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How the Colourless �Nonfluorescent� Chlorophyll Catabolites Rust
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Dedicated to Prof. Karl Rigger on the occasion of his 90th birthday

For a long time, the appearance of the fall colours has
been associated with the enigmatic chlorophyll breakdown
in higher plants.[1] However, the extensive earlier search for
coloured chlorophyll breakdown products has remained un-
successful.[2] When chlorophyll catabolites from higher
plants were first tentatively identified, they were indicated
to be colourless.[3,4] These colourless compounds readily de-
composed to rust-coloured materials upon analysis by thin-
layer chromatography and were thus named “rusty pig-
ments”, originally.[3,4] The puzzling picture cleared up, when
one of the presumed chlorophyll breakdown products was
structurally characterized as a colourless linear tetrapyr-
role,[4] the type of which is meanwhile classified as a “non-
fluorescent” chlorophyll catabolite (NCC, see Scheme 1).[2,5]

Indeed, the colourless NCCs are ubiquitous in various senes-
cent leaves and have been considered to represent the
major “final” products of chlorophyll breakdown in senes-
cent plants.[6] However, Cj-NCC-1 (1), a colourless NCC iso-
lated from senescent leaves of the deciduous tree Cercidipyl-
lum japonicum (Katsura tree) could be chemically oxidized
to a yellow chlorophyll catabolite, named Cj-YCC, which
has also been detected in fall leaves recently.[7] Here, we an-
alysed the major coloured products, when 1 decomposed to
�rust� on silica gel.

Application of a solution of Cj-NCC-1 (1)[8,9] to a silica
gel TLC plate first gave a nearly colourless “spot”, which
acquired a brown colour (“rust”) within 2–5 min, when ex-
posed to air and daylight. TLC analysis of such a “spot” of 1
separated off a yellow zone on the plate, as was observed
earlier with “rusty pigments”,[3,4] and an additional pink-red
spot developed eventually. Thin-layer re-chromatography in
a second dimension of the TLC trace originating from the
NCC 1 revealed the yellow fraction to directly form on the

plate from the colourless 1, whereas the pink-red spot corre-
lated with the yellow fraction (see Figure S1 in the Support-
ing Information).

In an analytical experiment, NCC 1 (13.8 mg, 21.4 mmol)
was adsorbed on silica gel 60 (5 g). The slightly yellow
powder was suspended in hexane (20 mL) and was exposed
to daylight, while being stirred magnetically under air. After
90 min the powder had acquired an orange-red colour, and
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Scheme 1. Structural outline of chlorophyll breakdown in senescent
leaves: chlorophylls a and b are rapidly degraded to the colourless, non-
fluorescent chlorophyll catabolites (NCCs), such as Cj-NCC-1 (1), an
NCC found in leaves of Cercidiphyllum japonicum.[5,8,9]
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it was extracted with MeOH. The orange-red extract con-
tained a colourless fraction of 1 (rt = 17 min), two yellow
compounds (Cj-YCC-1 (2 b), rt = 15 min; Cj-YCC-2 (2 a),
rt = 22 min) and a pink red fraction (Cj-PiCC (3), rt =

35 min), as seen by analytical reversed-phase HPLC (see
Figure 1). In a preparative experiment, NCC 1 (192.9 mg)
was adsorbed on silica gel 60 (19.3 g). The dried powder was
stirred magnetically under air, while being illuminated with
a 100-W tungsten lamp. After 14 h the powder had acquired
an orange-red colour. The adsorbed organic compounds
were eluted with MeOH. The crude product mixture was
separated by RP-MPLC. A colourless fraction of the NCC 1
(33.5 mg, 17.4 %), two main YCCs, 2 b (29.2 mg, 15.2 %) and
2 a (30.3 mg, 15.8 %), and the pink-red PiCC 3 (5.5 mg,
2.9 %) were isolated and were obtained as dry powders (see
Experimental Section).

Cj-YCC-2 (2 a), the less polar of the two yellow com-
pounds, was obtained earlier by direct oxidation of Cj-NCC-
1 (1) and was characterized as (132S,15R,20Z)-31,32-didehy-
dro-4,5,10,15-(22,24 H)hexahydro-132-methoxycarbonyl-4,5-
seco-4,5-dioxophytoporphyrinate (2 a, then tentatively
named Cj-YCC, see Figure 1).[7] The UV/Vis spectrum of
this yellow tetrapyrrole exhibited three characteristic
maxima at 244, 310 and 426 nm (in methanol, relative inten-
sities of 0.50:0.69:1.00, see Figure 2).[7]

Cj-YCC-1 (2 b), the more polar of the two yellow pig-
ments, likewise exhibited a UV/Vis spectrum with two char-
acteristic absorbance bands, with maxima at 313 and 440 nm
(relative intensities of 1.00 to 0.61, see Figure 2). The molec-
ular formula of Cj-YCC-1 (2 b) was deduced as C35H38N4O8

from the pseudo-molecular ion at m/z 643.2. This indicated
the yellow tetrapyrrole 2 b to be an isomer of 2 a, and to
have two H atoms less per molecule than the parent 1. The
constitution of the yellow catabolite Cj-YCC-1 (2 b) was de-
duced from 1H NMR spectra, as well as homo- and hetero-
nuclear 2-D spectra (ROESY, 1H,13C-HSQC and HMBC,
see Figure 3 and Figure S2 in the Supporting Information):
In the 1H NMR spectra of 2 b (CD3OD, at 25 8C) the signals
of all 34 carbon-bound hydrogen atoms could be observed.

Among these, two singlets at lower field, of HC5=O and of
HC20, the spin system for a peripheral vinyl group at an in-
termediate field, a singlet near d=3.7 ppm (ester methyl)
and the singlets of four methyl groups at high field stand
out. From 1H,13C heteronuclear NMR correlations (HSQC,

Figure 1. HPLC-analysis of the raw product mixture of the preparative
oxidation of 1 on silica gel (detection at l= 320 nm), and structural for-
mulae of Cj-YCC-1 (2b) and Cj-YCC-2 (2 a).

Figure 2. UV/Vis spectra (top) and CD spectra (bottom) of solutions of
40.4 mm Cj-NCC-1 (1), 28.0 mm Cj-YCC-1 (2b) and 37.4 mm Cj-YCC-2
(2a) in MeOH.

Figure 3. UV/Vis spectrum of a solution of Cj-PiCC (3, 38.4 mm) in
MeOH.
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g-HMBC and ROESY spectra[10]) of 2 b, complete assign-
ment of the 1H and 13C signals could be achieved. The con-
stitution of 2 b could thus be confirmed as that of an oxida-
tion product of Cj-NCC-1 (1), resulting from removal of two
hydrogen atoms from the C1 and C20 positions (of 1). 1H-
ROESY spectra helped to establish the E configuration in
2 b of the new double bond between C20 and C1. On this
basis, and assuming that the stereostructure of 2 b would cor-
respond to that of Cj-NCC-1 (1) elsewhere, the yellow oxi-
dation product 2 b was thus assigned the structure of a
(132S,15R,20E)-31,32-didehydro-4,5,10,15-(22,24H)hexahydro-
132-methoxycarbonyl-4,5-seco-4,5-dioxophytoporphyrinate
(see Figure 2 and Scheme 2). The suggested retention of the

configuration at the C132 and C15 positions was supported
by comparison of the basic sign-properties of the CD spectra
of 1, 2 a and 2 b. The two isomeric yellow compounds (2 a
and 2 b) are thus oxidation products of 1, from which they
both arise by formal loss of two H atoms from the C1 and
C20 positions.

The significantly less polar pink-red compound Cj-PiCC
(3) was indicated to be a further oxidation product of the

YCCs (2 a, 2 b). Its UV/Vis spectrum in MeOH exhibited
strong absorbance bands at 312 and 522 nm, with relative in-
tensities of 0.92 to 1.00 (see Figure 3). The molecular formu-
la of 3 was deduced by mass spectrometry to be C35H36N4O8,
indicating two H atoms less (per molecule) than were pres-
ent in 2 a or 2 b. The constitution of the pink-red catabolite
3 was deduced from 1H NMR spectra, as well as homo- and
heteronuclear 2D spectra (ROESY, 1H,13C-HSQC and
HMBC ,[10] see Scheme 2 and Figure S3 in the Supporting
Information): In the 1H NMR spectra of Cj-PiCC (3, in
CD3CN, at 25 8C) the signals of all 30 carbon-bound hydro-
gen atoms could be observed. Among these were two sin-
glets at low and at an intermediate field, of HC5=O and of

HC20, the spin system for a pe-
ripheral vinyl group and the
singlets of four methyl groups
at high field and of an ester
methyl group (near d=

3.7 ppm). In addition, the signal
of HN21 could be observed.
From 1H,13C heteronuclear
NMR correlations (HSQC, g-
HMBC) and ROESY spectra of
3, the complete assignment of
the 1H and 13C signals could be
achieved and 3 was delineated
to have the constitution of a
31,32-didehydro-4,5,10-(22 H)-
tetrahydro-132-methoxycarbon-
yl-4,5-seco-4,5-dioxophytopor-
phyrinate (see Scheme 2). 1H-
ROESY spectra of 3 helped to
establish the Z configuration of
the double bond between C20
and C1: the observed NOEs
(e.g. from the ester methyl
group to HN21 of ring A) were
all consistent with an E configu-
ration of the “new” double
bond between C15 and C16. A
CD-spectrum of the isolated
sample of 3 showed very week
signals only. Apparently, practi-
cally racemic 3 was isolated,
due to equilibration at its single
stereo-center, the exchange
labile C132. The pink-red oxida-
tion product 3 was thus as-
signed the structure of a

(15E,20Z)-31,32-didehydro-4,5,10-(22 H)-tetrahydro-132-me-
thoxy-carbonyl-4,5-seco-4,5-dioxophytoporphyrinate.

Our experiments showed the “rust” colour of the NCCs
to develop from oxidative decomposition of the colourless
NCCs mainly, as suspected earlier[2] (see Scheme 3). NCCs,
the colourless linear tetrapyrroles from breakdown of chlor-
ophyll were revealed to be rather strong antioxidants,[12]

nearly as effective as bilirubin.[13] Oxidation of the colourless

Scheme 2. Deduced constitutions of Cj-YCC-1 (2b, top), and of Cj-PiCC (3, bottom): Left: Graphical repre-
sentations of 1H-chemical shift data (500 MHz spectra) with 2D ROESY correlations. Right: Constitutional
formulae of 2b and 3. Atom numbering, as recommended by IUPAC for chlorophyll derivatives, see fore ex-
ample, reference [11].
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Cj-NCC-1 (1) with DDQ provided YCC 2 a, by dehydrogen-
ation at the C20 meso bridge. In YCCs electronic conjuga-
tion via the “western” C20 meso position extends the tetra-
pyrrolic chromophore into the visible range.[7] Indeed, YCCs
(2 a and 2 b) have a chromophore that is remarkably similar
to that of the heme breakdown product bilirubin.[14] Like-
wise similar to bilirubin (which undergoes light-induced
double bond (Z–E) isomerisations[14]), YCCs 2 a and 2 b
were observed in analytical experiments to interconvert in
solution (e.g. in MeCl2), when they are exposed to daylight
(see Figure S4 in the Supporting Information). Photo-iso-
merisation of 2 a is thus a path for its preparative isomerisa-
tion to 2 b. Further oxidation of the YCCs occurs at the sa-
turated C15 meso position, and the extension of the conju-
gated system via C15 results in the red-shifted absorption
properties of Cj-PiCC (3). This pink-red tetrapyrrole was
also prepared in about 40 % yield by direct oxidation of the
YCC 2 a with dichlorodicyanobenzoquinone (DDQ).

The ubiquitous colourless NCCs were suggested to repre-
sent the “final stage” of chlorophyll breakdown in senescent
leaves (see Scheme 1) and were found to accumulate in the
vacuoles.[2,5] Until recently, NCCs were primarily looked at
as products of a crucial detoxification process.[15] However,
NCCs were recently shown to be effective antioxidants, and
they were suggested to possibly play a (still unknown) phys-
iological role in senescent leaves and fruit.[12] Indeed, a com-
pound identified with the YCC 2 a was observed in small
quantities in fresh extracts of senescent leaves of C. japoni-
cum.[7,16] In the leaf, NCC 1 thus appears to be oxidized (by
non-enzymic processes) to the yellow YCC 2 a, from which

the isomer 2 b may possibly be
produced by light-induced iso-
merisation. Further oxidation
may result in the pink-red PiCC
3. A related oxidation process
has been proposed to be re-
sponsible for the observation of
colourless urobilinogenoidic tet-
rapyrroles in senescent barley
leaves,[17] which were suggested
to be the result of an alterna-
tive oxidation of the Hv-NCC-
1, the main NCC from de-
greened leaves of barley.[4]

Having identified the yellow
tetrapyrroles 2 a/2 b and the
red-pink compound 3 as oxida-
tion products of the NCC 1, we
have now set out to analyse de-
greened plant material (from
leaves and ripe fruit) more
thoroughly for the appearance
of coloured chlorophyll catabo-
lites under the conditions of
natural senescence and ripen-
ing. Indeed, ongoing studies in
our laboratories hint at a more

general significance in senescent leaves, not only of yellow
chlorophyll breakdown products,[7] but also of their red-pink
oxidation products.[18] Red and yellow chlorophyll catabo-
lites may thus prove to be active contributors, after all, to
the appealing yellow, orange and red colours of fall
leaves.[19]

Coloured tetrapyrroles from chlorophyll breakdown may
be of interest as a new class of nature-derived pigments. The
yellow and red chlorophyll breakdown products are pig-
ments related to important heme-derived tetrapyrroles, such
as biliverdine and its natural reduction products, such as bi-
lirubin and phytochromobilin.[14,20] Together with the fasci-
nating �hypermodified� fluorescent chlorophyll catabolites
(hFCCs), that give ripe bananas an intriguing blue lumines-
cence,[21,22] YCCs and PiCCs represent noteworthy expan-
sions of Nature�s repertoire of plant pigments. In view of
the important biological roles played by the heme-derived
linear tetrapyrroles, for example, as chromophores in light-
sensing enzymes and light-harvesting assemblies in photo-
synthetic organisms,[20] possible physiological effects of the
tetrapyrrolic chlorophyll catabolites in plants and in higher
animals continue to call for attention.[21]

Experimental Section

General and chromatography : See details in Supporting Information.

Spectroscopy : UV/VIS: HITACHI U-3000 spectrophotometer; lmax in
nm (rel. e). CD: JASCO J-715 spectropolarimeter; lmax and lmin in nm
(relative De). 1H NMR: Varian UNITYplus 500; d in ppm with d-

Scheme 3. Structural outline of the oxidative decomposition of Cj-NCC-1 (1). a) Oxidation of 1 to Cj-YCC-2
(2a), b) reversible photo-isomerization of 2 a and 2 b (Cj-YCC-1), c) oxidation of 2 a to Cj-PiCC (3).
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ACHTUNGTRENNUNG(CHD2OD)= 3.39 ppm; JHH(Hz). MS: MAT 95 sector field instrument
with fast atom bombardment (FAB) or electrospray ionisation (ESI)
source, positive-ion modes, m/z (rel. int. in%); FAB (caesium ions at
20 keV, 2 mA): glycerine matrix,. ESI: flow rate 2 mL min�1, spray voltage
3.0 kV, solvent water/MeOH 1:1 (v/v).

Preparative oxidation of Cj-NCC-1 (1) to coloured tetrapyrrolic com-
pounds on silica gel : A sample of NCC 1 (192.9 mg, 270 mmol) was dis-
solved in MeCl2 (150 mL) and silica gel (19.3 g) in dichloromethane
(200 mL) was added. The resulting suspension was filtered and dried.
The dry powder was stirred magnetically under air, and was illuminated
with a 100-W tungsten lamp for 14 h. An orange-red powder was ob-
tained. Analytical HPLC[7] revealed three coloured fractions: yellow Cj-
YCC-1 (2 b, rt = 15 min), yellow Cj-YCC-2 (2 a, rt =22 min) and pink-red
Cj-PiCC (3, rt =35 min). Extraction of the coloured powder and work-up
with MPLC (as described[7]) resulted in re-isolated starting material Cj-
NCC-1 (1, 33.5 mg= 52.0 mmol =17.4 %) and two yellow pigments, isolat-
ed as powders (29.2 mg of Cj-YCC-1 (2b, 45.4 mmol=15.2 %) and
30.3 mg of Cj-YCC-2 (2 a, 47.2 mmol =15.8 %)).[7] A third (red) fraction
was also collected and desalted on a Sep-Pak cartridge. Crude pink-red
Cj-PiCC (3) was eluted with CH3OH, the solvent was evaporated under
reduced pressure and the red residue was re-dissolved in CH3OH/water
1:1 (v/v) (2 mL), to be resubmitted to semi-preparative HPLC. After sep-
aration, desalting, isolation and drying Cj-PiCC (3, 5.5 mg, 8.5 mmol,
2.9%) was obtained as a red powder, which was characterised, as de-
scribed below.

Selected spectroscopic data : Cj-YCC-1 (2b): UV/Vis: (CH3OH, c=

2.80 	 10�5
m): lmax (log e)= 247 (4.58), 313 (4.62), 440 nm (4.41). CD:

(methanol, c =2.80 	 10�5
m): lmin/max (De)=229 (37.7), 251 (�9.7), 261

(�6.5), 286 (�25.1), 312 (�0.3), 326 (�2.7), 442 nm (8.1); 1H NMR:
(500 MHz, CD3OD): d=1.67 (s, H3C21), 2.03 (s, H3C181), 2.15 (s,
H3C121), 2.26 (s, H3C71), 2.37 (m, H2C172), 2.68 (m, H2C81), superim-
posed by 2.70 (m, HAC171), 2.80 (m, HBC171), 3.51 (m, H2C82), 3.76 (s,
H3C135), 3.95 (s, H2C10), 4.98 (s, HC15), 5.38 (dd, J =2.5/11.5 Hz,
HAC32), 6.15 (dd br., J =2.5/18 Hz, HBC32), 6.37 (s, HC20), 6.51 (dd, J =

12/17.5 Hz, HC31), 9.42 ppm (s, HC5); MS (ESI positive-ion mode,
CH3OH/H2O 1:1 (v/v), spray voltage 3.0 kV): m/z (%): 643.20 (15,
[M+H]+), 665.10 (35, [M+Na]+), 681.13 (100, [M+K]+), 719.04 (20,
[M�H+2K)+], 1307.58 (5, [2M+Na]+), 1323.49 (10, [2M+K]+).

Cj-YCC-2 (2a): UV/Vis (CH3OH, c =3.74 	 10�5
m): lmax (log e) =244

(4.22), 310 (4.35), 426 nm (4.51); CD (CH3OH, c =3.74 	 10�5
m): lmin/max

(De)=229 (7.9), 248 (�5.6), 263 (�2.2), 287 (�9.2), 311 (�1.1), 325
(�1.8), 345 (0.2), 357 (�0.2), 429 nm (3.6).

Cj-PiCC (3): UV/Vis (CH3OH, c= 4.69 	 10�5
m): lmax (log e)= 312 (4.27),

495 (4.25), 522 nm (4.31); 1H NMR (500 MHz, CD3OD): d =2.12 (s,
H3C121), 2.14 (s, H3C181), 2.22 (s, H3C21), 2.29 (s, H3C71), 2.42 (m,
H2C172), 2.69 (m, H2C81), 3.13 (m, H2C171), 3.50 (m, H2C82), 3.76 (s,
H3C135), 4.24 (s, H2C10), 5.50 (dd, J =2.2/12.0 Hz, HAC32), 6.14 (HC20),
6.33 (dd, J=2.2/17.6 Hz, HBC32), 6.65 (dd, J =12.0/17.6 Hz, HC31),
9.45 ppm (s, HC5); MS (HR-FAB, pos.): m/z 641.2626 (exptl): m/z
641.2606 (calcd) [M+H]+ C35H37O8N4.
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