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Lipidome-based rapid diagnosis with machine learning
for detection of TGF-β signalling activated area
in head and neck cancer
Hiroki Ishii 1, Masao Saitoh2, Kaname Sakamoto1, Kei Sakamoto3, Daisuke Saigusa4, Hirotake Kasai5, Kei Ashizawa1, Keiji Miyazawa6,
Sen Takeda7, Keisuke Masuyama1 and Kentaro Yoshimura7

BACKGROUND: Several pro-oncogenic signals, including transforming growth factor beta (TGF-β) signalling from tumour
microenvironment, generate intratumoural phenotypic heterogeneity and result in tumour progression and treatment failure.
However, the precise diagnosis for tumour areas containing subclones with cytokine-induced malignant properties remains
clinically challenging.
METHODS: We established a rapid diagnostic system based on the combination of probe electrospray ionisation-mass
spectrometry (PESI-MS) and machine learning without the aid of immunohistological and biochemical procedures to identify
tumour areas with heterogeneous TGF-β signalling status in head and neck squamous cell carcinoma (HNSCC). A total of 240 and 90
mass spectra were obtained from TGF-β-unstimulated and -stimulated HNSCC cells, respectively, by PESI-MS and were used for the
construction of a diagnostic system based on lipidome.
RESULTS: This discriminant algorithm achieved 98.79% accuracy in discrimination of TGF-β1-stimulated cells from untreated cells.
In clinical human HNSCC tissues, this approach achieved determination of tumour areas with activated TGF-β signalling as
efficiently as a conventional histopathological assessment using phosphorylated-SMAD2 staining. Furthermore, several altered
peaks on mass spectra were identified as phosphatidylcholine species in TGF-β-stimulated HNSCC cells.
CONCLUSIONS: This diagnostic system combined with PESI-MS and machine learning encourages us to clinically diagnose
intratumoural phenotypic heterogeneity induced by TGF-β.
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BACKGROUND
Tumour invasion and metastasis, and causes of treatment failure
and death remain clinical issues.1,2 Advanced omics technologies
targeting a single cell or a tumour bulk reveal the presence of
tumour heterogeneity, characterised by phenotypic sub-clonality
of tumour malignancy within a single tumour,3–6 which supports
tumour invasion, metastasis, and treatment resistance in head and
neck squamous cell carcinoma (HNSCC).5,7 Several extracellular
cytokines are secreted locally from the tumour microenvironment
to facilitate tumour invasion and metastasis through activating
pro-oncogenic signalling pathways in tumour cells. Cytokine-
mediated extracellular signals are both spatial and temporal
within a single tumour, resulting in different subclones of tumour
cells showing different responses to these signals.8,9 Therefore,
intratumoural phenotypic heterogeneity affects the clinical
determination of tumour malignancy and potentially exerts a
harmful influence on treatment decisions.

Transforming growth factor beta (TGF-β), a critical mediator in
the induction of the epithelial–mesenchymal transition (EMT) and
in the development of the tumour microenvironment, renders
tumour cells more invasive and metastatic.10 Different concentra-
tions of TGF-β1 ligand generate intratumoural heterogeneity of
TGF-β1 signalling at the tumour–stroma interface, and increase the
pool of TGF-β1-responding progenitor cells responsible for drug
resistance and tumour recurrence in SCC.11,12 Recent studies have
suggested that tumour cells with a partially activated EMT program
localize to the leading edge of primary tumours, and a partial EMT
results in phenotypic diversity within a single tumour.5,13 Therefore,
precise diagnosis of intratumoural heterogeneity of tumour cells
with a different TGF-β signalling status needs to be achieved for
better clinical decisions regarding appropriate treatments for
tumour invasion and metastasis. However, accumulating evidences
have had little impact on the establishment of diagnoses targeting
intratumoural phenotypic heterogeneity at the bedside.
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Ambient ionisation methods combined with mass spectrometry
(MS), such as desorption electrospray ionisation-MS,14 rapid
evaporative ionisation-MS,15 and probe electrospray ionisation
(PESI)-MS, are powerful tools for the rapid analysis of biological
molecules. Especially PESI-MS enables acquisition of mass spectra
showing profiles of lipid metabolites from a small amount of
biological sample (10 mg) with minimal invasiveness and pre-
treatment.16,17 The lipidome is informative in the acquisition of
malignant phenotypes of tumour cells.18 Importantly, we explored
the intraoperative diagnosis system using PESI-MS combined with
machine learning to discriminate cancerous regions from non-
cancerous regions in HNSCC.19 This approach not only precisely
determines a tumour border between non-cancerous and
cancerous regions, as assessed by pathologists, but also reveals
lipid metabolic heterogeneity in HNSCC tissues. Previous reports
have shown that activation of malignant signalling directly
influences lipid metabolism in tumour cells, but it remains unclear
as to whether PESI-MS could characterise alterations in lipid
metabolites in tumour cells stimulated with TGF-β1, and whether
it is applicable in determining regions containing TGF-β1-
stimulated tumour cells.
Here we established a rapid diagnostic system for determining

heterogenous TGF-β signalling status within a single HNSCC
tumour, based on PESI-MS and machine learning. To construct a
diagnostic algorithm for tumour areas stimulated with TGF-β1 in
HNSCC, we acquired a total of 240 and 90 mass spectra from
human recombinant TGF-β1-stimulated or -unstimulated human
HNSCC cells, respectively, using both the positive- and negative-
ion modes, and then logistic regression (LR) was used for
discrimination analysis as a diagnostic algorithm. To confirm the
usability of our diagnostic system in clinical settings, we sought to
discriminate tumour areas with activated TGF-β signalling within a
HNSCC tissue. Moreover, lipid characterisation of HNSCC cells
stimulated with TGF-β1 revealed an increase in phosphatidylcho-
line (PC) species with an alteration in lysophosphatidylcholine
acyltransferase 2 (LPCAT2) expression. Taken together, our data
suggest that this system using PESI-MS and machine learning
allows us to rapidly diagnose tumour areas with heterogenous
TGF-β signalling status within a HNSCC tissue. This achievement
could contribute to better treatment decisions for HNSCC patients.

MATERIALS AND METHODS
Cell lines and cell viability assay
Seven human HNSCC cell lines (SAS, HSC2, HSC3, HSC4, Ca9-22,
KUMA1, and Gun-1) were cultured as described previously.20

All human HNSCC cell lines were authenticated by short tandem
repeat (STR) profiling. Cells were stimulated in vitro for 24–48 h
with 2 ng/ml recombinant TGF-β1 and dimethyl sulfoxide as a
control. For viability assays, the number of TGF-β1-stimulated
HNSCC cells was evaluated 48 h after treatment with 10 µM
docetaxel (DTX) (Sigma-Aldrich) or 15 µM cisplatin (CDDP) (Sigma-
Aldrich) by cell counter and their viability was determined by
scoring of Trypan blue uptake.

Quantitative RT-PCR
Total RNA was extracted from cells using the RNeasy Mini Kit
(Qiagen) and then reverse transcribed into complementary DNA
(cDNA) using the SuperScript VILO cDNA synthesis kit (Invitrogen).
Quantitative RT-PCR (RT-qPCR) was performed using SYBR Green
Master and the ABI7300 real-time PCR system (Applied Biosys-
tems). Each mRNA was normalised to GAPDH mRNA levels. The
relative expression levels of targeted genes were calculated by the
2−ΔΔCt method.

Immunoblotting analysis
Protein extracts from HNSCC cells were analysed by immunoblot-
ting as previously described.20 The following primary antibodies

were used: human phospho-SMAD2 (1:1000, AB3849; Millipore
Sigma), SMAD (1:1000, 138D4; Cell signalling Technology), LPCAT2
(1:1000, NBP1-88921; Novus Biologicals), and α-tubulin (1:2000,
DM1A; Sigma-Aldrich). Anti-mouse/rabbit/goat secondary antibo-
dies were purchased from Jackson ImmunoResearch Laboratories
(1:2000). Blots of each protein were visualised using Amersham
Bioscience ECL Western blotting detection reagent (GE-Health-
care). All images were acquired with a LAS-4000 mini imager
(Fujifilm) and protein bands were also quantified by Image Reader
LAS-4000 software (Fujifilm).

Wound healing assay
Cells were inoculated in 6-well plates. After cells reached
confluency, they were scratched with a 10-µl disposable pipette
tip. Migration of wound edges was measured at five random
points on images acquired using an ECLIPSE TS100 microscope
(Nikon), and the cell migration distance after 10 h was compared
with the distance at 0 h. Data analysis was performed according to
the previous protocol.20

Study approval and immunohistochemistry
Oral tissues were fixed by neutral-buffered formalin and
embedded in paraffin to assess SMAD2 phosphorylation. After
preparation of thin sections, slides were deparaffinised with
xylene, followed by rehydration through graded alcohol to water.
Antigen retrieval was performed in target retrieval solution
(pH 9.0) at 120 °C for 15–20min (S2367; Dako). Then, endogenous
peroxidase was quenched with 3% (v/v) H2O2 for 5 min.
After blocking with 1% bovine serum albumin (BSA) at room
temperature for 2 h, the sections were incubated with a primary
antibody diluted with 1% BSA in phosphate-buffered saline (PBS).
Slides were incubated overnight at 4 °C with primary monoclonal
antibodies. Primary antibody was as follows: anti-phospho-SMAD2
(1:100, 3108; Cell signalling Technology). Slides were then
incubated with horse radish peroxidase using a ChemMate
EnVision kit (Dako) for 2 h and washed twice with PBS.
Immunoreactivity was visualised with 0.6 nm 3,3′-diaminobenzi-
dine tetrahydrochloride (Dojindo) and counterstained with
haematoxylin. Images were acquired with a BX53 microscope
and DP72 microscope digital camera (Olympus) and analysed
using Olympus cellSens software. ImageJ software was used to
quantify phosphorylated-SMAD2 (p-SMAD2) protein levels.

Probe electrospray ionisation-mass spectrometry
Cells were scraped with a Cell Scraper 16 cm 2-Pos.-Blade
(SARSTEDT AG & Co.) and centrifuged at 800 × g for 5 min. Ten
microliters of cell pellets were suspended with 200 µl of 50%
ethanol to extract cellular molecules and denature the proteins.
After centrifugation at 15,000 × g for 5 min, 85 µl of supernatants
were analysed by PESI-MS (DPiMS-2020, Shimadzu). The proce-
dure for preparation of human tissues and analysis by PESI-MS was
described in our previous report.19 Analyses were performed in
positive- and negative-ion modes for each sample. Five repre-
sentative mass spectra from each analysis were generated
using the LabSolutions software (ver. 5.82 SP1; Shimadzu). The
procedures for data processing, analysis, and discrimination by
partial least-squares-LR (PLS-LR) were described in our previous
study.19

Liquid chromatography-Fourier transform MS
Total lipid from 5 µl of SAS cell pellet was extracted according to
the method of Bligh and Dyer. Dried total lipid was dissolved in
200 µl of 0.1% formic acid in methanol. After dissolving, this
solution was further homogenised by ultrasonic bath for 5 min.
Sixty microliters of the resultant solution was transferred to the
vial, and 4 µl of solution was injected for each analysis.
Liquid chromatography-Fourier transform MS (LC-FTMS) analy-

sis was performed on a NANOSPACE SI-II HPLC (Osaka Soda)
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system coupled with a Q Exactive Orbitrap MS (Thermo Fisher
Scientific) equipped with heated electrospray ionisation-II probe
operated in positive-ion mode. The mass resolution was 70,000
and set to acquire data over an m/z range from 280 to 1000. LC
separation was performed using a reverse phase column
(L-column 2 C8, 50mm× 2.1 mm i.d., 3.0 µm particle size; CERI)
with a gradient solution of solvent A (water containing 5mM
ammonium formate, pH 4.0) and B (95% acetonitrile in water
containing 5mM ammonium formate, pH 4.0) at 0.2 mL/min.
Solvent A was prepared by mixing 99.5 mL of Milli-Q (Millipore)
water and 0.5 mL of 1 M ammonium formate (Fujifilm), and
adjusting to pH 4.0 with formic acid (9.6 µL, Fujifilm). Solvent B
was prepared by mixing 95mL of acetonitrile (Kanto Kagaku),
4.5 mL of Milli-Q water, and 0.5 mL of 1 M ammonium formate,
and adjusting to pH 4.0 with formic acid (~1,160 µL). The initial
condition was set at 30% B. The following solvent gradient was
applied: 30% B for 2 min, a linear gradient to 100% B from 2 to
20min, and then 100% B for 10 min. Subsequently, the mobile
phase was immediately returned to the initial conditions and
maintained for 5 min until the end of the run. The oven
temperature was 40 °C. Data processing and molecular identifica-
tion were performed according to a previous report.21

Correlative studies with public datasets
Publicly available datasets of human squamous cell carcinoma cell
lines stimulated with or without TGFβ1 (GSE57441) were used to
identify differentially expressed genes that were induced by
TGFβ1 stimulation. For Kaplan–Meier survival curve analysis in
HNSCC patients, TCGA dataset was used. The correlations of
LPCAT2 gene expression levels with tumour progression and
distant metastasis-free survival were analysed based on publicly
available datasets of human oral cancer tissues (GSE9844).

Statistical analysis
GraphPad Prism (8.2.1) was used for graphs and for statistics.
Unless otherwise indicated, all data were analysed using the
Student’s t test and are expressed as mean ± SD. Kaplan–Meier
analysis and log-rank tests were applied for survival analysis.
Differences were considered statistically significant when p < 0.05.

RESULTS
Activated TGF-β signalling enhances cell motility and increases
resistance to chemotherapeutic agents in HNSCC cells
TGF-β signalling increases the expression of genes such as
SERPINE1/PAI-1, SMAD7, and VIM by activating the canonical SMAD
pathway. We first confirmed that recombinant human TGF-β
treatment induces activation of the canonical TGF-β/SMAD
pathway in seven HNSCC cell lines, that is, SAS, HSC2, HSC3,
HSC4, Ca9-22, KUMA1, and Gun-1 cells. In SAS, HSC4, Ca9-22, and
Gun-1 cells, SERPINE1/PAI-1, SMAD7, and VIM expression was
significantly upregulated when stimulated with recombinant
human TGF-β1 (Fig. 1a and Supplementary Fig. 1a). SMAD2 was
also adequately phosphorylated in these cells (Fig. 1b). We further
evaluated whether HNSCC cells with activated TGF-β signalling
acquired malignant properties. Wound closure was faster in
HNSCC cells stimulated with TGF-β1 than naive control cells
(Fig. 1c and Supplementary Fig. 1b), indicating that activation of
the TGF-β signalling pathway facilitates high cell motility of
HNSCC cells. To examine whether TGF-β1 stimulation facilitates
acquisition of chemoresistance in HNSCC cells, cell viability was
evaluated by DTX or CDDP treatment in SAS, HSC4, Ca9-22, and
Gun-1 cells stimulated with TGF-β1 (Fig. 1d). This treatment alone
slightly inhibited cell proliferation in only SAS cells, but not in
HSC4, Ca9-22, and Gun-1 cells without DTX or CDDP treatment
(Fig. 1d and Supplementary Fig. 1c). Compared with unstimulated
SAS, HSC4, Ca9-22, and Gun-1 cells, TGF-β1-stimulated cells
showed more resistance against DTX (10 µM) and CDDP (15 µM)

(Fig. 1d and Supplementary Fig. 1c). Taken together, these
findings indicate that activation of the TGF-β signalling pathway
contributes to acquisition of malignant properties in HNSCC cells.

Construction of a discriminant algorithm for determining
activation of TGF-β signalling in HNSCC cells using ambient MS
and machine learning
Tumor cells show a distinctive metabolic profile from healthy
epithelial cells, and especially, alterations in lipid metabolism
are observed in tumour cells that have acquired malignant
phenotypes.18,22,23 Our previous study reported that, based on
unique metabolome profiles in cancer tissues, PESI-MS allows
us to discriminate cancerous regions from non-cancerous
regions.19,24,25 Moreover, TGF-β/SMAD signalling is associated
with phospholipid metabolism in liver injury;26 however, the
effects of TGF-β on lipid metabolism remain unclear in tumour
tissues.
To explore whether activation of TGF-β signalling affects

lipidome alteration in HNSCC cells, we first analysed lipidome in
recombinant human TGF-β1-unstimulated or -stimulated HNSCC
cells. As shown in Fig. 2a, biological extracts were prepared from
TGF-β1-unstimulated or -stimulated HNSCC cells and analysed by
PESI-MS. A total of 240 and 90 mass spectra were acquired from
TGF-β1-unstimulated and -stimulated HNSCC cells, respectively.
The analyses were performed in both positive- and negative-ion
modes to obtain the mass spectra (Fig. 2b, Supplementary Fig. 2a).
Ion peaks were mainly detected in two distinct regions, within a
range of m/z 300–450 and 700–850, on mass spectra from both
the positive- and negative-ion modes. Based on statistical analysis
by Student’s independent two-sample t test of each peak, we
identified TGF-β-activity-related peaks in positive-ion mode
(Supplementary Fig. 2b), indicating that PESI-MS showed sig-
nificant differences in lipidome between TGF-β1-unstimulated and
-stimulated HNSCC cells.
We next sought to develop a new diagnostic system based on

lipidome in HNSCC cells to identify tumour areas containing
HNSCC cells stimulated with TGF-β1 within a single tumour. First, a
diagnostic system using PESI-MS and a machine learning-based
discriminant algorithm was constructed. Mass spectra from human
recombinant TGF-β1-unstimulated and -stimulated HNSCC cells
were visually distinct on PLS score plots of positive- and negative-
ion modes (Fig. 2c). All mass spectra were used for learning of PLS-
LR, and we validated the accuracy of the discriminant algorithms
by performing leave-one-out cross-validation. The accuracy rates
were 98.79% and 99.39% in the positive- and negative-ion modes,
respectively (Fig. 2c). Of note, the process from sample prepara-
tion to obtaining a diagnosis for activated TGF-β signalling
required 5min. Taken together, our algorithm precisely discrimi-
nated human HNSCC cells stimulated with TGF-β1 from untreated
control cells in vitro.

In vivo rapid diagnosis of tumour areas containing tumour cells
with high p-SMAD2 levels within clinical HNSCC tissues
To confirm the clinical utility of our rapid diagnostic system at the
bedside, this system was further tested on surgically resected
tumour tissues from a patient with advanced HNSCC. As shown in
Fig. 3a, ~5mm3 of four representative tissues (a–d) were collected
from central and marginal areas of oral SCC tissue. Each tissue was
further separated into six specimens and analysed by both PESI-
MS and immunohistochemistry (IHC) for p-SMAD2, a conventional
examination to evaluate activation of TGF-β signalling and identify
HNSCC cells stimulated with TGF-β within a tumour tissue (Fig. 3b
and Supplementary Fig. 3). As reported in a previous study
evaluating TGF-β signalling between marginal and central areas
within tumour tissue,27 the expression levels of p-SMAD2 were
significantly higher in tumour cells located at marginal tumour
areas than those at central tumour areas (Fig. 3c), indicating that
HNSCC cells located at marginal tumour areas showed more
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response to TGF-β1 stimulation than central areas. Importantly,
there was a distribution of tumour cells stimulated with TGF-β1
within a HNSCC tissue.
Next, mass spectra were obtained in positive-ion mode from the

same tumour specimens in which p-SMAD2 expression was

evaluated by IHC. Based on the mass spectra from tumour
specimens, our discriminant algorithm calculated the results in
each dissected tumour area and predicted that the marginal
tumour areas contained more HNSCC cells with high p-SMAD2
levels than the central tumour areas of HNSCC tissue (Fig. 3d and
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Fig. 1 Activated TGF-β signalling enhances cell motility and increases chemoresistance in HNSCC cells. a RT-qPCR for PAI-1 (left) and
SMAD7 (right) mRNA expression in seven different HNSCC cell lines that were unstimulated or stimulated with 2 ng/ml human recombinant
TGF-β1 for 48 h. Each value was normalised to GAPDH mRNA expression. b Phospho-SMAD2 (p-SMAD2) and SMAD2 protein levels in the
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Table 1). We also examined the corresponding data between the
predicted result obtained by machine learning and p-SMAD2
expression levels in each dissected tumour area. Predicted results
from our discriminant algorithm corresponded with pathological
assessment of high p-SMAD2 levels in HNSCC tissues (Fig. 3e). It
strongly suggests that our system is applicable to in vivo detection
of tumour areas in which HNSCC cells show activation of TGF-β
signalling.

TGF-β signal activation induces reprogramming of lipidome in
cultured HNSCC cells
Following our initial analysis of significantly altered metabolites in
TGF-β1-stimulated versus -unstimulated HNSCC cells, TGF-β-
induced lipidome alteration was next examined in HNSCC cells.
We then ranked metabolites in increasing order of p value, which
were calculated using Student’s t test, to identify the most
significantly altered metabolites between TGF-β1-stimulated and
-unstimulated SAS cells. As shown in Fig. 4a, there were nine
representative increased peaks with high p values [–log10(p-value)
>25.0] on mass spectra from positive-ion mode in TGF-β1-
stimulated SAS cells. Additionally, using LC-FTMS, we identified
PC species PC(32:3), (34:4), (34:3), (36:5), (36:4), (36:3), (36:3), (36:2),
and PC with alkylether (36:4) or plasmalogen (36:3) at sn-1
position (Fig. 4b). Taken together, these increased PC species have
the potential to be biomarkers to clarify HNSCC cells stimulated
with TGF-β1.
To further investigate whether these top-ranked metabolites

were consistently increased in clinical tumour areas where TGF-β
signalling was activated, we analysed the ion intensities of nine PC
species in clinical HNSCC tissues. PC(36:5), (36:3), and (36:2) were
increased in marginal tumour areas containing HNSCC cells with
high p-SMAD2 levels. Conversely, PC(32:3), (34:4), (34:3), and PC

with alkylether (36:4) or plasmalogen (36:3) at sn-1 position were
decreased in marginal areas (Fig. 4c), indicating that some of the
altered PC species represent potentially important metabolic
features in HNSCC cells with activated TGF-β signalling and are
surrogate lipid markers for activation of TGF-β signalling
in HNSCC.

Increased LPCAT2 is associated with metastasis in SCC patients
To elucidate the mechanisms responsible for lipidome including
increased PC species in TGF-β1-stimulated HNSCC cells, we next
attempted to identify differentially expressed genes associated
with lipidome alteration in TGF-β1-stimulated SAS cells compared
with unstimulated SAS cells. A publicly available database of
whole transcriptome data (GSE57441) where SCC cells established
from uterine cervix were stimulated with 2 ng/ml human
recombinant TGF-β1 for 48 h was used for identification of
metabolic regulators. A total of 98 lipid metabolism-related genes
were identified on this dataset (Fig. 5a). Among these, there were
seven upregulated genes and four downregulated genes in TGF-
β1-stimulated SCC cells (Fig. 5b). Interestingly, LPCAT2, the product
of which catalyses the conversion of lysophosphatidylcholine
to PC,28 was significantly increased in TGF-β1-stimulated SCC cells
(Fig. 5b). Indeed, we verified that the mRNA and protein
expression levels of LPCAT2 were higher in TGF-β1-stimulated
SAS cells than those in TGF-β1-unstimulated SAS cells (Fig. 5c).
Previous studies of LPCAT enzymes in cancer have shown that

they are independent predictors of early tumour recurrence and
prognostic markers for several cancers.29–31 Particularly, the
expression level of LPCAT2 was positively correlated with
aggressive prostate cancer;32 however, the impact of increased
LPCAT2 expression on clinical progression remains unknown in
HNSCC patients. We used publicly available data from patients
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MS and partial least-squares (PLS)-logistic regression algorithm for activation of TGF-β signalling in HNSCC. Plots of the first two PLS scores
are shown for the mass spectra from positive- (left) or negative- (right) ion mode. The accuracy is the percentage of correctly classified
mass spectra.
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with HNSCC (GSE9844 and GSE75538) to investigate the clinical
relevance of LPCAT2 expression in metastasis and survival of
HNSCC patients. Although LPCAT2 expression in HNSCC tissues did
not significantly affect overall survival (Supplementary Fig. 4),
increased LPCAT2 levels were found in HNSCC patients with lymph
node metastases compared with HNSCC patients without lymph
node metastases (Fig. 5d, left panel). In addition, LPCAT2
expression was negatively correlated with distant metastasis-free
survival (Fig. 5d, right panel). Therefore, increased LPCAT2 is
potentially relevant to metastasis of HNSCC.

DISCUSSION
Accumulating evidences in the field of intratumoural hetero-
geneity have created a new trend in clinical cancer diagnosis and
therapeutic strategies. To accomplish more personalised and
better cancer treatment decisions at the bedside, it is important to
diagnose intratumoural phenotypic heterogeneity where protu-
moral signalling is temporally and spatially activated within a
single tumour. In recent years, diagnostic pathology for protu-
moral signalling was exclusively realised using only a few
predictive markers such as epidermal growth factor receptor
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Fig. 3 In vivo lipidome-based rapid diagnosis of tumour areas stimulated with TGF-β1 in human HNSCC tissues. a Magnetic resonance
image of advanced oral SCC tissues (upper-left). The area surrounded by a yellow dash line shows a tumour lesion. The sample preparation for
a test of the diagnostic system for activation of TGF-β signalling in HNSCC (upper-right, lower-left, and right). Major specimens (a, b) or
specimens (c, d) were excised from a central or marginal area of human HNSCC tissue, respectively. b The procedures of sample preparation
for PESI-MS. c Left panels: quantification of p-SMAD2-positive areas in specimens from a central or marginal area of HNSCC tissues. X-axis
represents the percentage of p-SMAD2-positive areas on the images from specimens. P values were determined by Student’s t test. ***p <
0.001. Right panels: All representative images of immunohistochemistry for p-SMAD2 (brown) in specimens from a central and marginal area
of HNSCC. Scale bar: 100 µm. d The probability of activated TGF-β signalling in each specimen from a central or marginal area of HNSCC tissue.
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and human epidermal growth factor receptor 2) in the clinic.
However, these assessments are still retrospective and limited
because tumour samples need to be formalin fixed and paraffin
embedded to enable staining of the representative downstream
molecules by specific antibodies. Moreover, only a few markers
can precisely evaluate activation of complicated downstream
signalling cascades in a single tumour. Therefore, precise
detection and diagnosis for intratumoural heterogeneity of
activated protumoral signalling pathways in cancer tissues remain
challenging. Especially, few downstream markers are used for
evaluation of activated TGF-β signalling in tumour tissues instead
of p-SMAD2 IHC.
Here, we described a rapid diagnostic system based on

combination of PESI-MS with machine learning to detect tumour
areas stimulated with TGF-β1 in clinical HNSCC tissue. As shown in
Fig. 2b, PESI-MS rapidly captured distinct metabolic profiles in
human recombinant TGF-β-stimulated HNSCC cells and provided
discriminative spectral patterns of TGF-β-stimulated HNSCC cells
on mass spectra. Additionally, it enabled the acquisition of mass
spectra data from a small number of biological components using
a very fine needle with minimum invasiveness in a clinical
situation where it might be difficult to undertake diagnosis by IHC.
It takes ~5min to obtain a mass spectrum from a sample. The
properties of PESI-MS are also of advantage to reveal spatially and
temporally phenotypic heterogeneity within a single tumour
compared with conventional pathological diagnosis using IHC.
To further determine whether this system could be applied to

clinical and pathological diagnosis of tumour areas containing
HNSCC cells stimulated with TGF-β1 at the bedside, we used
machine learning-based discriminant algorithm established by
using a large number of mass spectra from TGF-β1-stimulated and
-unstimulated HNSCC cells. Machine learning is authorised as a
powerful tool of algorithms to facilitate pattern recognition,
classification, and prediction based on statistical models using
existing data.33 Recently, clinical diagnosis combined with
machine learning has been broadly used and can be applied to
the identification of biomarkers in breast cancer.34 We recently
demonstrated that a diagnostic system based on PESI-MS and a
machine-learning algorithm can discriminate cancerous regions
from non-cancerous regions and can achieve a rapid intraopera-
tive assessment of tumour margins in head and neck cancer.19

Current discriminant algorithms learning mass spectra in this
study can enable biological determination in cultured cells

activated by TGF-β signalling pathway without conventional
analyses of downstream molecules with over 98% accuracy. In
in vivo assessments using human HNSCC tissues, predictive results
associated with activation of TGF-β signalling in HNSCC tissue had
a positive correlation with p-SMAD2 staining intensity within
HNSCC tissues. Of note, this system determined the areas
containing only stromal components such as muscles, fat, and
salivary glands (d-1 and d-5 in Fig. 3c) in which p-SMAD2 staining
was positive as areas without activation of TGF-β signalling. In
contrast, the areas in which only a little epithelial component with
p-SMAD2 positive staining was contaminated (d-4 in Fig. 3c) was
diagnosed as areas with activation of TGF-β signalling. Our
diagnostic system would reduce false positives and accurately
provide more specific diagnoses of tumour areas containing
tumour cells with activated TGF-β signalling. Especially given that
the system provided high probabilities of activated TGF-β
signalling in some areas containing tumour cells with less p-
SMAD2 (a-1 and a-6 in Fig. 3c), our diagnostic system could
identify the possibility that tumour cells in those areas have
acquired malignant phenotypes induced by TGF-β. If tumour areas
containing TGF-β1-stimulated tumour cells are determined during
surgery, surgeons could design a more personalised tumour
margin dissection for each patient. Moreover, in order to make
better clinical decisions regarding appropriate treatments for
HNSCC, identification of tumour areas with activated TGF-β
signalling pathway would help pathologist to assess clinical risks
for metastasis, recurrence, and chemoresistance in HNSCC.
However, we further need to seek out the clinical meaning of
positive diagnoses for determining HNSCC areas containing
tumour cells with activated TGF-β signalling.
In our current study, PESI-MS and liquid chromatography-

combined tandem MS revealed increased PC species that are
relevant for the activation of TGF-β signalling. Correspondingly,
LPCAT2 was also increased in these cells and was recognised as a
biomarker of tumour metastasis in HNSCC. Other recent studies
have shown that tumour cells have aberrant de novo lipogenesis
to acquire malignant phenotypes such as proliferation, high
motility, or chemoresistance, and lipidome alteration is recog-
nised as a risk of cancer progression and metastasis.18,35 LPCAT2
is also responsible for lipid droplet accumulation in colorectal
cancer cells and supports chemoresistance.36 Considering these
evidences supporting our data, TGF-β1 can cause lipid metabolic
reprogramming in HNSCC cells, and TGF-β1-induced LPCAT2
might be responsible for chemoresistance and high-motility in
HNSCC cells through lipid metabolic reprogramming including
PC accumulation. We also focused on top-ranked metabolic
features, which might have implications for activation of TGF-β
signalling, leading to acquisition of malignant phenotypes in
HNSCC. However, it is unclear whether these top-ranked PC
species predominantly drive the phenotypic differences in
HNSCC cells with or without activated TGF-β signalling. Of note,
our study also clarified “decreased PC species” in cultured cells
or tumour areas with activated TGF-β signalling, and revealed
that phospholipase A2, an enzyme that decreases the abun-
dance of PC species, was also increased in SCC cells stimulated
with TGF-β1 (Fig. 5b). These observations might indicate
complicated phospholipid alterations in HNSCC. The exact
mechanisms responsible for lipid metabolic reprogramming
induced by TGF-β1 stimulation in HNSCC cells will be the focus
of a subsequent study.
In conclusion, our study strongly indicates that a diagnostic

system based on combination of PESI-MS and a machine learning-
based algorithm can be used to assist the rapid detection of
tumour areas with activated TGF-β signalling in HNSCC tumour
tissue without conventional immunohistological examination, and
has the potential to be a feasible method to diagnose
intratumoural phenotypic heterogeneity of TGF-β signalling at
the bedside.

Table 1. Probabilities in central-area and marginal-area of HNSCC
tissue.

Central area Marginal area

Specimen Inactivated Activated Specimen Inactivated Activated

(a)-1 0.1471 0.8529 (c)-1 0.0000 1.0000

(a)-2 0.9133 0.0867 (c)-2 0.0000 1.0000

(a)-3 0.9938 0.0062 (c)-3 0.0001 0.9999

(a)-4 0.9382 0.0618 (c)-4 0.0000 1.0000

(a)-5 0.8398 0.1602 (c)-5 0.0011 0.9989

(a)-6 0.0098 0.9902 (c)-6 0.0000 1.0000

(b)-1 0.9998 0.0002 (d)-1 0.9264 0.0736

(b)-2 1.0000 0.0000 (d)-2 0.9372 0.0628

(b)-3 0.9983 0.0017 (d)-3 0.0271 0.9729

(b)-4 0.9997 0.0003 (d)-4 0.0211 0.9789

(b)-5 0.9921 0.0079 (d)-5 0.7628 0.2372

(b)-6 1.0000 0.0000 (d)-6 0.5829 0.4171

Bold face values show high number of probability in each specimen.
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Fig. 4 TGF-β stimulation enriches phosphatidylcholine contents in HNSCC cells. a Normalised ion intensity of each phosphatidylcholine
(PC) species determined by LC-MS/MS methods in PESI-MS mass spectra from TGF-β1-unstimulated or -stimulated SAS cells. Each number
above the graphs indicates −log10(p-value) of statistical comparisons between TGF-β1-unstimulated or -stimulated SAS cells. b Identification
of PC species by liquid chromatography with tandem MS (LC-MS/MS) method in SAS cells that were stimulated with 2 ng/ml TGF-β1 for 48 h.
The molecular species are annotated on a mass spectrum. (*): PC with alkylether (36:4) or plasmalogen (36:3) at sn-1 position. c Relative ion
intensities of specific peaks representing PC species, which were determined in a, in specimens from a central or marginal area of HNSCC
tissue are here presented as heatmap images. Y-axis indicates the m/z of each PC peak and X-axis indicates the number of each specimen as
shown in Fig. 3a.
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