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Blood neuroexosomal excitatory
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Background: Rapid eye movement (REM) sleep behavior disorder (RBD)

predicts cognitive decline in Parkinson’s disease (PD) patients without

dementia. However, underlying mechanisms remain unknown. Accumulating

studies suggest glutamatergic system dysregulation is associated.

Objective: To examine the effect of RBD on the rate of cognitive decline in PD

patients and investigate whether plasma levels of the neuroexosomal vesicular

glutamate transporter-1 (VGLUT-1) and excitatory amino acid transporter-2

(EAAT-2) are altered in PD patients with RBD.

Methods: This study included 157 newly diagnosed cognitive normal PD

patients and 70 healthy controls (HCs). Based on one-night polysomnography

recordings, the PD subjects were divided into PD with and without RBD (PD-

RBD and PD-nRBD) groups. All participants received a complete clinical and

neuropsychological evaluation at baseline. Plasma levels of neuroexosomal

VGLUT-1 and EAAT-2 were measured by ELISA kits. After a 3-year follow-up,

we evaluated baseline plasma levels of neuroexosomal glutamate transporters

in each group as a predictor of cognitive decline using MoCA score changes

over 3 years in regression models.

Results: Plasma levels of neuron-derived exosomal EAAT-2 and VGLUT-1 were

significantly lower in PD patients than in HCs. Plasma levels of neuroexosomal

EAAT-2 were significantly lower in PD-RBD than PD-nRBD group at baseline.

At the 3-year follow-up, PD-RBD patients presented greater cognitive decline.

Lower baseline blood neuroexosomal EAAT-2 predicted cognitive decline

over 3 years in PD-RBD patients (β = 0.064, P = 0.003).

Conclusion: These findings indicate that blood neuroexosomal EAAT-2 is

associated with cognitive decline in PD with RBD.

KEYWORDS

Parkinson’s disease, REM sleep behavior disorder, cognitive dysfunction, vesicular
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Introduction

Cognitive impairment (CI) is one of the most common
and important non-motor symptoms in Parkinson’s disease
(PD), occurring in as many as 80% of patients in the long
term (Hely et al., 2008), and is associated with poor outcomes
(de Lau et al., 2005). During the past decade, there has
been increased focus on the predementia stages of CI in
PD patients. Early identification of individuals at risk of
developing CI could help stratify the PD population for
prognostic information and treatment selection and improve
understanding of the pathophysiology of cognitive decline in
these patients. Rapid eye movement (REM) sleep behavior
disorder (RBD) is found in up to 60% of patients with PD
and has been identified as a clinical risk factor for cognitive
decline and dementia in PD. Early studies have shown that
RBD predicts cognitive decline in early-stage and advanced
PD without dementia (Vendette et al., 2007; Chahine et al.,
2016; Liu et al., 2019). However, the underlying mechanism
for the association remains unknown. Accumulating clinical
and experimental data suggest that RBD might be due to
the neurodegeneration of glutamate neurons involved in
paradoxical sleep (Luppi et al., 2011, 2013; Wang et al.,
2021). The process of human memory consolidation is strongly
dependent on REM sleep. In addition, the activity of glutamate
ionotropic receptors is known to mediate both synaptic
plasticity and the consolidation of various types of memories.
The glutamatergic system may be associated with cognitive
decline in PD with RBD.

Hyperactivity of the glutamatergic system plays a role
in the pathophysiology of PD. Nigrostriatal dopaminergic
depletion causes overactivity of the glutamatergic projections
to the basal ganglia output nuclei from the corticostriatal
pathway and the subthalamic nucleus and increases striatal
release of glutamate (Buchanan et al., 2015; Iovino et al.,
2020). A study using magnetic resonance spectroscopy showed
dysregulation of glutamatergic neurotransmission in several
brain regions in patients with PD (Weingarten et al., 2015).
Glutamate is transported into synaptic vesicles by vesicular
glutamate transporters, released at the synaptic cleft and
taken up via specific glutamate transporters, thus terminating
glutamate function at the synapse. It was reported in
mice that following progressive 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) treatment, glutamate transporters,
including vesicular glutamate transporter-1 (VGLUT-1) and
glutamate transporter-1 (GLT-1) (named excitatory amino acid
transporter-2, EAAT-2, in the human brain), were significantly
increased (Sconce et al., 2015). A recent study reported that
anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is
associated with parkinsonism-like symptoms, RBD and CI
(Çoban et al., 2014). According to these findings, a plausible
hypothesis is that glutamatergic hyperactivation may exert a
crucial effect on cognitive dysfunction in PD patients with RBD.

Exosomes are nanosized extracellular vesicles that can
be released into the extracellular matrix by most cell types
and can be found in many biofluids, such as blood, CSF,
saliva, and urine. Their encapsulated cargos can reflect the
intracellular environment of the originating cells and participate
in intracellular communication under various physiological and
pathological conditions (van Niel et al., 2018). Exosomes can
cross the blood–brain barrier and can be detected in the plasma
(van Niel et al., 2018). The recent development of methods
for the isolation of neuron-derived exosomes (NDEs) from
plasma has permitted the quantification of neuronal proteins
relevant to the pathogenesis of human neurodegenerative
diseases (Mustapic et al., 2017).

In this study, we aimed to examine the effect of RBD on the
rate of cognitive decline in PD patients and investigate whether
plasma levels of the neuroexosomal glutamate transporters
VGLUT-1 and EAAT-2 are altered in PD patients with RBD.

Materials and methods

Participants

The diagnosis of PD was based on the clinical diagnostic
criteria for Parkinson’s disease from 2015 formulated by the
Movement Disorder Society in the United States (Postuma
et al., 2015). The inclusion criteria were as follows: patients
with idiopathic PD diagnosed by experienced neurologists
according to these diagnostic criteria; patients who were
previously untreated; and patients who were cognitively normal
[determined by a Montreal Cognitive Assessment (MoCA)
score ≥ 26] (Hoops et al., 2009).

The exclusion criteria were as follows: patients with atypical
features that indicate progressive supranuclear palsy, multiple
system atrophy, corticobasal degeneration, cerebellar signs,
supranuclear gaze palsy, apraxia, and disabling autonomic
failure; patients with parkinsonian syndrome secondary to
stroke, trauma, or other neurological and psychiatric disorders;
patients with malignant tumors, disabilities, or other severe
physical diseases; patients who underwent surgical treatment,
deep brain stimulation, stem cell transplantations, or other
medical treatment; patients with other causes of CI (such as
delirium, stroke, severe depression, metabolic disorders, drug
side effects, and head trauma); patients with PD comorbidities
such as severe movement disorders, severe anxiety [Hamilton
Anxiety Scale (HAMA) score ≥ 21] (Hamilton, 1959), severe
depression [Hamilton Depression Scale 17 items (HAMD-17)
score ≥ 24] (Zimmerman et al., 2013), excessive daytime
sleepiness, and psychiatric disorders that may have effects on the
cognition assessment.

According to the above inclusion criteria, 207 PD patients
were enrolled in our study from May 2016, to September 2018.
Thirty-one of them were excluded at the start of the study and
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during the follow-up according to the exclusion criteria, 19
were lost to follow-up, and 157 completed 3 years of follow-
up neuropsychological assessments every 6 months (shown in
Figure 1).

Healthy controls (HCs) were recruited from the spouses and
friends of the PD participants and were matched for age and
sex. The control individuals had no cognitive impairment, no
psychiatric disorders, such as anxiety and depression, no history
of severe physical disorders, normal thyroid gland function
and renal function, no physical disabilities, and no hearing or
visual impairment. Seventy HCs completed the 3-year follow-
up.

All the subjects underwent clinical and neuropsychological
assessments, polysomnography (PSG) recordings and blood
collection at baseline.

The study was conducted with approval from the Ethics
Committee of Weihai Municipal Hospital. Written informed
consent was obtained from all participants.

Clinical and neuropsychological
assessments

Motor disability was staged using the Hoehn and Yahr
(H&Y) scale. Motor symptoms were elevated using the
Movement Disorder Society Unified Parkinson’s Disease Rating

Scale Part III (MDS-UPDRS-III). Psychological status was
assessed by the HAMA and HAMD-17. Cognitive status was
assessed with the Beijing version of the MoCA. The range
of total scores on this scale is 0–30 points. If the subject
had received 12 years of education or less, 1 point was
added to correct for the bias of the educational level. The
recommended cutoff score of < 26 was used to define CI
(Nasreddine et al., 2005). A score ≥ 26 points was considered
cognitively normal. The 1% MoCA over 3 years was defined as
1% MoCA = MoCAfollow−up − MoCAbaseline

MoCAbaseline × 100% and used to
reflect cognitive decline in each group. In addition, individual
subdomains of MoCA tests were also recorded. All clinical and
neuropsychological assessments were conducted between 7:00
and 10:00 in the morning, and the patients stopped taking
their medication the night before the follow-up evaluation.
Levodopa equivalent dosages (LEDs) were calculated using
a standard formula (Tomlinson et al., 2010). All of the
evaluation tests were conducted by two experienced neurologists
who did not have knowledge of the grouping situation
of the patients.

RBD sleep assessments

All participants underwent one-night PSG recordings in
the sleep laboratory. Sleep was recorded using a polygraph

FIGURE 1

Description of the study population. PD indicates Parkinson’s disease.
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composed of eight EEG electrodes: two frontal (F3/A2,
F4/A1), two central (C3/A2, C4/A1), two temporal (T3/A2,
T4/A1) and two occipital (O1/A2, O2/A1) electrodes.
Left and right electrooculograms were used to measure
eye movements, and submental electromyography was
used to measure muscle activity. Oral and nasal airflow
and thoracic and abdominal movements were recorded,
and oximetry was performed to exclude sleep apnea and
hypopnea syndrome. RBD was diagnosed by a sleep specialist
according to the criteria of the International Classification
of Sleep Disorders, Second Edition and PSG criteria
(Montplaisir et al., 2010).

Blood sample preparation and
neuron-derived exosomes isolation

Two milliliters of venous blood was drawn from each
participant into a polypropylene tube with EDTA in the
morning after a 10-h fast at base line. The samples were
centrifuged for 15 min at 3,000 × g to obtain plasma.
NDEs were immediately separated according to a published
protocol (Goetzl et al., 2016). In brief, aliquots of 0.5 ml
plasma were incubated with 0.15 ml thromboplastin D
(Thermo Fisher Scientific, Waltham, MA, United States) for
60 min, followed by the addition of 0.25 ml of calcium-
and magnesium-free Dulbecco balanced salt solution with
protease and phosphatase inhibitor cocktail (Thermo Fisher
Scientific). The mixed solution was centrifuged at 1,500 g
for 30 min at 4◦C. The supernatants were then mixed with
ExoQuick exosome precipitation solution (EXOQ; System
Biosciences, CA, United States) and incubated for 1 h on
ice. After centrifugation at 3,000 g for 30 min at 4◦C,
each pellet was resuspended in 250 µl DPBS. Each sample
was mixed with 100 µl 3% bovine serum albumin (BSA,
Thermo Fisher Scientific) and incubated for 1 h on ice with
3 µg mouse anti-human CD171 (L1CAM neural adhesion
protein) biotinylated antibody (clone 5G3; eBioscience, San
Diego, CA, United States), followed by incubation with 25 µl
Streptavidin-Plus UltraLink resin (Thermo Fisher Scientific) in
50 µl of 3% BSA. After centrifugation at 400 g for 10 min
and removal of supernatant, each pellet was resuspended
in 50 µl of 0.05 M glycine-HCl (pH 3.0), incubated at
4◦C for 10 min, and centrifuged at 4◦C for 10 min at
4,000 g. Supernatants were transferred to prechilled Eppendorf
tubes that contained 10 µl of 1 M Tris–HCl (pH 8.0)
and 25 µl of 10% BSA, mixed before addition of 365 µl
M-PER mammalian protein extraction reagent (Thermo Fisher
Scientific) that contained protease and phosphatase inhibitors,
and stored at −80◦C before enzyme-linked immunosorbent
assay (ELISA) analysis.

Western blotting (WB), transmission electron microscopy
(TEM), and nanoparticle tracking analysis (NTA) were

performed to confirm the success of exosomal collection
(shown in Figure 2) in accordance with our previous protocols
(Zhang et al., 2021; Chi et al., 2022).

Determination of plasma
neuron-derived exosomal vesicular
glutamate transporter-1 and excitatory
amino acid transporter-2 levels

The NDE proteins were quantified by ELISA kits for
the exosome markers CD63 (ELH-CD63-1, Ray Biotech
Inc., Norcross, GA, United States), VGLUT-1 (abx553000;
Abbexa, United Kingdom) and EAAT-2 (abx151369; Abbexa,
United Kingdom). The mean value for all the measurements of
CD63 was set at 1.00, and the relative values of CD63 for each
sample were used to normalize the total NDE-protein contents.
One investigator conducted all ELISAs without knowledge of the
clinical data for any subject.

Statistical analysis

Parkinson’s disease patients were divided into PD with
and without RBD groups (PD-RBD and PD-nRBD). Baseline
demographic and MoCA scores and other demographic and
clinical data were compared between PD-RBD and PD-nRBD
participants using two-tailed independent t-test for continuous
variables and chi-square (χ2) tests for categorical variables.
Univariate analyses of variance were applied to compare
demographic, clinical, and mood variables among PD-RBD, PD-
nRBD, and healthy controls. Independent t-tests were applied
to compare plasma levels of NDE EAAT-2 and VGLUT-1
between each group. Normality assumptions were checked
where appropriate. Kaplan-Meier survival analysis was used
to estimate the effects of RBD on the progression to CI. 1%
MoCA was compared between each group using independent
t-test.

We analyzed the associations between all baseline
plasma biomarkers and 1% MoCA in each group. Linear
regression models evaluated the predictive effects of all
baseline plasma biomarkers on outcomes of 1% MoCA
over 3 years in each group. Confounding variables based
on biological rationality and published data were selected in
a linear regression model. Because UPDRS part III scores
differed between the PD RBD and non-RBD subjects, a
linear regression model was corrected for UPDRS part
III scores when analyzing the association between all
baseline plasma biomarkers and 1% MoCA. Age and
education were also included as covariates for the analyses
involving cognition. Statistical analysis was performed using
SPSS (version 21.0), and a P value < 0.05 was considered
statistically significant.
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FIGURE 2

Western blotting (WB) (A), transmission electron microscopy (TEM) (B) and nanoparticle tracking analysis (NTA) (C) of plasma neuron derived
exosomes. (A): Control: negative control for the immunoprecipitation using Streptavidin-Plus UltraLink resin alone without mouse anti-human
CD171 biotinylated antibody. EXO: neuron-derived exosomes. Supernatant 1: Supernatant after immunoprecipitation. Supernatant 2:
Supernatant after ExoQuick exosome precipitation.

Results

Baseline demographic and clinical
characteristics of the study subjects

The baseline demographic and clinical characteristics of
all the participants are presented in Table 1. MoCA scores at
baseline are shown in Table 2. Among the 157 PD patients,
91 (57.96%) had PD without RBD, and 66 (42.04%) had PD
with RBD. There were no differences in age, sex, education,
MoCA scores, HAMA scores or HAMD scores among the three
groups. Between the PD-RBD and PD-nRBD groups, there were
no differences in disease duration or Hoehn and Yahr stage,
but there was a significant difference in the UPDRS part III

scores between the groups. The PD-RBD group had higher
UPDRS part III scores. Each subdomain of MoCA scores was
also analyzed. At baseline, PD-RBD patients performed worse
than PD-NRD patients and HCs in tests of visuospatial function
(P = 0.022) and memory (P = 0.044).

Baseline glutamate-related
transporters

We measured the plasma levels of NDE EAAT-2 and
VGLUT-1 at baseline, and the plasma levels of both NDE
EAAT-2 and VGLUT-1 were significantly lower in PD patients
than in HCs. Between the PD-RBD and PD-nRBD groups,
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TABLE 1 Baseline demographic and clinical characteristics of PD patients stratified by RBD and Healthy controls.

PD-RBD (n = 66) PD-nRBD (n = 91) HCs (n = 70) P-value

Age (years) 65.95± 5.45 65.14± 5.69 62.38± 9.54 0.279

Sex (male, n%) 43.64.2% 58.64% 44.63.4% 0.531

Education (years) 9.38± 2.98 9.25± 2.99 9.89± 3.13 0.157

Disease duration (months) 16.97± 10.14 16.10± 7.43 – 0.535

Hoehn and Yahr Stage – 0.334

Stage 1 21, 31.8% 28, 30.8% –

Stage 1.5 7, 10.6% 10, 11.0% –

Stage 2 17, 25.8% 34, 37.4% –

Stage 2.5 21, 31.8% 19, 20.9% –

UPDRS part III 25.32± 9.22 22.13± 9.68 – 0.034*

LED (mg/d) 401± 205 375± 199 – 0.451

HAMA 19.25± 2.99 18± 5.92 17.43± 3.47 0.574

HAMD 11.50± 4.66 8.86± 5.61 8.79± 3.44 0.428

Results are mean± (SD). Univariate analyses of variance was applied to compare demographic, clinical, and mood variables among PD-RBD, PD-nRBD, and healthy controls. Independent
t-test was used to compare disease duration and Levodopa equivalent dosages between PD-RBD and PD-nRBD group. Gender and Hoehn and Yahr Stage between each group were
compared using chi-square (χ2) test. *P value statistically significant.

TABLE 2 MoCA scores at baseline and at the end of the 3-year follow-up.

PD-RBD (n = 66) PD-nRBD (n = 91) HCs (n = 70) P-value

MoCA-baseline 28.08± 1.40 28.30± 1.15 27.69± 1.52 0.153

Visuospatial function-baseline 3.77± 0.58 3.97± 0.57 4.64± 0.49 0.022*

Naming-baseline 2.95± 0.21 2.98± 0.15 2.97± 0.16 0.569

Memory-baseline 4.24± 0.70 4.45± 0.56 4.34± 0.84 0.044*

Attention & Calculation-baseline 5.70± 0.46 5.59± 0.51 5.69± 0.52 0.243

Language-baseline 2.86± 0.35 2.91± 0.29 2.75± 0.44 0.135

Abstraction-baseline 1.69± 0.46 1.74± 0.44 1.76± 0.48 0.478

Orientation-baseline 6.00± 0.00 6.00± 0.00 5.99± 0.08 0.897

MoCA-3-year 24.41± 2.44 25.43± 2.38 25.94± 1.62 0.009*

Visuospatial function-3-year 3.21± 0.69 3.58± 0.73 4.43± 0.55 0.003*

Naming-3-year 2.90± 0.77 2.93± 0.21 2.97± 0.25 0.749

Memory-3-year 3.10± 0.94 3.20± 0.93 3.23± 0.70 0.477

Attention & Calculation-3-year 5.26± 0.71 5.46± 0.62 5.79± 0.46 0.019*

Language-3-year 2.38± 0.54 2.60± 0.52 2.61± 0.51 0.058

Abstraction-3-year 1.49± 0.64 1.61± 0.53 1.69± 0.56 0.199

Orietation-3-year 5.95± 0.21 5.98± 0.11 5.97± 0.16 0.395

Results are mean ± (SD). Univariate analyses of variance was applied to compare MoCA scores and subdomains among PD-RBD, PD-nRBD, and healthy controls. *P value
statistically significant.

there was no significant difference in plasma levels of NDE
VGLUT-1 (P = 0.713), while plasma levels of NDE EAAT-2 were
significantly lower in the PD-RBD group than in the PD-nRBD
group (P = 0.012) (shown in Figure 3).

Cognitive decline and conversion to
cognitive impairment during follow-up

During the 3-year follow-up, PD-RBD patients had a faster
cognitive decline than PD-n RBD patients (P = 0.001) and HCs
(P < 0.001) (Figure 4). PD-RBD patients were more likely
to develop CI than PD-nRBD patients. In the Kaplan–Meier
survival analysis, the time between normal cognition to the
development of CI was significantly different between PD

patients with and without RBD, suggesting an effect of RBD on
the risk of developing CI (P = 0.003; Figure 5).

Baseline plasma levels of
neuron-derived exosomal excitatory
amino acid transporter-2 as a predictor
of cognitive decline in Parkinson’s
disease patients with RBD

We further found that baseline plasma levels of NDE
EAAT-2 predicted the occurrence of global cognitive decline
(1%MoCA) over 3 years in the PD-RBD group (β = 0.064,
P = 0.003) but not in the HC and PD-nRBD groups (shown in
Table 3).
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FIGURE 3

Baseline plasma levels of neuronal exosomal VGLUT-1 and EAAT-2 in PD patients with and without RBD (PD-RBD and PD-nRBD) and healthy
controls (HCs). The plasma levels of neuron-derived exosomal EAAT-2 and VGLUT-1 were significant decreased in PD patients compared with
HCs. The plasma levels of neuron-derived exosomal EAAT-2 was significantly lower in PD with RBD group, *P < 0.05, **P < 0.001.

Discussion

To the best of our knowledge, we are the first to investigate
the relationship between plasma levels of NDE EAAT-2 and
VGLUT-1 and cognitive function in PD patients with and
without RBD. In our study of newly diagnosed cognitively
normal PD patients, we found a significant association between
RBD at baseline and the rate of cognitive decline during the
3-year follow-up. Patients with RBD had greater rates of decline
in measures of global cognition. Baseline plasma levels of
NDE EAAT-2 and VGLUT-1 were significant decreased in PD
patients than in HCs. With further analysis, plasma levels of
NDE EAAT-2 may serve as a predictor of cognitive decline in
PD patients with RBD.

RBD is highly associated with cognitive decline in PD. Early
studies have shown that RBD predicts CI in both early and
advanced PD without dementia (Vendette et al., 2007; Chahine
et al., 2016; Liu et al., 2019). In our study, on the basis of PSG,
42.04% of treatment-naïve cognitively normal PD patients were
diagnosed with RBD. Along with other studies, when analyzing
the effect of RBD on cognition, we confirmed that RBD was
associated with global cognitive decline in PD patients. With
additional analyses between the PD-RBD group and PD-nRBD
group, a higher proportion of PD-RBD patients had clinically
impaired performance than PD-nRBD patients on visuospatial
function and memory.

The mechanisms underlying the association between CI
and RBD in PD remain to be determined. The generator
of REM-associated atonia is located in glutamatergic neurons
of the pontine sublaterodorsal nucleus (SLD) (Luppi et al.,
2011, 2013). Glutamatergic pathways also play a key role in
the functional organization of neuronal circuits involved in
PD. Functional interactions between the dopaminergic and
glutamatergic systems in the brain regulate motor function,

positive reinforcement, attention, and working memory. In
PD, the degeneration of nigrostriatal dopaminergic neurons
causes chain reactions that ultimately result in glutamatergic
overstimulation. Relative glutamate levels in PD animal models
have been shown to change within the striatum in a time-
dependent manner after subacute treatment with MPTP
(Pflibsen et al., 2015). In PD patients abnormal levels of
glutamate has also been observed. Kashani et al. (2007)
analyzed the expression of VGLUT-1 and VGLUT-2 in autopsy
tissues of PD patients and matched controls, VGLUT-1 was
dramatically decreased in the prefrontal and temporal cortices.
However, there are still no blood-based markers of the relevant
pathological mechanisms occurring in the brain that are used
in clinical practice. Recently, Jiang et al. (2020) reported
that serum neuronal exosomes predict and differentiate PD
from atypical parkinsonism, and their findings demonstrated
that protein cargoes in L1CAM-positive extracellular vesicles

FIGURE 4

Cognitive decline by 1%MoCA from baseline to 36 month in PD
patients with and without RBD (PD-RBD and PD-nRBD) and
healthy controls (HCs). P value was assessed using independent
t-test between each group, *P < 0.05, **P < 0.001.
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FIGURE 5

The effect of RBD on global cognitive decline in PD subjects. RBD predict conversion to cognitive impairment (CI). Kaplan-Meier survival
analysis was used to estimate the effects of RBD on the progression to CI. *P value statistically significant.

exhibit distinct compositions in neurodegenerative diseases that
predate the clinical phase and offer a promising means to
develop blood-based predictive markers of the relevant brain
pathology. According to these findings, we analyzed the plasma
levels of NDE EAAT-2 and VGLUT-1 in PD patients and HCs,
and consistent with the early findings in mouse models and
PD patients, the plasma levels of NDE EAAT-2 and VGLUT-
1 were significantly lower in PD patients than in HCs. The
major pathological hallmark of PD is the accumulation of
insoluble α-synuclein (α-syn). Synaptic expression of α-syn
was mostly accompanied by expression of VGLUT-1 (Taguchi
et al., 2016). Amyloid β pathology is associated with CI in PD.
It has been reported that significant decreases in the density
of VGLUT-1 were found in the conus ammonis 1 region of
the hippocampus in mice after Aβ1-42 injection, indicating
that Aβ1-42 induces brain region- and layer-specific expression
changes in glutamatergic transporters (Yeung et al., 2020). In
out study, we analyzed the association between baseline plasma
levels of NDE VGLUT-1 and cognitive decline in PD patients,
there was no significant difference.

Specific glutamate transporters named excitatory amino
acid transporters are responsible for the reuptake of glutamate,
preventing non-physiological spillover from the synapse
(O’Donovan et al., 2017). EAAT-2 (named GLT-1 in rodent
brain), responsible for 90% of the brain glutamate reuptake, is
highly expressed on astrocytes but also on neurons (Furness
et al., 2008). Dysfunctional expression of glutamate transporters

leads to an increase in extracellular glutamate, which causes
aberrant synaptic signaling, leading to neuronal excitotoxicity
and death. Glutamate excitotoxicity is a well-established
pathogenesis of PD. Compelling evidence has demonstrated
aberrant glutamate reuptake in animal models of PD. Acute
exposure to MPTP and 6-hydroxydopamine (6-OHDA)
neurotoxins is largely used to investigate biochemical and
cellular dysfunctions in PD cellular and animal models (Iovino
et al., 2020). In mice intraperitoneally injected with MPTP, the
animal model displays typical behavioral and histopathological
deficits of PD coupled with downregulation of GLT-1 protein
and mRNA levels, extracellular glutamate accumulation,
excitotoxicity, and astrocytic and microglial reactivity (Zhang
et al., 2017). Similar to MPTP, the injection of 6-OHDA
in the rat striatum causes a downregulation of GLT-1 and
glutamate/aspartate transporter (GLAST) expression in the

TABLE 3 EAAT-2 and RBD as predictors of global cognitive
decline in PD patients.

β P-value

EAAT-2 (PD-RBD) 0.064± 0.013 0.003*

EAAT-2 (PD-nRBD) 0.001± 0.007 0.565

EAAT-2 (HCs) 0.024± 0.003 0.520

Data are shown as coefficient (β) ± (SE). In these linear effects models, 1%MoCA is the
dependent variable and plasma levels of NDE EAAT-2 is the independent variable, with
age, education, disease duration and baseline UPDRS part III score as covariates. *P value
statistically significant.
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striatum (Chung et al., 2008). Inhibition of GLT-1 expression
exacerbated dopamine neuron loss and motor dysfunction
(Wang et al., 2018). Zhang et al. (2020) generated a novel
mouse model of PD with progressive motor deficits and
nigral DA neuronal death via targeted knockdown of GLT-1
in the substantia nigra, revealing the role of GLT-1 in PD
pathogenesis. A recent study showed that α-syn-containing
EVs released by red blood cells (RBC-EVs) from PD patients
exacerbate the aggregation of α-syn in the mouse brain (Sheng
et al., 2020). More interestingly, RBC-EV-induced oligomeric
α-syn pathology in astrocytes affects glutamate clearance via
EAAT-2, revealing the dysfunction of EAAT-2 in PD patients
(Sheng et al., 2020). Along with these studies, we found that
plasma levels of NDE EAAT-2 were significant decreased in PD
patients, and it was even lower in PD-RBD group.

Excitatory amino acid transporter-2 also plays an essential
role in cognitive functions. Hsu et al. (2015) reported a
relationship between ceftriaxone-induced GLT-1 expression and
improved cognition in a PD rat model. With ceftriaxone
treatment, deficits in working memory in the T-maze test
and in object recognition in the object recognition task were
reversed, and increased GLT-1 expression was observed in
the striatum and hippocampus in the animals. Similarly,
upregulation of GLT-1 levels ameliorates neurodegeneration
and cognitive deficits in a 6-OHDA-injected mouse model
(Singh et al., 2018). Alzheimer’s disease (AD) pathology is
related to Parkinson’s disease dementia (Halliday et al., 2014).
Significant functional loss of EAAT-2 has been reported to
correlate with the severity of CI in AD patients and animal
models (Takahashi et al., 2015). Neurons of the sublaterodorsal
tegmental nucleus triggering paradoxical sleep are glutamatergic
(Clément et al., 2011). As previously mentioned, RBD might be
due to the neurodegeneration of glutamate neurons involved
in paradoxical sleep (Luppi et al., 2011, 2013; Wang et al.,
2021). Since glutamate plays an important role in both RBD and
cognitive decline in PD, we analyzed the plasma levels of NDE
EAAT-2 in PD patients with RBD. Compared to the PD-nRBD
group, the plasma levels of NDE EAAT-2 were significantly
lower in the PD-RBD group. With further analysis, we found
that baseline plasma levels of NDE EAAT-2 predicted global
cognitive decline (1%MoCA) over 3 years in the PD-RBD
group. These findings support our hypothesis that in PD-RBD
patients, glutamatergic hyperactivity may play a role in CI.

Study limitations should be addressed. In our study, we
measured the plasma levels of NDE EAAT-2, and we did not
have additional information, such as pathology or CSF data,
to confirm the results. Second, our sample size was relatively
small, and replication and validation of the results in a larger
independent sample is needed. Finally, plasma samples were
not collected during the follow-up and will be included in
our future study.

In summary, PD patients with RBD experience greater rates
of cognitive decline than those without RBD, specifically on

measures of visuospatial function and memory. Baseline plasma
levels of neuron-derived exosomal EAAT-2 are associated with
cognitive decline in PD patients with RBD and may serve
as a predictor of cognitive decline in PD patients with RBD.
These findings offer new evidence suggesting that glutamatergic
hyperactivity may play a role in CI in PD patients.
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