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Abstract
The field of protein engineering has seen tremendous expansion in the last decade, with
researchers developing novel proteins with specialised functionalities for a range of uses,
from drug discovery to industrial biotechnology. The emergence of computational tools
and high‐throughput screening technology has substantially sped up the process of
protein engineering. However, much of the expertise required to engage in such projects
is still concentrated in the hands of a few specialised individuals, including computational
biologists and structural biochemists. The international Genetically Engineered Machine
(iGEM) competition represents a platform for undergraduate students to innovate in
synthetic biology. Yet, due to their complexity, arduous protein engineering projects are
hindered by the resources available and strict timelines of the competition. The authors
highlight how the 2022 iGEM Team, ‘Sporadicate’, set out to develop InFinity 1.0, a
computational framework for increased accessibility to effective protein engineering,
hoping to increase awareness and accessibility to novel in silico tools.
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1 | PROTEIN ENGINEERING: AN
OVERVIEW

Protein engineering is a rapidly evolving field in which efforts
can be broadly categorised into two classes: the re‐engineering
of natural proteins to either fine‐tune (substrate specificity and
affinity, catalytic properties, stability) or introduce new func-
tionality; or de novo protein design (referred to as design rather
than engineering) where proteins are artificially built from first
principles and engineered to perform a desired function [1]
(Figure 1).

Within protein re‐engineering, approaches range from the
highly rational to solely combinatorial. Historically, researchers

have relied on rational engineering approaches to introduce
changes in natural protein structures [2]. Albeit requiring prior
knowledge of the protein's folding and functional character-
istics, these techniques rely on a small library size to screen for
the desired behaviour, with many successful examples docu-
mented extensively in the literature [3].

When structural and functional information is not easily
accessible, directed evolution strategies employ random
mutagenesis such as error‐prone PCR (epPCR) to generate a
large protein library to screen for functionality. Existing
directed evolution techniques, however, are limited in scal-
ability due to the laborious process of in vitro high throughput
screening and subsequent selection [4]. Additionally, directed
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evolution relies on manual staging of each cycle. This limits its
ability to explore the functional sequence space deeply and
extensively [5].

At the intersection between directed evolution and rational
design lie combinatorial approaches, which combine stochastic
elements and rational information to generate small yet
effective protein pools, able to constrain the protein folding
space and optimise the chances of success [6].

1.1 | Computational tools for addressing
challenges in protein engineering

Two key challenges in protein engineering are: (1) deciphering
the sequence‐structure‐function relationship in proteins and
(2) effectively navigating the protein design space defined as
20n, where n is the number of amino acids [7].

Computational tools addressing both these issues have
been developed extensively in the last decade, with in silico
strategies for predicting protein structure (AlphaFold, RoseT-
TAFold), their interactions with other ligands (AutoDock Vina,
UCSF Dock, P2Rank), as well as dynamic system simulations
(molecular dynamics software, such as GROMACS, NAMD,
and AMBER) finding regular applications in the cutting edge.

In particular, AI‐based methods have revolutionised the
field of rational design through use of the ever increasing
amount of data provided by ‐omics projects to investigate rules
for engineering functional biomolecules [8]. Machine learning
approaches have been applied to a range of processes that span
all areas of protein design, including protein secondary struc-
ture prediction, fold recognition, contact matrix calculations,
genomics, proteomics, and systems biology [8]. The

development of deep learning approaches in particular, driven
by the increasing availability of computer power and the
development of GPU‐based calculations has resulted in the
release of several landmark rational design papers within the
last decade [9, 10].

Adoption of these tools unlocks the possibility of semi‐
rational engineering approaches, characterised by smaller and
enriched variant protein libraries. This not only mitigates the
limitation of screening numerous variants, a time and resource‐
intensive step in wet lab settings, but increases the likelihood of
engineering a functional protein.

As highlighted by Walker, Yallapragada and Tangney [11],
one of the main limitations concerning protein engineering and
its widespread adoption is the lack of intuitive workflows for in
silico tools. In recent years, there have been efforts to tackle
this issue (Table 1), an in depth discussion of tools considered
approachable to non‐specialists can be found in recent reviews
[24, 25]. Yet, none of these address the specificity and affinity
engineering problem in a manner that is one‐stop and intuitive
to non‐specialists, whilst being open‐source. Indeed, to exploit
the capabilities of ever‐evolving algorithms, expertise in both
computational biology and structural biochemistry is required,
resulting in a high barrier to entry. A great case study of the
phenomenon is iGEM—(International Genetically Engineered
Machine competition) an annual synthetic biology competition,
wherein multidisciplinary student teams pursue a project of
their own design.

In 2022, we set out to compete in the iGEM competition
with Sporadicate, a novel, broadspectrum, and timely crop
biofungicide system [26]. In order to target pathogens over
both space and time, we designed a Bacillus subtilis spore‐
based system that would trigger the release of our biocontrol

F I GURE 1 Areas of research in protein engineering.
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agent—vegetative Bacillus subtilis cells—in response to a
common biomarker of pathogenic fungi (N‐acetylglucosamine
—i.e. chitin monomer). Our sensing system required trans-
duction of our desired input signal into germination, the
process by which dormant spores awaken into cells. Natively,
protein receptors in the coat of spores known as germinant
receptors perform this task, sensing for nutrients such as
glucose as well as amino acids [27]. We planned to modify
native germinant receptor GerA (Figure 2), a sensing protein
detecting L‐alanine [28], with enhanced specificity towards N‐
acetylglucosamine.

Given the limited available information on the protein
structure and how this relates to function—we needed to
adopt a combinatorial strategy. However, as GerA comprises
1220 residues, a protein design space of 201220 would have
been impossible to explore in practice. Hence, we devised a
potential workflow integrating novel computational tools that
would enable us to design a smaller, richer protein library. This
not only would have maximised our chances of success, but
could lay out the foundations of accessible protein engineering
research, in iGEM and beyond.

2 | DESIGN

With the advent of computational tools that can accurately
predict protein structures and significant progress in the field
of molecular docking, we pose the question if said de-
velopments could be incorporated into a framework for
streamlined protein engineering [12, 30, 31]. We propose In-
Finity 1.0, an open‐source computational framework,
mimicking in vivo techniques (Figure 3). Specifically, this
consists of mutant library generation, positive and negative
selection finally followed by analysis of commonly occurring
motifs. Here, we present how such a framework could be
constructed (Figure 3).

First, taking either a predicted (e.g. Alphafold) or experi-
mentally derived protein structure, mutations should combi-
natorically be introduced within the targeted ligand binding
pocket. Sequence‐wise this can be done quickly and efficiently
with simple combinatorics of a supplied FASTA sequence.
Accurately modelling the mutations structurally is perhaps the
greatest challenge, and a compromise has to be met between
computational efficiency and accuracy. For example, PyMol's
mutagenesis tool can efficiently model changes to side‐chains,
avoiding steric clashes but does not account for changes to the
scaffold and effect on local and global energetics as molecular
dynamic simulations do. Nonetheless, at this step, the desired
input is simply an initial protein structure and residue positions
targeted for mutagenesis, while the output is a library of
mutant structures.

For positive selection, this can be performed with relatively
computationally efficient docking and scoring. In recent years,
we have seen advances in the use of machine‐learning based
docking and scoring functions for computational drug dis-
covery, and some have shown significant improvements in the
predictive accuracy of ligand‐binding affinities; for example,T
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DiffDock, GNINA and scoring functions adapted with an
XGB model [30, 32, 33]. Taking the mutant library previously
derived, the desired ligand could be docked and affinities are
calculated using a concoction of the leading docking tools and
scoring functions. The final output would then be a ranked list
of which mutants' structures showed the greatest binding
affinities.

The use of negative selection will be desirable especially
in cases where computational efficiency has been prioritised
over accuracy in earlier steps. Here, we aim to investigate top
scoring mutants from positive selection, specifically screening
how mutants could have had detrimental effects on overall
protein folding. Missense3D [34] is one example of a
computationally efficient way of achieving this while Molec-
ular Dynamics simulations could be used to gain more
granularity.

The final step would then be ranking and consensus
evaluation of common motifs. For use in iGEM and other
protein engineering projects, a selection of the top motifs
could then potentially be tested in vivo. The specific benefit of
this framework over current implementations is its use of open
source tools and modularity, opening the door for the inte-
gration of novel tools that could improve the performance of
the overall pipeline.

3 | INFINITY 1.0 PIPELINE

Throughout the iGEM competition period, we produced an
initial proof of concept prototype for the InFinity 1.0 pipeline
(Figure 4). Our prototype links several established open‐source
tools, which allows inexperienced users to achieve high‐

F I GURE 2 Binding site identification. (a) GerA complex obtained through AlphaFold. The protein consists of three smaller subunits, AA, AB and AC. The
B subunit is thought to sense and bind with the germinant L‐alanine, whereas the A subunit is responsible for transducing the signal from B [28] upon activation.
The function of the C subunit is unclear, but it is not necessary for germinant receptor activation [29]. (b) NAG Binding site identified in GerAB through
Autodock. NAG, n‐acetylglucosamine.

F I GURE 3 Overview of proposed framework for computational protein engineering. The framework will benefit from advances in structural modelling and
molecular docking. Adapting these for use in computational protein engineering could allow for high‐throughput screening of mutants, aiding in design and
testing to be carried out in the lab.
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throughput and accurate mutant screening for protein design.
Users can input sequence information which is then used to
generate a mutant library, this is then sampled for high‐
throughput ligand docking which produces binding affinity
information. Binding affinities are scored and ranked, and
finally multiple sequence alignment is applied to the highest‐
ranked mutants to derive information about common motifs
which is passed back to the user. Our pipeline along with a user
guide can be found on our team's GitHub Page (See Code
Availability below).

3.1 | Creating a library of mutants

Our approach to combinatorial mutagenesis was highly cus-
tomisable, allowing the user to select which residues to mutate
and wrote a script that generated a random subset of mutants
from the associated combinatorial space. To make our software
accessible to iGEM users and individuals without a back-
ground in structural biology or protein engineering, we added a
simple .csv file that can be easily filled and is seamlessly inte-
grated into the software. Users can select their desired
sequence and specify which amino acids they want to mutate,
as well as the positions of these amino acids.

We used PyMol's mutagenesis tool [35] in our proof of
concept to introduce the generated mutant sequences into the
wildtype protein structure. The tool substitutes residue side-
chains and adjusts using the most optimal rotamer for each,
and as such, is best suited for fewer and less structurally sig-
nificant mutations, such as those required to alter protein
specificity or affinity slightly which would be accounted for in a
negative selection step.

As our implementation of the pipeline was more of an
exploratory proof of concept within the limited iGEM time
frame, we did not perform the negative selection step of the
design, which would involve modelling the relaxed structure
for each mutant and screen for large structural disruptions. We

instead relied on the less computationally expensive positive
selection and affinity score ranking processes to select our final
mutants of interest.

3.2 | Positive selection

After obtaining the structural library, high‐throughput rigid
docking was performed using an adapted version of EquiBind
[36], a recently released deep learning‐based docking tool.
EquiBind's use of a SE(3)‐equivariant geometric deep learning
model significantly improves the computational efficiency of
docking and has higher accuracy of binding poses compared to
comparable baselines. Using GPU acceleration, a single GPU
can evaluate approximately 200,000 mutants per day. This step
can also be parallelised using multiple GPUs by splitting the
mutant dataset.

Affinity scoring was then applied to the high‐throughput
docking results using the ΔLin_F9XGB scoring function [33],
an improved version of the linear empirical scoring function
Lin_F9, utilising extreme gradient boosting and Δ‐machine
learning. ΔLin_F9XGB is open‐source and has been shown to be
on par or superior to some of the leading scoring functions when
tested against the CASF‐2016 benchmark [37]. The scoring
function takes the .mol2 binding poses generated using equibind
and can be massively parallelised according to the maximum
number of CPU processing cores available to the user.

3.3 | Ranking

Finally, alignment and consensus screening were performed on
the top‐ranking mutants to identify trends in the specific types
of residue substitutions. Through deriving consensus motifs,
desirable properties of the binding pocket can be derived, and
in turn aid in the selection of mutants to be tested
experimentally.

F I GURE 4 Overview of implemented Infinity 1.0 pipeline. Process begins with a csv file in which users can input the sequence and mutations of their
choice, and ends with the corresponding ranked affinity scores with the ligand of choice. For each stage, a script has been created to interface between the user
and incorporated tool. Aside from the initial sequence information and computational resource specification, the pipeline requires minimal user input to run.
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3.4 | Validation

To test the protocol's ability to enrich for mutants with altered
binding affinity/specificity, the protocol must be run to
completion and a subset of top mutants would have to be syn-
thesised and tested in vitro. Owing to the time and resource
constraints of iGEM, we sought to instead investigate possible
approaches to testing the protocol in silico using test sets from
literature. The closest alternative to in vitro testing would in this
case be evaluating the protocol's accuracy of affinity predictions
following in silicomutagenesis.We attempted this on a test set of
26 ABL kinase mutants (PDB ID: 4WA9) with associated
binding affinities from a study by Hauser et. al. [38]. First, taking
the wild type ABL kinase structure, in‐silico structural mutations
were introduced to match those from the test‐set. Affinity pre-
diction was then carried out on these in silico mutants and
changes in affinity between the wild type and mutants were
compared to those same differences, determined experimentally.
With this limited test‐set, we were unable to show a significant
correlation between predicted and literature affinities. However,
this was an expected result as a much greater test‐set would be
required to detect meaningful relationships owing to the
inherent low accuracy of current scoring functions. Yet, datasets
of mutants and associated binding affinities are much sparser in
literature as compared to wild‐type datasets, and the largest
mutant databases with experimental affinities have become
outdated or are no longer publicly available [39, 40] To aid in the
development of future protein engineering tools aimed at
altering binding affinity we therefore call for the development
and curation of new and comprehensive databases of mutants
akin to PDBBind [41] in scope. However, even with such a
database, evaluation would be restricted to affinity prediction
and fail to address the specific aim of enriching for mutants with
improved ligand binding affinity/specificity and as such in vitro
evaluation is still necessary, and future work should attempt this.

In terms of computational efficiency we were able to
screen 20,000 mutants/day with a quad‐core intel‐based sys-
tem. With the structural mutagenesis step being rate limiting,
we expect significant improvements could be made by better
parallelising this step or utilising different mutagenesis tools.

4 | CASE STUDY: INFINITY 1.0
COMPARISON TO COMMERCIAL TOOLS

Tools similar to those integrated into the InFinity 1.0 pipeline,
such as those for docking and scoring, are often commercially
applied within the context of drug discovery services. One
such company offering this service is MedChemExpress
(MCE), which offers precise virtual screening (VS) as an effi-
cient alternative to high‐throughput screening of ligands in
early‐stage drug discovery. MCE's VS uses structure‐based
virtual screening (SBVS) to dock and rank molecules using
3D target structures.

In a 2022 study, Kong et al. used MCE for molecular
coupling, a tool to align substrates to protein binding sites with
the aim of identifying potential binding pockets on amyrin

synthase, amyrin synthase enzyme (CrMAS), for the substrate
2,3‐oxidosqualene. The method revealed five binding pockets
on CrMAS (Figure S1), with Site 1 showing the highest affinity
to 2,3‐oxidosqualene.

Our case study aimed to compare these findings with af-
finity predictions on the same sites using InFinity 1.0. The
outcome of the scoring function delta_LinF9_XGB, used
following docking performed by Equibind, was converted
from its native units to Gibbs Free energy (ΔG) using a rear-
ranged formula from the paper by Yang and Zhang [33].

Figure 5 and Table 2 show that the results from Autodock
Vina, Kong et al. [42] and Equibind exhibit a similar trend in
binding affinity, a property that is inversely proportional to ΔG
value. Additionally, our tool effectively differentiated between
sites of high (Sites 1, 2, and 5) and low binding affinity (Sites 3
and 4), mirroring the findings of Kong et al. [42].

To demonstrate the modularity of Infinity 1.0, we incor-
porated another scoring function, GNINA. GNINA, a fork of
smina [43] and Autodock Vina [30], integrates convolutional
neural networks (CNNs) for advanced scoring refinement.
This integration of GNINA resulted in the identification of the
top three highest (Sites 1, 2, and 5) and lowest (Sites 3 and 4)
affinity sites, as shown in Table 2. These findings align with the
results documented by Kong et al. [42]. The observed low
binding affinity at Site 4, relative to the other sites, may be
attributed to steric hindrance, as illustrated in Figure S1. Steric
hindrance arises when atoms or groups within a molecule
obstruct each other, thereby inhibiting optimal intermolecular
interactions (e.g., hydrogen bonds, van der Waals forces, or
ionic bonds) and preventing the establishment of efficient
binding [44].

Our study demonstrates that InFinity 1.0 identifies sites
exhibiting both high and low binding affinity to a given ligand,
as shown when compared to the findings of Kong et al. [42].
InFinity 1.0 yielded more positive ΔG values for Site 1 and Site
2, indicating a heightened affinity of CrMAS for 2,3‐oxi-
dosqualene at these sites relative to Sites 3 and 4, which aligns
with Kong et al. [42] finding. Furthermore, InFinity 1.0's rapid
docking and scoring capabilities surpass those of traditional
methods, such as Autodock Vina, allowing quick screening
within proteins to pinpoint sites for further investigation. This
accelerated screening process not only reduces the time
required but also minimises the financial expenditure for
iGEM teams. Furthermore, as our program is open‐source, it
provides iGEM competitors with free access for use in their
projects, allowing them not only to use but also to expand
upon the software without incurring costs.

5 | DISCUSSION

Our proposed implementation serves the intended purpose of
demonstrating how a pipeline could conceivably be constructed,
repurposing breakthrough tools utilised for structural prediction
and computational drug discovery. As more effective tools are
developed, they can replace those in our current implementa-
tion, with the aim to suggest a small subset of potential mutants
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to test in vitro. This future improved implementation would
then open the door for researchers with time and funding‐
constrained projects such as those in iGEM to perform speci-
ficity and affinity engineering. The main aspect that calls for
improvements is accuracy in modelling the structural impact of
combinatorial mutants. In our study, we have employed PyMOL
mutagenesis to introduce novel mutations into the 3D structure,
due to its open‐source nature and quick integration into our
pipeline. However, this approach has its limitations as it does not
alter the underlying scaffold and does not consider steric clashes.
To overcome these limitations, an alternative software tool,
Rosetta CoupledMoves could be used [45]. This tool couples
protein side‐chain, backbone flexibility, as well as ligand degrees
of freedom for the improved redesign of viable mutants. The
adoption of this alternative tool promises to enhance the accu-
racy of our structural modelling efforts, enabling us to more
effectively investigate protein function and interaction. We have
included command‐line instructions for its use within the In-
Finity 1.0 pipeline context in our Github repository (see Code
Availability).

Finally, seeing inherent flexibility and potential inaccuracies
in structural prediction, we propose docking programs should
utilise flexible docking. One interesting avenue would be uti-
lising the open‐source GNINA [46] platform which builds on
AutoDock Vina [30], by using ML‐based scoring functions.

As opposed to the currently available dominant in silico‐
based protein engineering tools that focus on enzyme engi-
neering, InFinity 1.0 aims to alter binding affinity and speci-
ficity. This has applications namely for biosensor design, with
use‐cases readily seen in iGEM, and can include sensors for
pollutant detection [47], medical diagnostic tests [48], agricul-
tural use and microbiology research with the possibility of
monitoring metabolites in real time [49]. Additionally it can be
applied to alter cellular functions, by changing natural‐sense
and response systems. Its applicability could perhaps also
translate to drug design, investigating mutants' effect on drug
binding‐specificity, which could prove useful in for example,
antiviral drug development [50].

6 | CONCLUSION

In silico tools have developed exponentially in the last 5 years,
with innovation in the sector set to revolutionise the current
biotech landscape. In this study, we proposed a framework to
increase accessibility and effectiveness of protein engineering
techniques, stemming from our individual experience in the
iGEM landscape. Focusing on altering ligand binding speci-
ficity, we enable users to generate a pool of combinatorial
protein variants, which are then screened and ranked based on

F I GURE 5 Comparison of CrMAS Binding Sites between MedChemExpress and InFinity 1.0 with 2,3‐oxidosqualene as the Ligand. (a) Comparative
analysis of various scoring functions—EquiBind, Autodock Vina, and GNINA—against the findings presented in Kong et al. [42] following the docking
process. (b) PyMOL visualisation of the binding site at Site 1 with 2,3‐oxidosqualene inside. CrMAS, amyrin synthase enzyme.

TABLE 2 Gibbs energy scores derived from various scoring functions for different sites during the docking of 2,3‐oxidosqualene to CrMAS.

Sites

−ΔG (kcal/mol)

Kong et al. [42] Autodock Vina Equibind (docking) and delta_LinF9_XGB (scoring) GNINA

Site 1 4.62 8.3 8.62 1.25

Site 2 3.83 6.2 7.27 1.26

Site 3 2.84 5.9 5.21 1.12

Site 4 2.41 5.0 4.32 0.97

Site 5 3.05 6.1 5.4 1.22

Abbrebiation: CrMAS, amyrin synthase enzyme.
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binding affinity predictions and common motifs, allowing for
an output consisting of a library of 20,000 variants.

Seeing that our developed framework takes care of
combinatorial mutagenesis, future work could adapt the soft-
ware pipeline, simply changing the tools used for structural
mutagenesis and docking/scoring without too extensive
modification.
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