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Abstract

Hypnotic and sedative anaesthetic agents are employed during multiple medical interven-
tions to prevent patient awareness. Careful titration of agent dosing is required to avoid
negative side effects; the accuracy thereof may be improved by Depth of Anaesthesia Mon-
itoring. This work investigates the potential of a patient specific depth monitoring predic-
tion using electroencephalography recorded neural oscillation from the frontal lobe of 10
patients during sedation, where a comparison of the prediction accuracy was made across
five different approaches to post-processing; Noise Assisted-Empirical Mode Decompo-
sition, the Raw Signal, Linear Series Decomposition Learner, Deep Wavelet Scattering and
Deep Learning features. These methods towards anaesthesia depth prediction were inves-
tigated using the Bispectral Index as ground truth, where it was seen that the Raw Signal,
enhanced feature set and a low complexity classification model (Linear Discriminant Anal-
ysis) provided the best classification accuracy, in the region of 85.65 % ±10.23 % across
the 10 subjects. Subsequent work in this area would now build on these results and validate
the best performing methods on a wider cohort of patients, investigate means of continu-
ous DoA estimation using regressions, and also feature optimisation exercises in order to
further streamline and reduce the computation complexity of the designed model.

1 INTRODUCTION

Anaesthesia typically refers to the administration of a neu-
rotropic substance with the capability of safely shifting the state
of consciousness of a human being. The key goals of anaesthetic
agents (also known as anaesthetics) serve as a form of muscle
relaxant, to null out sensations and reflexes (analgesia), and also
hypnosis, which not only involves a loss of consciousness but
also a temporary loss of memory [1–3]. The roots of anaesthesia
and its application in surgical interventions trace back to the BC
timeline, where the earlier forms of anaesthetics ranged from
herbal compounds all the way towards targeted doses of alco-
hol [1–3]. The first recognised and comprehensive clinical stan-
dard reference manual for anaesthesia is said to have been pub-
lished in 1914 by Dr. James Tayloe Gwathmey and Dr. Charles
Baskerville [4].

General anaesthesia, resulting in a loss of consciousness and
awareness, is required for certain types of surgery and refers
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to clinical substances which are capable of methodically hold-
ing various degrees of consciousness [5, 6]. There is yet to be
a complete theory on the full workings of general anaesthetic
agents, but the emergence of functional imaging has proven to
be a useful mechanism towards studying the effects of the brain
under various depths of anaesthesia [6]. Schools of thoughts
around the workings of anaesthetic agents include the presence
of a neural consciousness switch in the thalamus, but this has
been refuted due to the consciousness deactivation pattern vary-
ing between different anaesthetic compounds [7]. An alternate
candidate description on the neural workings of anaesthesia is
founded on the principles of control theory, and this notion
is based around the systematic nulling of the feedback path,
information exchange and transfer entropy between the ante-
rior and posterior cortical regions within the brain, as illustrated
in Figure 1 [6, 8, 9].

On this basis, research has shown that the overall feedback
connectivity from the anterior to posterior is strongly attenu-
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FIGURE 1 (Left) Anatomy of the brain and projections of both the thalamus and reticular system. (Right) An illustration of the reduction of sensory feedback
capabilities within the brain during general anaesthetics [6]

ated under the effects of general anaesthesia and subsequently
begins to increase as soon as the patient begins to respond to
verbal instructions, which is deemed as a marker of return to
consciousness [6]. Attempts to explain the core underpinning
behind the suppression of the cortical feedback during anaes-
thetics are based around the theory of the nulling of synaptic
activities; this results in a loss of signalling which inhibits the
ability for complex information processing to take place [6].

General anaesthesia is adopted as part of clinical operations,
as mentioned, although there continues to be reported postop-
erative side effects from the use of anaesthesia which span men-
tal anguish and instabilities alongside varying levels of cognitive
dysfunctions [10, 11]. This makes it paramount for an optimal
titration of the anaesthetic compound, alongside an effective
means of evaluating depth of dosage in real-time, to be of key
importance in order to ensure patients’ safety [12]. The area of
focus within this paper is themed around a means towards deter-
mining the optimal anaesthetic dosage based on accurate mea-
surement of the brain’s state of sedation; however, the discus-
sion of the development of an ideal anaesthetic agent is outside
the scope of this paper. The ability to accurately predict anaes-
thetic depth hinges on an effective ability to closely monitor the
neural oscillatory states within the brain, and work is ongoing in
this area [12].

Frequently adopted means which anaesthetists use towards
evaluating depth of anaesthesia in patients include a com-
bined observation of physiological parameters, that is, heart rate
and blood pressure, and also a qualitative evaluation of cho-
sen anaesthetic agents’ pharmacokinetic and pharmacodynamic
effects on each patient, alongside the monitoring of the con-
centration of inhalation agents and/or pharmacokinetic models
predicting plasma or effect site concentrations for intravenous
anaesthetics [12]. Succinctly put, it can be assumed that anaes-
thetists rely on a fusion of autonomic and behavioural response
information as a form of inference, and an estimation of brain
consciousness state, which informs their strategy towards opti-
mizing the dosage of the anaesthetic for the patient during a
surgical process [12].

There has been evidence to support the notion that bioelec-
trical potentials from the frontal cortex, acquirable in the form
of EEG, are correlated with depth of general anaesthesia [13].
As the atypical neural transmission and communication involves
the release of neuronal action potentials, these action potentials
and their accompanying electrical fields have been seen to be
altered by drugs. EEG signals acquired from the scalp region
have been seen to contain information regarding the state of the
cortical and subcortical regions in the brain and can be used to
decode levels of consciousness under anaesthetics, which typ-
ically involves the interpretation of the produced neural burst
suppression patterns [14].

Despite the potential for EEG to serve as a means of track-
ing state of consciousness, there exist shortcomings which have
constrained its widespread adoption in the area of anaesthesi-
ology, and include the lack of standardised EEG indices for
adults and children and inter-patient variability, also as the EEG
indices are generalised they assume that anaesthetic agents all
have the same pharmacodynamic properties, whereas this is
far from the case [15, 16]. Another source of interference is
inter-agent pharmacodynamic variability producing inaccuracies
in EEG signal interpretation with existing models—particular
examples include ketamine and nitrous oxide—plus the effect
of adjuvant drugs [15, 16]. This warrants the need to be able to
produce anaesthetic-specific EEG models which can provide
a customised decoding of a patient’s neural state based on the
kind of anaesthetic administered [15].

A series of neurological heatmaps showing the change of the
bioelectrical field within the brain, from the administration of
propofol all the way towards the recovery of consciousness and
eventual awakening, can be seen in Figure 2. During the awake
stage there exist high neural oscillations around the occipital
region which slowly shift and diffuse towards the frontal lobe
and then go into a state of reverse back to the occipital region
as soon as the patient is fully awake [15].

The bispectral index (BIS) is based on the EEG electrical
field signal behaviour within the brain and is accepted as the
standard means for anaesthetic depth monitoring, as produced
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FIGURE 2 Neurological heatmaps showing the change of the bioelectrical field within the brain, from administration of propofol through to reawakening
(where LOC is loss of consciousness and ROC is return of consciousness) [15]

by Aspect Medical Systems, Newton, MA, USA. The device has
received Food and Drug Administration (FDA) approval and
exhibits high accuracy in the monitoring of the GABA recep-
tor anaesthetic [12, 16]. The scale for the BIS ranges from 0
(low brain activity) to 100 (fully awake state). The algorithm
behind the BIS is not disclosed to the scholarly world due to
proprietary rights; however, it has been seen that the BIS is
limited in monitoring certain kinds of anaesthetics, it performs
poorly on infants and in paediatrics, in addition to patients with
neurological impairments and therein an altered neural circuitry
due to neuroplasticity [12, 17]. To overcome this limitation, we
aim to harness the capability of signal processing and intelligent
learning methods towards the design of patient and anaesthetic
agent-specific models for the prediction.

The utilisation of machine learning models in medicine spans
the use of models such as decision trees, discriminant analy-
sis, support vector machines and artificial neural networks [18].
These models serve as a means towards decision support and
are capable of high accuracy pattern recognition, upon being
trained by the relevant training examples [18]. The machine
learning models are fed a matrix of extracted features from
what typically is a set of physiological time-series data acquired
from a patient. To ensure that the features are of a high qual-
ity and allow for the effective modelling of a physiological time-
series, signal decomposition methods are also frequently applied
as a form of preprocessing prior to feature extraction. Sig-
nal decomposition methods allow for the deconvolution of a
candidate signal into constituent parts, which help towards the
reduction of uncertainty within the source signal. The approach
has proved to be useful in areas spanning economics, seismic
exploration and in the analysis of physiological signals, where
the optimal region within the decomposed source signal can
be said to be the region which contains the reach informa-
tion relevant towards estimating/predicting the entity of interest
[19, 20].

In this paper, a number of multiscale decomposition meth-
ods were applied and contrasted towards an effective anaes-
thetic depth prediction. This was done alongside a set of feature
extraction exercises comprising a convolutional neural network
and the deep wavelet scattering. The machine learning aspect
involved the use of the linear discriminant analysis (LDA),
which has been viewed as a computationally effective means

towards pattern recognition, as seen in the bionic prosthesis lit-
erature [17].

Explicitly speaking, the contributions of this manuscript are
as follows:

- A design of patient-specific anaesthesia depth prediction,
while also contrasting between multiscale signal decom-
positions and feature extraction methods for the dis-
crete prediction of anaesthesia depth using the LDA
classifier.

- An evaluation of the computation time of the designed meth-
ods alongside their various accuracies.

2 MATERIALS AND METHODS

2.1 Experimental data

The anaesthetic data used in this paper was taken from the
opensource data which is freely available from Liu et al. [12],
and was collected from patients who underwent minor surgery,
that is, it did not involve for example the brain, heart, or lung
etc [12]. The data was collected at the National Taiwan Univer-
sity Hospital (NTUH) where it also received ethical approval,
and patients provided a written and informed consent prior to
the data collection [12.]. Average statistics from the cohort who
took part in the data collection process include: Age (years): 44.5
± 12.9, Height (cm): 164.2± 7.1, Weight (kg): 63.4± 14.8, BMI:
23.4± 4.2, Operation timespan (min): 126.4± 72.9 (Supporting
Information).

The patients were required to fast for 8 h prior to the surgery;
and during the study, intravenous propofol was used for induc-
tion of anaesthesia alongside administration of the muscle relax-
ant, as appropriate [12]. As soon as patients lost conscious-
ness (deemed by the lack of response to verbal commands), the
next stage commenced, which comprised either propofol for
swift short-duration surgeries or inhalational anaesthesia, along-
side air and oxygen for maintenance of anaesthesia, and were
adjusted as appropriate by 1–1.5 minimal alveolar concentration
[12]. Towards the end of the surgery, drugs such as Vagostin and
morphine were also administered. A comprehensive list of the
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TABLE 1 List of anaesthetic agents used (further details regarding doses
administered can be seen in Liu et al. [12])

Induction

phase Maintenance

Additional medication

administered

Propofol Sevoflurane Morphine

Fentanyl Desflurane Ketamine

Atropine Propofol Atropine

Nimbex Vagostin

Xylocaine

FIGURE 3 Sample EEG monitoring process during sedation [21]

anaesthetic agents used for the various patients is documented
in Table 1.

In addition to the EEG monitors, standard physiological
monitors such as electrocardiography, photoplethysmography,
blood pressure, and pulse rate were measured during the pro-
cess, where if any irregular fluctuations occurred, the doctors
adjusted as appropriate. Figure 3 shows a sample EEG monitor
during an anaesthetic sedation process, with the EEG electrodes
across the forehead of the patient [12].

For the collection of the data used in this study, the EEG
BISTM Quatro sensor with a single channel by Aspect Medical
Systems, Newton, MA, USA, was used. The raw EEG wave-
forms, sampled at 128 Hz, were saved and acquired on a com-
puter with Borland C++ Builder 6 software. The intermittent
BIS, which serves at the ground truth label for consciousness
in this work, was also used during the data acquisition, where
values were computed and obtained every 5 s.

In this paper, four discrete consciousness states were inves-
tigated for prediction, namely; fully awake (80–100 BIS), semi
awake (60–80 BIS), operative (40–60 BIS) and very low brain
activity (0–40 BIS), which were determined using the BIS as the
ground truth. For each consciousness class, 20,000 data samples
were extracted from the time-series of each of the 10 patients
whose data were being used as part of the pilot work done in

this paper, which were segmented into sub-samples of 5000 to
serve as repetitions for each class. This subset of patients’ data
was used as part of the signal processing exercise to allow for
a deep contrast of signal processing methods for each patient’s
EEG data, of which five different approaches were taken, as can
be seen in Section 3.

The division of the data in this manner was done to ensure
that each subsample repetition was robust enough and of a suf-
ficient length to contain high integrity time-series information
to use for the subsequent signal processing exercises.

2.2 Signal processing and feature extraction

2.2.1 Signal decomposition methods

∙ Noise-assisted multivariate empirical mode decomposition
(NA-MEMD)

The empirical mode decomposition (EMD) is an estab-
lished data-driven signal decomposition approach for nonsta-
tionary time-series signals, where the source signal is decom-
posed and expressed as a linear combination using a basis func-
tion, referred to as a set of intrinsic mode functions (IMFs)
[22, 23]. Here, the IMF basis functions can be characterised
as zero-mean amplitude-frequency modulated signals which
ensure that the Hilbert transform/Hilbert-Huang transform
produces meaningful estimates of the input signals [22, 23].
Due to necessity, algorithmic extensions have been made to
the EMD algorithm to facilitate multivariate processing and are
referred to as multivariate EMD (MEMD) [22, 23]. The decom-
position behaviour of the EMD has been closely likened to
that of the wavelet decomposition with their respective filter
bank similarities, while in the multivariate case the filter bank
structure takes an overlapping frequency format due to the
presence of multiple channels, in order to link separate com-
ponents of a multivariate signal [22, 23]. Based on the abil-
ity to align sub-bands of various frequencies amidst noise with
the MEMD method, the noise-assisted MEMD (NA-MEMD)
has been devised by ur Rehman and Mandic, which utilises
an almost pseudo-dyadic set of filter banks in the decomposi-
tion process, and ultimately is capable of aligning the oscilla-
tory modes in the IMF from various channels, which has been
seen to minimise the ‘mode mixing problem’ from channel com-
ponents in the multivariate IMF format [22, 23]. A summary
of the algorithmic steps involved in the implementation of the
mentioned variants of the EMD can be seen in ur Rehman and
Mandic [22].

The various parameters used for the implementation of the
NA-EMD include the number of channels/windows as 4, pro-
jection directions as 8 (i.e., number of windows × 2), the stop
vector tolerances as [0.075 0.75 0.075], and the noise intensity
as 1.

∙ Linear series decomposition learner (LSDL)
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TABLE 2 Threshold parameters for the LSDL

Iteration 1 2 3 n

Upper threshold region
parameter (Upper)

Tl _upper_1 =

50% of max |Sn| Tl _upper_2 =
max |Sn| + Tl _upper_1

2
Tl _upper_3 =

max |Sn| + Tl _upper_2

2
Tl _upper_n =

max |Sn| + Tl _upper_n−1

2

Lower threshold region
parameter (Lower)

Tl _lower_1 =

50% of max |Sn| Tl _lower_2 =
Tl _lower_1

2
Tl _lower_3 =

Tl _lower_2

2
Tl _lower_n =

Tl _lower_n−1

2

The LSDL represents a metaheuristic signal decomposition
method devised by Nsugbe et al., originally for source sepa-
ration exercises comprising micron scale particle mixtures and
high frequency acoustic signals [20, 24–26]. The decomposi-
tion method is computationally efficient and works in the time
domain with a set of heuristically tuned linear thresholds as a
basis function, in addition to a peak identification sequence—
which together ultimately yields a series of decomposed sig-
nals based on amplitude bands—followed by a learning pro-
cess which is performed via a performance index that is used
to select an optimal region from the candidate decompositions
[20, 24–26]. The decomposition method has seen subsequent
application in various aspects of clinical medicine involving the
analysis of nonlinear and stochastic physiological signals such
as rehabilitation, pregnancy medicine, and more recently in the
prediction of adolescent schizophrenia from EEG signals [20,
27, 28].

The full list of heuristics used in performing the LSDL
decomposition can be seen in Nsugbe et al. [20] and [26]. The
parameters used in the tuning of the LSDL thresholds for the
work can be seen in Table 2 for an absolute signal |Sn|, while
a tree-like flow of the decomposition process can be seen in
Figure 4.

Where Tl _upper_n and Tl _lower_n are the thresholds correspond-
ing to the upper and lower amplitude regions of the signal,
respectively.

Mathematically speaking, the decomposition series can be
expressed as follows:

|Sn| =
(
∫

T

0
(Tlupper1

)
(|Sn|) dn + ∫

T

0
(Tlupper2

) (|Sn|)
… ..∫

T

0
(Tluppern

) (|Sn|) dn) +

(
∫

T

0
(Tllower 1

)
(|Sn|) dn

+ ∫
T

0
(Tllower 2

) (|Sn|) dn… ..∫
T

0
(Tllower n

) (|Sn|) dn ) (1)

|Sn| = ∫
T

0
(Uprn (|Sn|) + ∫

T

0
(Lwrn (|Sn|) (2)

∙ Deep wavelet scattering (DWS)

The DWS is an approach that decomposes and subsequently
follows this with a multiscale unsupervised feature extraction;
the method works quite well with a constrained set of sam-
ples and does not need to learn filter parameters from the data,
which contributes to its effectiveness with a constrained set of
samples [29, 30]. The properties exhibited by the DWS—which
encompass that of the wavelet transform and the convolutional
neural network (CNN)—that allow for effective feature extrac-
tion, are chiefly as follows: multiscale contractions, the linearisa-
tion of hierarchical symmetries, and sparse representations [29,
30].

For a given signal f (t ), analysed by a filter Ø, and a
wavelet Ψ, χJ (t ) is a localised translation invariant low pass
filter with a scale defined as T , for a range of frequencies.
The DWS consists of a frequency resolution Qk denoted as
∧k with a multiscale high pass filter bank {Ψ jk} jk∈∧k

assem-
bled through the dilation of a wavelet Ψ. The convolutions
that take place can be defined as S0 f (t ) = f ∗ χJ (t ), where
S0 is the (initial) zero-order scattering coefficient that cre-
ates a local translation invariant set of features of f that
can be recovered through a modulus transform |W1|, as in|W1| f = {S0 f (t ), | f ∗ Ψ j1(t )|} j1∈∧1

. In an iterative fashion,
the first order scattering coefficients are obtained through the
averaging of the wavelet modulus coefficient with χJ (t ), as
follows:

S1 f (t ) =
{||| f ∗ Ψ j1 (t )||| ∗ χJ (t )

}
j1∈∧1

(3)

The lost information from the averaging process is recov-
erable via the use of the wavelet modulus |W2|| f ∗ Ψ j1| =
{S1 f (t ), || f ∗ Ψ j1| ∗ Ψ j2(t )|} j2∈∧2

, from which the second
order coefficients are subsequently defined as S2 f (t ) =
{|| f ∗ Ψ j1| ∗ Ψ j2| ∗ χJ (t )} j1∈∧1

i = 1, 2.
The outcome of the WSD is a scatter matrix S f (t ) =

{Sm f (t )}0≤m≤l , which concatenates all obtained coefficients as
a means towards characterising the signal with a decomposi-
tion depth l . A tree-like projection of the WSD can be seen in
Figure 5.

The bulk of the energy of the scatter coefficients has been
said to reside in the first two layers of the decomposition, thus
only two layers were considered in this work. Alongside this, the
other parameters used as part of the WSD include the Gabor
wavelet, an invariance scale of 1 s, and the wavelet filter banks
of 8 wavelets per octave for the first filter bank, succeeded by 1
wavelet per octave in the second layer.
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FIGURE 4 Decomposition tree representation for the LSDL (where T indicates the length of the candidate signal) [28]

FIGURE 5 Wavelet scattering decomposition tree [31]

2.2.2 Feature extraction methods

Two feature extraction methods were used in this study, one
involving a select list of handcrafted features, while the other
involved an automated means via a candidate deep learning
architecture.

∙ Handcrafted features

These comprised a concatenation of linear, frequency and
non-linear features, which have shown capability to model

stochastic physiological signals, as per prior studies [17, 32]. The
list of features is as follows:

Linear: Mean absolute value, waveform length, zero crossing,
root mean square, 4th order autoregressive coefficient, num-
ber of signal peaks, simple squared integral, and variance. The
threshold value of 1 µv was selected for all features requiring
thresholds and in the case of the signal peaks.

Frequency: Maximum cepstrum coefficient, and median fre-
quency.

Non-linear: Sample entropy, maximum fractal length,
Higuchi fractal dimension, and detrended fluctuation analysis.
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FIGURE 6 Schematic of the ResNet18 architecture [34]

The parameters used in the calculation of the non-linear fea-
tures were 2 and 0.2 for the values of m and r for the sample
entropy, and k as 10 for the Higuchi fractal dimension.

∙ Deep-learning (DL) features

The ResNet18 DL architecture was chosen in this case, as
motivated from previous work due to its relative computational
effectiveness and lower dimensional features [33]. This archi-
tecture is inspired from the pyramidal cells in the human brain
where connections are skipped, and from a computational per-
spective this helps to minimise any network overfit, in addi-
tion to the vanishing gradient problem [33]. An image of the
ResNet18 architecture can be seen in Figure 6.

2.3 Machine learning method

∙ LDA

The LDA is a computationally effective machine learning
classification method based around the projection of high
dimensional data into a lower subspace where class boundaries
are implemented [17]. The linear variant of the discriminant
analysis was used in this work, and the discriminant function
can be expressed as Equation (4)

Dl (x ) = 𝜇T
c

∑−1

l
x − 1∕2𝜇T

c

−1∑
l

𝜇c (4)

where ðl symbolises the discriminant function, 𝜇T
c is the mean

vector for a specific data class c, x is a sample from within
a feature vector, and Σl is the pooled covariance matrix. The
validation process of the classifier involved a 1 × k-fold cross-
validation method where k was chosen as 10.

TABLE 3 Result of the NA-MEMD and handcrafted features

Subject number*

Classification

accuracy (%)

1 62.5

2 71.9

3 84.4

4 71.9

5 87.5

6 71.9

8 71.9

10 65.6

11 68.8

12 78.1

Mean classification accuracy 73.45 ± 7.83

*Where the subject numbers reflect the order of the datafiles used from the opensource
EEG data files published in Liu et al. [12].

3 RESULTS AND DISCUSSION

3.1 NA-EMD

The IMFs 2 and 3 were deemed as the optimal modes from the
NA-EMD, as indicated in previous work, which was taken on
the assumption that these modes are optimal and generalisable
across all patient subjects [12]. The results for the NA-EMD
alongside the Handcrafted Features can be seen in Table 3,
where a broad range of results can be observed depending on
the patient. The variations in results provides evidence of the
distinct neural circuitry which exists between patients, hence
why patient specific models are a proposed better fit in this
area of study. Overall, the NA-EMD appears to be able to pre-
dict the DoA in a varied sense, with the results ranging from
62.5–87.5%, potentially implying that a signal decomposition
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TABLE 4 Results of the raw signal and handcrafted features

Subject number

Classification

accuracy (%)

1 81.3

2 68.8

3 87.5

4 100

5 93.8

6 93.8

8 93.8

10 75.0

11 75.0

12 87.5

Mean classification accuracy 85.65 ± 10.23

TABLE 5 LSDL decomposition results

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Upper 2.825 2.824 2.682 2.806

Lower 2.828 2.828 2.828 2.821

approach may not be ideal in this type of study due to the need
to infer depth of sedation and consciousness from varied fre-
quency regions, as supposed to a fixed band.

3.2 Raw signal

This case involved the use of the full signal without any form of
decomposition preprocessing of the signal prior to the extrac-
tion of handcrafted features. The results, using a combination of
the raw signal and handcrafted features, can be seen in Table 4,
and appear to be notably improved in comparison with the
NA-MEMD. The use of the raw signal helps to demonstrate
the broadband frequency nature of the EEG signal induced
by the varied levels and degrees of consciousness during the
surgery, which thus results in the quality of information in the
signal being spread throughout it, as opposed to being primarily
focused within a fixed frequency band. In line with the results
from the NA-MEMD, a broad and varied range of classification
results were obtained from the raw signal, but with an improved
classification accuracy.

3.3 LSDL

In this implementation of the LSDL, two decomposition
regions were used for the signal processing exercise (like
the NA-MEMD) due to the perceived bad frequency band
behaviour of the EEG signal during variations in consciousness.
The results of the LSDL can be seen in Table 5, where the opti-

TABLE 6 Results of the LSDL and handcrafted features

Subject number

Classification

accuracy (%)

1 81.3

2 81.3

3 81.3

4 100

5 75.0

6 81.3

8 93.8

10 68.8

11 81.3

12 100

Mean classification accuracy 84.41 ± 10.3

mal decomposition regions (highlighted in bold) were selected
for both the Upper and Lower decomposition regions.

The results from the signal processing exercise involving
the aforementioned optimal decomposition regions from the
LSDL, alongside the extraction of handcrafted features, can be
seen in Table 6. Here the LSDL was able to produce a high clas-
sification accuracy of the DoA, which is on par with the raw
signal and notably higher than the NA-MEMD.

Although a broad variation of the results is still apparent, it
can be said that the LSDL is better suited to decomposing sig-
nals of this kind when benchmarked against the NA-MEMD. In
addition to a high classification accuracy, the LSDL can also be
assumed to be computationally effective due to the requirement
for a reduced number of samples post-decomposition and prior
to making a prediction, when compared to the raw signal, which
uses a full windowed sample. Further insights into the computa-
tional performances of the various methods are discussed sub-
sequently in Section 3.6 (Computation time results). However, a
pre-learning and calibration phase is required to determine the
optimal decomposition regions.

3.4 DWS

As described, the DWS is a method that is capable of both
decomposing a candidate signal alongside an extraction of deep
features, via means that are all unsupervised. The results for the
DWS can be seen in Table 7, and are slightly behind those of
the raw signal and LSDL, although the standard deviation is
much less, insinuating a more stable performance across sub-
jects and less sensitivity to the EEG signals from the varied
neural circuitry of the various subjects. Although the work is
firmly based around the development of a unique anaesthesia
model for each patient, the minimal standard deviation experi-
enced per patient makes the DWS a good candidate for a gen-
eralised DoA prediction framework, similar to the way the BIS
is designed. However, the major downside of the DWS remains
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TABLE 7 Results of the DWS

Subject number

Classification

accuracy (%)

1 75.8

2 84.1

3 79.0

4 83.1

5 75.6

6 76.8

8 92.5

10 71.6

11 78.0

12 84.1

Mean classification accuracy 80.06 ± 5.98

TABLE 8 Results of the DL

Subject number

Classification

accuracy (%)

1 68.8

2 81.3

3 68.8

4 75.0

5 81.3

6 62.5

8 n/a

10 62.5

11 81.3

12 75.0

Mean classification accuracy 72.94 ± 7.67

the fact that its configuration is largely unsupervised, thus its
features lack interpretability when contrasted with handcrafted
features.

3.5 DL

The results from the ResNet18 unsupervised feature extraction
and classification can be seen in Table 8. These results were
obtained using the deep features in the network, where it can
be seen that the results are the lowest amongst all the classi-
fication exercises conducted. This is thought to be due to the
network architecture which offers a small size of features. This
could be expanded towards a larger DL architecture with more
features, but would come at the price of further computation
complexity. Thus, the candidate DL method would not be an
appropriate choice for the case study being considered in this
paper.

TABLE 9 Method performance analysis (bold indicates a joint
performance matching another method)

NA-EMD Raw signal LSDL DWS DL

Subject 1 X X

Subject 2 X

Subject 3 X

Subject 4 X X

Subject 5 X

Subject 6 X

Subject 8 X X

Subject 10 X

Subject 11 X X

Subject 12 X

Total 0 7 5 1 1

TABLE 10 Method contrast table

Method

Classification

accuracy (%)

NA-MEMD + Handcrafted features 73.45 ± 7.83

Raw Signal + Handcrafted features 85.65 ± 10.23

LSDL + Handcrafted features 84.41 ± 10.30

DWS 80.06 ± 5.98

DL 72.94 ± 7.67

The model performance in Table 9 shows a ranking of the
total amount of times each model produced the highest classi-
fication accuracy amongst the 10 patient subjects. The results
involving the raw signal provided the best classification accu-
racy 7 times, followed by the LSDL with 5, the DWS and DL
with 1 each, and 0 for the NA-MEMD, therein showing a case
of model optimality between the raw signal and LSDL, as pre-
viously mentioned.

Table 10 provides a summary result and perspective on the
various methods, where once again the raw signal and LSDL
produced the best classification accuracies, albeit with a rela-
tively high standard deviation value. The DWS produced the
smallest standard deviation amongst the various methods, with
a classification accuracy which is closely comparable to that of
the methods involving the Raw Signal and the LSDL, thereby
making it a good candidate for a potential generalised DoA pre-
diction method, if necessary.

It can be said that the certain cases where a low classification
accuracy was obtained with each method could be attributed
to the infeasibility of the method to predict DoA amidst the
presence of the contents of the anaesthetic formulation dosed
to the patient, which was seen to vary slightly between patients.
It has not been possible to investigate this further due to the
accompanying information provided with the dataset.
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TABLE 11 Computational metrics results

Signal

decomposition

(s)

Average number of

samples (prior to

feature extraction)

(s)

Feature

extraction (s)

Classifier prediction

time (LDA)*Using a

sample from a patient’s

EEG signal (s) Total (s)

NA-MEMD + Handcrafted features 12.59 ± 0.26 40,000 (IMF 2 and 3) 80.4 ± 9.60 0.01 ± 0 90.3 ± 9.86

Raw signal + Handcrafted features n/a 20,000 9.60 ± 0.28 0.01 ± 0 9.61 ± 0.28

LSDL + Handcrafted features 0.04 ± 0.02 1150 (for two
optimal
thresholds)

12.80 ± 0.48 0.02 ± 0 12.86 ± 0.5

DWS (Unsupervised feature extraction) n/a 20,000 5.20 ± 2.00 0.01 ± 0 5.21 ± 2.0

CNN (Unsupervised feature extraction) n/a 20,000 2.90 ± 0.25 0.12 ± 0.04 3.02 ± 0.29

*Computation times were conducted based on a single patient’s dataset, where the metrics were computed with a laptop of Intel(R) Core(TM) i5-3210 M CPU @ 2.50G Hz, with a 64-bit
operating system and a 6GB RAM.

3.6 Computation time results

Five key computational metrics of the various methods, aside
from the classification accuracy, were computed and can be
seen in Table 11. The LSDL appears to have a much quicker
decomposition timeframe for decomposing a sample signal, in
line with its optimal architecture established in previous stud-
ies. The average number of samples prior to feature extraction
is largely consistent for all methods except for the LSDL and
NA-MEMD (due to the prior decomposition actions), where
it can be seen that the LSDL uses the lowest number of sam-
ples to perform its subsequent computations, which may carry
benefits in terms of data storage infrastructure. The feature
extraction times show that the DWS and CNN benefit from
their unsupervised feature extraction and possess the quickest
computation times, while there is a similar feature extraction
computation time for the raw signal and the LSDL, with the
NA-MEMD having the longest feature extraction computation
time. The classifier prediction time appears to be largely consis-
tent for all five methods due to the choice of a low complexity
classifier. Despite their longer computation times, the raw sig-
nal and LSDL methods continue to be the optimal methods
when combined with their strong classification performances
for use in DoA, based on the results. The bulk of the compu-
tation time for all methods appears to be embedded within the
feature extraction stage; thus, to further streamline the compu-
tation time, optimisation exercises can be conducted to downse-
lect for the most optimal set of features while retaining maximal
classification accuracy.

4 CONCLUSION

Anaesthetics are neurotropic substances that are used in surgi-
cal processes to induce a regulated state of consciousness loss. A
theory around their workings is based around the nulling of the
feedback pathway of the brain (as shown in Figure 1), which is
also backed by research showing feedback connectivity attenu-
ation in various portions of the brain. Despite the longstanding

use of global anaesthetics for surgical purposes, there continues
to be reported side effects around their use, including lingering
cognitive dysfunction, which makes it paramount for the effec-
tive regulation of the DoA administered during surgical endeav-
ours.

The BIS is a common means of monitoring anaesthetic DoA,
but its ability to closely track cognitive state is hindered when
certain anaesthetic agents are used. Thus, the work done in
this paper is a pilot study aimed to overcome this using EEG
neural oscillation signals recorded during anaesthesia from 10
patient subjects, alongside signal processing and machine learn-
ing methods. In particular, this work explored the design of
patient-specific models to predict discrete DoA states using var-
ious methods while using the BIS readings as a ground truth
label.

The results showed that the raw signal and the LSDL were
seen to be the most optimal methods, as determined via the
classification accuracies obtained, while their computation times
were also seen to be reasonable for a possible real-time perfor-
mance capability. With a potential view towards a generalised
DoA prediction method such as BIS, the DWS is proposed to
be the best fit due to its concise standard deviation prediction
band alongside low computational complexity metrics. Given
the nature of the proposed patient-specific approach, it is antic-
ipated that a real-time model ‘System Identification’ process is
to be conducted at the start alongside an anaesthetist, where the
computational model builds a patient-specific model, like the
proposed approach done by Nsugbe et al. [35].

Potential areas of subsequent work include the validation
of the best performing signal processing methods on a larger
cohort of patients’ data, the application of nonlinear classifica-
tion methods, the extension of this approach to a continuous
means of estimating DoA using regressions, model validation
on paediatrics, elderly, epileptics etc., and also including subjects
from various demographics.
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