-induced chilling responsive
genes. (a) Heatmap showing the gene expression levels of TF genes peaked out from coronatine-
induced chilling responsive genes with TPM (Transcripts Per Million). (b) Expression of WRKY and
ZINC FINGER TF genes in tomato seedlings. 17-day-old tomato seedlings were sprayed with or
without 1 nM coronatine for 24 h, and then exposed to 4 ◦C for 12 h. Total RNA was extracted and
analyzed by RT-qPCR. Tomato ACTIN2 was used as an internal control. The expression of indicated
genes in untreated control plants was set at 1. Bars represent means ± S.D. (n = 3), and the letters
indicate significant differences by one-way ANOVA test (p < 0.05).

Furthermore, according to previous studies [32], about 18% (73 genes) of the coronatine-
induced chilling responsive genes were also JA-responsive genes (Figure 6a,b, Supplemen-
tal Table S7). Among them, JA biosynthetic gene TomLOXD (LIPOXYGENASE D) and
protein kinase MAPK5 (Figure 6b) are well-characterized early JA-responsive genes [45,46].
These results suggest that coronatine-induced JA-responsive genes also play important
roles in promoting tomato resistance to chilling stress.
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Figure 6. JA-responsive genes peaked out from coronatine-induced chilling responsive genes.
(a) Venn diagram showing the 73 co-upregulated genes in response to chilling, coronatine and JA.
(b) Heatmap showing the gene expression levels of JA-responsive genes peaked out from coronatine-
induced chilling responsive genes with TPM.

2.4. Identification of the Genome-Wide H3K4me3 Profiles in Tomato

To dissect the genome-wide histone modifications during coronatine-triggered tran-
scriptional activation, ChIP-seq assays were performed using tomato seedlings treated
with or without coronatine, and two independent biological replicates were performed.
Same as previous studies on H3K4me3 profiles in animals and plants [26,27], the H3K4me3
signals mostly cover a region around the transcription start sites (TSS) (Figure 7a). A
total of 25,048, 24,451, 22,297, and 26,599 H3K4me3 peaks were identified in control and
coronatine treatment samples of two independent biological replicates through MACS2
software (Figure 7b, Supplemental Table S8) [47]. Next, the H3K4me3 peaks were an-
notated using ChIPseeker software [48] and found that about 85% of H3K4me3 signals
were enriched in genic regions (from 1 kb upstream of TSS to 300 bp downstream of TES)
(Figure 7c). About half of tomato genes (~18,000 genes) were associated with H3K4me3
modifications both in control and coronatine treatment samples of two independent biolog-
ical replicates (Figures 7d and S4a, and Supplemental Table S8). These results reveal that
H3K4me3 modifications mainly present in coding regions and may play important roles in
the transcriptional regulation of tomato.
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(a) Distribution of the H3K4me3 signals in tomato seedlings treated with or without coronatine.
Each row represents a region of ±3 kb around the TSS and ranked by the H3K4me3 read counts in
promoters. Two independent biological replicates are showed. (b) The number of H3K4me3 peaks in
tomato seedlings treated with or without coronatine. (c) The proportion of H3K4me3 peaks in the
genic or intergenic regions of the tomato genome. The genic regions include the gene body and the
region 1 kb upstream of TSS and 300 bp downstream of TES. (d) Venn diagram showing the overlap
genes associated with H3K4me3 modifications between two independent biological replicates.

2.5. Coronatine-Enhanced H3K4me3 Modifications Are Associated with
Transcriptional Reprogramming

To explore the function of H3K4me3 modifications in coronatine-mediated chilling
tolerance, the H3K4me3 peaks in coronatine treatment samples were compared with that
in untreated control samples. A total of 14,209 and 9215 coronatine-enhanced H3K4me3
peaks were identified in two independent biological replicates, and these peaks mostly
cover a region around the TSS (Figure 8a and Supplemental Table S9). Through ChIPseeker
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software, 5804 overlap genes in which the H3K4me3 modifications were enhanced by
coronatine treatment were identified (Figure 8b and Supplemental Table S9). The H3K4me3
peaks in coronatine-induced chilling responsive gene regions were further analyzed. Venn
diagram showed that the H3K4me3 peaks in 68 coronatine-induced chilling responsive
genes were enhanced by coronatine (Figure 8c and Supplemental Table S9). GO enrichment
analysis revealed that the 68 genes were enriched in the molecular function GO terms
“transcription factor activity” (Figure 8d and Supplemental Table S9). The H3K4me3
modifications on master TF genes SlCBF1 and SlCBF2 and other chilling-induced TF
genes were significantly increased by coronatine treatment (Figures 9a,b and S4b). In
addition, coronatine also enhanced the H3K4me3 modifications on JA-responsive genes
such as TomLoxD and MAPK5 (Figures 9b and S4b). These results indicate that coronatine
increases H3K4me3 modifications to make greater chromatin accessibility in multiple
chilling-activated genes, thus triggering an extensive transcriptional reprogramming to
enhance the chilling tolerance of tomato.
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Figure 8. Coronatine-enhanced H3K4me3 modifications are associated with transcriptional regulation.
(a) Average distance of the coronatine-enhanced H3K4me3 peaks flanking TSSs throughout the
genome in two independent biological replicates. (b) Venn diagram showing the overlap genes that
are affected by coronatine in H3K4me3 modifications between two independent biological replicates.
(c) Venn diagram showing the overlap of genes are affected by coronatine in H3K4me3 modifications
and chilling responsive genes upregulated by coronatine. (d) GO classification of 68 overlapped
genes in (c).



Int. J. Mol. Sci. 2022, 23, 10049 11 of 20Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 13 of 22 
 

 

 
Figure 9. Genome browser view of the H3K4me3 modifications at the gene regions. (a) Genome 
browser view of the H3K4me3 RPM (reads per million reads) at the SlCBFs gene regions in two 
biological replicates. (b) Genome browser view of the H3K4me3 RPM at the typical ZINC FINGERs 
and JA-responsive gene TomLoxD regions in two biological replicates. 

3. Discussion 
3.1. Coronatine Is Involved in JA- and Oxidative Reactions-Mediated Chilling Tolerance 

Numerous studies have shown that the plant hormone JA positively regulates cold 
response in multiple plants. JA promotes the degradation of JASMONATE ZIM-DO-
MAIN (JAZ) proteins, which physically interact with ICE1 and repress the transcriptional 
function of ICE1, thereby enhancing CBF-dependent plant tolerance to freezing stress [49]. 
JA reduces the chilling injury of several tropical and subtropical fruits, such as mango, 
banana, and tomato fruits [50–53]. MeJA treatment significantly induces the expression of 
many cold-responsive genes under cold storage to reduce the damage to plants caused by 
cold [52]. In tomato, JA coordinates with melatonin and forms a positive feedback loop to 
amplify the cold responses [54]. Coronatine is an analog of JA-Ile and regulates amounts 
of JA-responsive genes in tomato leaves [37,39]. In this study, 73 JA-responsive genes were 
identified in the coronatine-induced chilling responsive genes, including JA biosynthetic 
gene TomLoxD, MAPK5, and the MYC2 repressor JAZ1 (Figure 5d, Supplemental Table 
S7). These genes are not only well-characterized early JA-responsive genes [45,46] but also 
COR genes [13]. Consistent with that, H3K4me3 modifications on TomLoxD and MAPK5 

Figure 9. Genome browser view of the H3K4me3 modifications at the gene regions. (a) Genome
browser view of the H3K4me3 RPM (reads per million reads) at the SlCBFs gene regions in two
biological replicates. (b) Genome browser view of the H3K4me3 RPM at the typical ZINC FINGERs
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3. Discussion
3.1. Coronatine Is Involved in JA- and Oxidative Reactions-Mediated Chilling Tolerance

Numerous studies have shown that the plant hormone JA positively regulates cold
response in multiple plants. JA promotes the degradation of JASMONATE ZIM-DOMAIN
(JAZ) proteins, which physically interact with ICE1 and repress the transcriptional function
of ICE1, thereby enhancing CBF-dependent plant tolerance to freezing stress [49]. JA
reduces the chilling injury of several tropical and subtropical fruits, such as mango, banana,
and tomato fruits [50–53]. MeJA treatment significantly induces the expression of many
cold-responsive genes under cold storage to reduce the damage to plants caused by cold [52].
In tomato, JA coordinates with melatonin and forms a positive feedback loop to amplify
the cold responses [54]. Coronatine is an analog of JA-Ile and regulates amounts of JA-
responsive genes in tomato leaves [37,39]. In this study, 73 JA-responsive genes were
identified in the coronatine-induced chilling responsive genes, including JA biosynthetic
gene TomLoxD, MAPK5, and the MYC2 repressor JAZ1 (Figure 6b, Supplemental Table S7).
These genes are not only well-characterized early JA-responsive genes [45,46] but also COR
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genes [13]. Consistent with that, H3K4me3 modifications on TomLoxD and MAPK5 were
distinctly enhanced by coronatine (Figures 9b and S4b). Moreover, coronatine-induced
chilling responsive TFs, such as WRKYs and ZF proteins, also played critical roles in JA
signaling pathway (Figure 5a) [45,46]. These results reveal that the JA pathway is closely
related to coronatine-mediated chilling tolerance.

Cold-induced elevated levels of reactive oxygen species (ROS) damage DNA, protein,
and the structure of biofilm, thus impacting plant development and metabolism [55,56].
Several antioxidant enzymes, including ascorbate peroxidase (APX), superoxide dismutase
(SOD), and reduced glutathione (GSH), are involved in reducing ROS production. In closely
related species, the activity of these enzymes in chilling-tolerant species seems to be higher
than that in chilling-sensitive species [22]. Overexpression of peroxidase genes enhances
plant resistance to cold stress [57–59]. Consistent with that, the GO term “dioxygenase activ-
ity” was significantly enriched in coronatine-induced chilling responsive genes (Figure 4b).
Among them, the expression of multiple peroxidase genes was significantly induced by
coronatine pretreatment (Supplemental Table S5), which may help plants accumulate more
peroxidases, thus reducing the damage of chilling-induced ROS bursts.

3.2. Coronatine Is Implicated in the Early Events of Chilling Response

Recently, protein kinases have been reported to participate in early events of cold sig-
nal transduction [60]. In Arabidopsis, OPEN STOMATA 1 (OST1) is activated by cold stress
and phosphorylates ICE1 to inhibit the degradation of ICE1, thus positively regulating
CBF expression and freezing tolerance [61]. COLD-RESPONSIVE PROTEIN KINASE 1
(CRPK1) phosphorylates 14-3-3 proteins in the cytoplasm, which triggers 14-3-3s to translo-
cate into the nucleus to promote the degradation of CBFs [62]. Moreover, protein kinase
MPK3/MPK6 negatively regulates ICE1 and freezing tolerance [63]. In tomato, protein
kinases and phosphorylation-mediated signaling transduction play essential roles in the
regulation of chilling tolerance [64]. A receptor-like protein kinase NECROTIC DWARF
(NDW) was identified by map-based cloning and proved to positively regulate the chilling
tolerance of tomato [65]. In addition, MULTIPLE RESISTANCE-ASSOCIATED KINASE 1
(MRK1) function as a novel positive regulator of multiple stresses, including chilling and
heat stress [66]. In this study, coronatine-induced chilling responsive genes were enriched
in the molecular function GO term “protein serine/threonine kinase activity” (Figure 4b).
Among these protein kinases, several well-characterized stress-responsive genes such as
MAPK5, FLS2, and ATN1-LIKE PROTEIN were identified (Supplemental Table S5), indicat-
ing that the coronatine is related to phosphorylation-mediated cold signaling transduction.
Further investigation of the molecular mechanisms by which these kinases are activated by
cold and coronatine will help us to understand early events of cold response in tomato.

Plant photosynthesis is sensitive to low temperatures [67]. The photosynthetic pa-
rameters include maximum quantum yield of photosystem II (Fv/Fm), performance index
(PIABS), total chlorophylls (Chls), net photosynthetic rate (Pn), intercellular CO2 concentra-
tion (Ci), and water use efficiency (WUE) are significantly reduced by cold stress [23,68].
The decrease in these photosynthetic parameters is recovered under long-term cold treat-
ment [23], which may be related to cold acclimation. Some of the COR genes encode
chloroplast-associated proteins such as COR15a and COR15b, which protect chloroplast
membrane and stromal proteins, thus reducing the inhibition of photosynthesis caused
by cold stress [69,70]. In this study, coronatine-induced chilling responsive genes also con-
tained chloroplast-associated genes, including CYTOCHROME B5 REDUCTASE, LIPOXY-
GENASE 3, and ATP CARRIER PROTEIN 1, which may function in mitigating the damage
to the photosystem and the inhibition of photosynthesis under chilling stress.

Calcium signal and calcium channels/transporters function in cold sensing and early
signaling transduction [60]. In rice, COLD1 interacts with the G-protein α subunit to
activate the Ca2+ channel for sensing cold signal [71]. The Ca2+ transporters ANNEXIN1
(ANN1) and ANN4 were shown to involve in the cold-induced cytosolic Ca2+ influx and
freezing tolerance in Arabidopsis [72]. In tomato, calcium-related kinases, such as CPK27
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(Calcium-dependent Protein Kinases) and CaCIPK13 (Cold-induced CBL-Interacting Pro-
tein Kinase 13), also positively regulate cold response [73,74]. Consistent with that, the
molecular function GO term “calcium binding” was also enriched in coronatine-induced
chilling responsive genes in tomato (Figures 3b,d and 4b). According to this, coronatine is
speculated to trigger early events similar to chilling stress, thus resulting in high expression
of hundreds of chilling-regulated genes.

3.3. Epigenetic Modifications Play Critical Roles in the Coronatine-Mediated Chilling Tolerance

In eukaryotes, epigenetic modifications produce various chromatin states for reg-
ulating stress-responsive gene expression, thus allowing plants to adapt to harsh and
changeable environmental conditions [24,25]. Under chilling stress, the levels of his-
tone modifications are altered, corresponding with gene expression adjustment [24,25,75].
A variety of histone modifications, H3K27me3, H3K9ac, and H4K5ac, were shown to
be involved in chilling stress [76–78]. In potato (Solanum tuberosum), chilling stress en-
hances H3K4me3-H3K27me3 bivalent modifications and chromatin accessibility of active
genes [79]. Indeed, H3K4me3 modifications in numerous coronatine-induced chilling
responsive genes, including SlCBFs and other first-wave TF genes, kinases involved in
early events of chilling response, and JA-responsive genes, were extensively induced by
coronatine (Figures 8 and S4 and Supplemental Table S9). Therefore, coronatine pretreat-
ment widely enhances the chromatin accessibility of chilling-activated genes to increase
their expression, thus enhancing the chilling tolerance of tomato.

3.4. CBFs and Other First-Wave Transcription Factors Play Essential Roles in
Coronatine-Mediated Chilling Tolerance Similar to “Chilling Acclimation”

Temperate plants such as wheat and Arabidopsis acquire freezing tolerance by cold
acclimation, in which the CBF signaling pathway plays a critical role. The function and
targets of CBFs have been extensively studied in Arabidopsis [3–7]. Hundreds of CBF
regulons (cold-responsive genes regulated by CBFs) and 164 CBF directly targeted COR
genes were identified [3]. Among them, first-wave transcription factors, such as R2R3-MYB,
WRKY, ZINC FINGER proteins, and NAC domain proteins, function in the early events of
cold response [3]. These first-wave transcription factors coordinate with CBFs to amplify the
expression of COR genes. Different from temperate plants, tropical plants such as tomato
and cassava acquire chilling tolerance by exposure to mild low temperature (10–14 ◦C), a
process named chilling acclimation [13,80]. A study in tomato has shown that chilling and
cold acclimation are regulated by similar transcription factors, such as CBFs, WRKYs, MYBs,
bZIPs, ZINC FINGERs, and bHLHs [13]. Consist with that, over 20 transcription factors
were identified in tomato chilling responsive genes (Supplemental Table S3) and were
classified mainly into the WRKY, AP2/ERF, bHLH, bZIP, ZINC FINGER, MYB, ARF, and
NAC families. A lot of these transcription factors were also enriched in coronatine-induced
chilling responsive genes (Figures 4 and 5a). These results demonstrate that CBFs and
other first-wave transcription factors play essential roles in coronatine-mediated chilling
tolerance, similar to “chilling acclimation”.

More importantly, H3K4me3 modifications on these transcription factors were signifi-
cantly increased by coronatine. Because the H3K4me3 modifications are mainly associated
with transcriptional activation, these results indicate that the coronatine pretreatment en-
hances the H3K4me3 modifications in chilling-induced TF genes to activate their expression,
thus amplifying the chilling response in tomato.

4. Materials and Methods
4.1. Plant Material and Growth Conditions

Tomato (Solanum lycopersicum) cv Ailsa Craig (AC) plants were used for this research.
For germination, tomato seeds were placed on madid filter paper for 3–4 days. Germinated
seeds with uniform radical lengths were transferred into pots (7 cm × 7 cm × 8.5 cm,
length × width × depth) and one tomato seedling per pot. The culture medium was a
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mixture of 66% soil (Pindstrup substrate, 10–30 mm, Denmark) and 34% vermiculite. Plants
were grown in a greenhouse maintained at 25 ◦C and 60% relative humidity with daily
cycles of 16 h of light (light intensity, 200 µmol photons m−2 s−1) and 8 h of dark.

4.2. Production and Preparation of Coronatine

Coronatine used in this work was produced by microbial fermentation and purified
by the Centre for Crop Chemical Control, China Agricultural University. The fermentation
broth of Pseudomonas syringae was extracted with organic solvent, further concentrated, and
purified by column chromatography to obtain the crude product, and then recrystallized
to obtain the pure product. The purity of coronatine was greater than 99%, measured by
high-performance liquid chromatography (Milford, MA, USA). The coronatine product can
be purchased from Chengdu NewSun Crop Science Co., Ltd. in China. In total, 958.2 µg
coronatine was dissolved in 100 µL methanol and then diluted with water to 1 mM for
storing. Before treatment, the mother solution of coronatine was diluted to a working
concentration by water.

4.3. Plant Treatment

Coronatine treatments were performed as described in [42] with minor modifications.
Seventeen-day-old tomato seedlings with two fully expanded leaves were sprayed with
0.25, 0.5, 1, 2, and 4 nM of coronatine, and the amount of liquid per plant was 2.5 mL.
Tomato seedlings treated with water, which contained the same amount of methanol as
the coronatine solution, were used as control. For chilling treatment, tomato seedlings
pretreated with or without coronatine for 24 h were put into a growth chamber maintained
at 4 ◦C and 60% relative humidity for 2 days. Then, the seedlings were transferred to a
greenhouse maintained at 25 ◦C for additional 2 days before counting the injured area
and ion leakage. Each treatment group contained 10 seedlings, and four independent
biological replicates were performed. The relative injured area of first true leaf of every
seedling was measured by ImageJ software and calculated by the following formula:
Injured area (%) = injured area/full area × 100.

4.4. Ion Leakage Assays

Ion leakage assays were performed as described in [81] with minor modifications.
After chilling treatment, the first true leaf of every seedling was collected into 50 mL tubes
containing 40 mL of deionized water. Then the conductance of the water was detected as
S0. The solution was shaken for 1 h at 25 ◦C and then measured as S1. The samples were
boiled at 100 ◦C for 30 min, shaken at 25 ◦C for 1 h, and then detected as S2. Ion leakage
was calculated by the ratio of (S1 − S0)/(S2 − S0).

4.5. RT-qPCR Assays

Through TRIzol reagent (Invitrogen, Thermo Fisher Scientific, USA), total RNA was
extracted from the true leaves of tomato seedlings, which were sprayed with coronatine
at 0 or 1 nM concentrations for 24 h and then exposed to 4 ◦C for 0 or 12 h. Then, the
total RNA was reverse transcribed by M-MLV reverse transcriptase (Promega, Promega
Corporation, USA). SYBR Green regent (Takara, TaKaRa Bio Group, Japan) was used for
the quantitative real-time PCR assays. RT-qPCR analysis was performed as previously
described in [82] with minor modifications. Briefly, relative transcript abundance was
assessed using the comparative CT method. The expression of tomato ACTIN2 was used
as a standard control. After calculation of ∆CT (CT, gene of interest—CT, actin2), the relative
expression level was calculated as 2−∆CT. The 2−∆CT value of untreated WT plants was
set to 1 for normalization [2−∆CT(WT(0 h))/2−∆CT(WT(0 h)) = 1]. The primers used for the
RT-qPCR assays are listed in Supplemental Table S10.
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4.6. RNA-Seq Analysis

For RNA-seq analysis, 17-day-old tomato seedlings were sprayed with coronatine
at 0 or 1 nM concentrations for 24 h and then exposed to 4 ◦C for 0 or 12 h. Leaves
of fifteen seedlings were harvested for each sample. In order to facilitate subsequent
description, plants grown under normal conditions untreated with coronatine and chilling
were named as control. Total RNA was extracted from these tomato leaves by TRIzol reagent
(Invitrogen). Three independent biological replicates were performed for sequencing.
Through Illunima NovaSeq 6000 at Beijing Berry Genomics, 20 million reads (150-bp
paired-end) per sample were generated. Data analysis was performed as described in [3]
with minor modifications. Briefly, FastQC (v.0.11.9) (http://www.bioinformatics.bbsrc.
ac.uk/projects/fastqc) software was used for quality control of raw data (fastq format).
Then reads were mapped to the tomato genome (Slycopersicum_691_ITAG4.0) by HISAT2
(v.2.2.0) with default parameters. The read counts were calculated by FeatureCounts
(v.2.0.1) software. Then, R package DESeq2 (v.1.30.0) was used for calculating differentially
expressed genes (DEGs) and principal component analysis (PCA). Transcripts Per Kilobase
Million (TPM) values were used for DEGs analysis. Significant differential expression genes
were identified by the filter criteria Log2 (|Fold Change|) ≥ 1, p < 0.05 (one-way ANOVA
test). GO enrichment analysis of significant DEGs was performed by agriGO v2.0 [83].
TBtools software was used for performing the heatmap of DEGs (Chen et al., 2020).

4.7. ChIP-Seq Analysis

For ChIP-seq analysis, the tomato growth conditions were the same as RNA-seq
samples, and two independent biological replicates were performed. Seventeen-day-old
tomato seedlings sprayed with or without 1 nM coronatine for 24 h were harvested as
ChIP samples and cross-linked with 1% formaldehyde for 10 min. The nuclei were isolated
and resuspended in lysis buffer (5 mM Tris-HCl [pH 8.0], 10 mM EDTA [pH 8.0], 200 mM
NaCl, 1% SDS, 1 mM DTT, 1 × inhibitor cocktail). The DNA fragment was sheared to
250 ~400 bp by sonication. Then, 50 µL of the sheared chromatin was used as the input
control, and 10 µg anti-H3K4me3 antibody (Abcam, Cat# ab8580, RRID: AB_306649) was
incubated with 30 µL aliquot of DynabeadsTM Protein G (Invitrogen) for 8 h at 4 ◦C and
then incubated with the remaining chromatin overnight at 4 ◦C. The immunoprecipitated
complexes were eluted from the Dynabeads and incubation with 20 µL 5 M NaCl for 8 h
at 65 ◦C. After that, DNA was recovered by MinElute PCR Purification Kit (QIAGEN).
The libraries for sequencing were prepared by TransNGS® Tn5 DNA Library Prep Kit for
Illumina® (KP121-11) and sequenced by Illunima NovaSeq 6000 at Beijing Berry Genomics.
Then, 20 million reads (150-bp pair-end) per sample were generated by sequencing.

Data analysis was performed as described in [3] with minor modifications. Raw
fastq data were processed by the Trim_Galore with Q20 (Phred score >20) for adaptor
removal and quality control. After that, the cleaned reads were mapped to the tomato
genome (Slycopersicum_691_ITAG4.0) through Bowtie2 (v 2.4.2). Using SAMtools (v1.4.1)
with the MAQ20 (map quality > 20) filtration, unique aligned reads were processed for
sequence alignment and mapping. Then, the peak calling was performed by MACS2 (v2.1.7)
(bandwidth = 300; model fold = [5,50]; q-value cutoff = 0.01) [47]. The heatmaps were
performed by deepTools2.0 (https://deeptools.readthedocs.io/en/develop/index.html).

4.8. Statistical Analysis

GraphPad Prism 8.0 software was used for Data sets analysis. Comparisons between
different treatments were tested by the one-way ANOVA test. Comparisons between two
samples were analyzed using the HSD Tukey test.

5. Conclusions

This work revealed that a low concentration of coronatine increases H3K4me3 modifi-
cations in multiple chilling-responsive genes, including CBFs, other first-wave TF genes,
and JA-responsive genes, to make greater chromatin accessibility of these activated genes.

http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc
https://deeptools.readthedocs.io/en/develop/index.html


Int. J. Mol. Sci. 2022, 23, 10049 16 of 20

Accordingly, the expression of CBFs and other first-wave TF genes is significantly induced
by coronatine to trigger an extensive transcriptional reprogramming, including kinases
and calcium binding genes related to early events of chilling responses, JA biosynthetic
genes, and peroxidase genes, thereby obtaining a comprehensive chilling adaptation. Based
on these mechanisms, coronatine pretreatment performs comparable function as “chill-
ing acclimation”, thus promoting the chilling tolerance of tomato (Figure 10). This work
demonstrated that coronatine can be used as an effective regulator to help tomato overcome
harsh environmental conditions, and it will shed more light on the epigenetic regulation in
plant chilling responses.
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Figure 10. Coronatine enhances chilling tolerance of tomato plants by H3K4me3 modifications
and transcriptional reprogramming. Coronatine increases H3K4me3 modifications to make greater
chromatin accessibility in multiple chilling-activated genes. Corresponding to that, the expression
of essential chilling-responsive genes, including CBFs, other first-wave TF genes and JA-responsive
genes, is significantly induced by coronatine to trigger an extensive transcriptional reprogramming,
thus enhancing chilling tolerance of tomato.
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