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Benign epilepsy with centrotemporal spikes (BECTS) is the most common idiopathic childhood epilepsy, which is
often associatedwith developmental disorders in children. In the present study,we analyzed resting state EEG spec-
tral changes in the sensor and source spaces in eight BECTS patients compared with nine age-matched controls.
Using high-resolution scalp EEGdata,we assessed statistical differences in spatial distributions of EEGpower spectra
and cortical sources of resting state EEG rhythms in five frequency bands: δ (0.5–3.5 Hz), θ (4–8 Hz),α (8.5–13 Hz),
β1 (13.5–20Hz) andβ2 (20.5–30Hz) under the eyes-closed resting state condition. To further investigate the impact
of centrotemporal spikes on EEG spectra,we split the EEGdata of the patient group into EEGportionswith andwith-
out spikes. Source localization demonstrated the homogeneity of our population of BECTS patients with a common
epileptic zone over the right centrotemporal region. Significant differences in terms of both spectral power and cor-
tical source densities were observed between controls and patients. Patients were characterized by significantly in-
creased relative power in θ,α,β1 andβ2 bands in the right centrotemporal areas over the spike zone and in the right
temporo-parieto-occipital junction. Furthermore, the relative power in all bands significantly decreased in the bilat-
eral frontal and parieto-occipital areas of patients regardless of the presence or absence of spikes in EEG segments.
However, the spectral differences between patients and controls were more pronounced in the presence of spikes.
This observation emphasized the impact of benign epilepsy on cortical source power, especially in the right
centrotemporal regions. Spectral changes in bilateral frontal and parieto-occipital areasmay also suggest alterations
in the default mode network in BECTS patients.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Benign epilepsy, also known as Rolandic epilepsy, is the most com-
mon idiopathic childhood epilepsy with a prevalence of approximately
15% in children aged 1–15 years (Panayiotopoulos et al., 2008). Rolandic
epilepsy is characterized by seizures that typically originate in the
centrotemporal area with often the same sensorimotor symptoms and
autonomic manifestations in the face, mouth and throat (Loiseau,
2001; Loiseau and Beaussart, 1973). The majority of Rolandic seizures
occur during non-REM sleep, at sleep onset or rest (Camfield et al.,
2014; Panayiotopoulos et al., 2008; Shields and Snead, 2009). As the
hallmark of benign childhood epilepsy, seizures are mostly associated
with centrotemporal spikes (CTS) often followed by slow waves,
which are typically activated by drowsiness and slow (non-REM)
sleep (Blom and Brorson, 1966; Clemens and Majoros, 1987; Smith
and Kellaway, 1964). Dipole source localization in patients with BECTS
has demonstrated that CTS can be reliably modeled by single tangential
dipole sources oriented from central to frontal lobes and localized in the
i).

. This is an open access article under
high and low central regions (suprasylvian) (Gregory andWong, 1992;
Jung et al., 2003; Legarda et al., 1994; Panayiotopoulos, 1999b; Tsai and
Hung, 1998). Despite the focality of CTS and rolandic seizures in patients
with benign epilepsy, there is growing evidence from neuroimaging
studies reporting memory, language, attention, auditory and cognitive
impairments in BECTS patients that BECTS may functionally and struc-
turally affect a larger portion of the brain at rest (Bocquillon et al.,
2009; Cataldi et al., 2013; Lopes et al., 2014; Northcott et al., 2007;
Verrotti et al., 2014).

The present study attempted to investigate changes in the spectral
power and spatial distribution of cortical sources of eyes-closed resting
state EEG rhythms in patients with BECTS compared to healthy subjects
under two conditions, in the presence and absence of CTS.

2. Methods

2.1. Subjects

Twenty-one children (9.84±1.75 years)with BECTS and 12 healthy
subjects (9.27 ± 1.70 years) used as controls were preselected for rest-
ing state analysis. The study was conducted at Amiens University
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Characteristics of the control and patient groups.

Control group Patient group

Subject Age (years) EEG duration
(min)

Patient Age (years) EEG duration
(min)

Neuropsychological
assessment

Description of ictal EEG Medication

1 6.73 16.21 1 12.63 50.84 Normal Partial seizure Sodium valproate
2 11.28 19.59 2 12.64 17.85 Normal Partial seizure Sodium valproate
3 10.48 19.75 3 9.25 44.08 Attention deficit Generalized tonic–clonic seizure Oxcarbezepine
4 10.66 17.44 4 6.03 43.52 – Brachiofacial nocturnal seizure Oxcarbezepine
5 7.39 13.54 5 10.47 50.06 Attention deficit Partial seizure Sodium valproate
6 7.31 20.30 6 7.16 14.26 – Brachiofacial nocturnal seizure Sodium valproate
7 11.92 30.02 7 8.51 30.36 Attention deficit Nocturnal seizure –
8 8.44 75.00 8 13.16 20.02 Normal Generalized tonic–clonic seizure Sodium valproate
9 9.36 28.00 9 9.67 15.63 Language deficit Generalized tonic–clonic seizure Lamotrigine
10 9.48 45.09 10 7.79 23.12 Normal Generalized tonic–clonic seizure Micropakine
11 10.32 18.97 11 8.91 16.78 Normal Generalized tonic–clonic seizure Trileptal
12 7.98
Mean ± SD 9.27 ± 1.70 9.65 ± 2.36
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Hospital (France) and was approved by the hospital3s ethics committee
(CPP Nord-Ouest No: 2011-A00782-39).Written informed consent was
obtained from each subject3s caregivers. Healthy subjects had no history
of neurological disorders. Patients showed no structural brain abnor-
malities on MRI.
2.2. Data acquisition and preprocessing

An EEG lasting at least 14 min was recorded in each individual at a
sampling rate of 256 Hz with a high-resolution EEG recording system
(ANT, Netherlands) using 64 electrodes placed on the scalp according
to the international 10–10 system. Forehead ground and linked-ear ref-
erence electrodes were used for data collection. During the recordings,
the subjects were asked to rest comfortably in a supine position in a
quiet dark room and were instructed to stay fully relaxed and motion-
less. We made sure that they were fully awake during data collection.
Since the reference electrode could be contaminated by ocular artifacts,
EEG data were offline re-referenced to common average reference and
filtered between 0.5 to 30 Hz to remove possible high frequency noise.
Two experienced neurophysiologists visually inspected the EEG data
to identify centrotemporal spikes.

To define a homogeneous group of patients, we first identified the
location of interictal sources for each patient using the spatiotemporal
dipole modeling method (Advanced Source Analysis Software, Ensche-
de, The Netherlands) (Scherg and Von Cramon, 1985). To define a ho-
mogeneous sample of patients for both single subject and group
analyses, eleven of the twenty-one patients (9.65 ± 2.36 years) with
right centrotemporal spikes were selected to form the epileptic group.
Table 1 lists the characteristics of patients and controls and a summary
of their EEG records. Three of the eight patientswere diagnosedwith at-
tention deficit hyperactivity disorder. Fig. 1 shows the EEGdipole source
localization results projected onto the MRI template and sample EEG of
one of the patients.

To identify EEG portions with ocular and movement artifacts, the
EEG recordings were first normalized by the Z-score transformation
and then processed semi-automatically using a threshold method as it
was implemented in Fieldtrip software1 (Oostenveld et al., 2011). For
each channel, EEG portions that exceeded a predefined threshold
were marked and visually inspected by the experts. The threshold was
set to the mean plus one standard deviation of the z-score amplitude
distribution for each channel. The artifact-free eyes-closed portions of
the EEG recordings were then segmented into non-overlapping 2-s
epochs. In this study, all statistical comparisons were performed
1 http://www.fieldtriptoolbox.org/tutorial/visual_artifact_rejection.
between controls and patients under the eyes-closed (EC) condition.
To study the effect of interictal spikes on the dynamics of EEG and cor-
tical sources during the resting state, patients were comparedwith con-
trols under two conditions, ECNS (eyes-closed without spike) and ECWS

(eyes-closed with spike). Five segments were randomly selected for
each subject and condition for further analysis. The ECWS EEG segments
contained an average of 7 spikes as a requirement to ensure homogene-
ity across the patients.

2.3. EEG spectral analysis

The absolute power spectral density for each channel and EEG seg-
ment was computed by using the multi-taper method with Slepian se-
quences (Jarvis and Mitra, 2001; Mitra and Pesaran, 1999) with a
frequency resolution of 0.5 Hz. Multi-taper frequency method is similar
to the classical Fourier transform but it is frequency specific with very
good anti-frequency leakage properties (van Vugt et al., 2007). Power
spectral analysis was performed using the Fieldtrip toolbox (http://
www.ru.nl/donders/fieldtrip) (Oostenveld et al., 2011). To investigate
homogeneity across patients and controls, we computed individual
alpha frequency (IAF) as described by Klimesch (1999) and Klimesch
et al. (1993). IAFwas calculated as the sum of the product of the spectral
power estimates and the frequency divided by the total sum of spectral
power estimates withinα band. This method has shown to be more ro-
bust and adequate particularly if there aremultiple peaks in theα range
(Klimesch, 1999).

For statistical analysis, the whole frequency range (0.5–30 Hz) was
reduced into five frequency bands: δ (0.5–3.5 Hz), θ (4.0–8.0 Hz), α
(8.5–13.0 Hz), β1 (13.5–20.0 Hz) and β2 (20.5–30 Hz), corresponding
to the most common frequency bands in all epileptic patients and
healthy subjects.

For each channel and each subject, the power spectrumwas then av-
eraged over all five segments. The relative power spectrum was then
obtained by normalizing the power spectral density of each channel to
its total power.

To reduce the spatial dimensionality of the data,we first grouped the
63 channels into 13 brain regions as shown in Fig. 2. For each region and
frequency band, we reported absolute and relative spectral power. We
then compared regional relative spectral powers within each frequency
band between groups by computing across-subject grand average Scalp
Topographic Patterns (STPs) of relative EEG spectral power (STP, ±
standard deviation) for each frequency band and group. The statistical
analysis was performed in each region including four electrodes on av-
erage. The group comparison was performed by the standard nonpara-
metric paired two-way ANOVA with 5000 permutations and p b 0.01
(Maris and Oostenveld, 2007).

http://www.ru.nl/donders/fieldtrip
http://www.ru.nl/donders/fieldtrip
http://www.fieldtriptoolbox.org/tutorial/visual_artifact_rejection


Fig. 1. (a) Dipole locations of the averaged spikes for patients, and (b) a sample EEG recording from patient 1.
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2.4. EEG source distribution analysis using eLORETA

EEG cortical source analysis was performed by the functional brain
imaging method known as eLORETA (exact Low-Resolution Electro-
magnetic Tomography), which models 3D distributions of EEG cortical
sources (Grech et al., 2008; Pascual-Marqui, 2002, 1999) in the frequen-
cy domain. This method does not require a priori knowledge of dipole
positions and has been successfully used in recent studies on resting
state EEG analysis (Babiloni et al., 2010; Li, 2010). eLORETA is a discrete,
linear, weighted minimum norm inverse solution and provides better
accurate localization of highly correlated point sources with low signal
to noise ratio data (Pascual-Marqui, 2007; Pascual-Marqui et al.,
2011). We first used eLORETA to localize interictal spike sources for
each patient to investigate the spatial extent of spike sources.

3D source localization in the frequency domain was then performed
by computing the cross-spectra of EEG segments for each subject. The
eLORETA algorithmwas used to compute the current density (Intensity
of the current/area, measured in A/m2) for each voxel within different
frequency bands. The eLORETA solution space was restricted to the cor-
tical gray matter of a realistic headmodel (MNI152) coregistered to the
Talairach brain atlas and digitized at the Montreal Neurologic Institute
(MNI) brain imaging center (Mazziotta et al., 2001). The brain compart-
ment included 6239 voxels (5 mm spatial resolution). Before any
Fig. 2. Thirteen brain regions defined for statistical comparisons.
statistical analysis, the eLORETA solutions were normalized for each
voxel at each frequency band as implemented in the eLORETA software
(Pascual-Marqui, 2002). The normalization was done by normalizing
the eLORETA current density at each voxel to the eLORETA current den-
sity averaged across all frequencies (0.5–30 Hz) (Babiloni et al., 2010).

2.5. Statistical analysis of the eLORETA solutions

Statistical comparisons of cortical sources between the two groups
were performed on the eLORETA current density of the voxels in all
five frequency bands using the statistical nonparametric mapping ap-
proach (SnPM) via randomizations (Nichols and Holmes, 2002). The
randomization determined the critical threshold values for the observed
t-values with correction (p b 0.05) for multiple comparisons across all
voxels and all frequency bands. A total of 5000 permutations were
used to determine the significance level for each test. The log of F-
ratios were then color-coded and projected onto the MNI152 MRI and
the cortical layer of the realistic head model. The color-coded Topo-
graphic Significance Maps (TSMs) represented statistical differences in
estimated cortical sources between the groups.

3. Results

For illustrative purposes, we only present STP (sensor space) and
TSM (source space) with statistically distinct spatial patterns. The re-
maining results can be found in Supplementary Materials. The absolute
power for all the conditions is shown in Table 2.

3.1. Scalp topographic patterns (STP)

Fig. 3 shows the STPs for controls and patients in the δ, θ and α
bands.

Compared to controls, the patient group presented significantly
higher relative EEG power values in the θ band (Fig. 3, left STP map)
in right centrotemporal and bilateral frontal and parieto-occipital
areas under ECNS and ECWS conditions. The θ power increases in all cor-
tical regions were more pronounced when spikes were included in the
EEG segments analyzed (ECWS condition). In contrast, the relative α,
β1 and β2 powers tended to decrease in homologous areas especially
under the ECNS condition (Figs. 3 and S1). Furthermore, relative δ
power significantly decreased in right centrotemporal and bilateral
frontal areas, but only in the presence of CTS. The results obtained in
the sensor space are summarized in Table 2. Table 3 lists the mean
and standard deviation of absolute power values for each region, fre-
quency band and condition. As shown, patients displayed increased ab-
solute θ power and decreased absolute α power at the parietal and



Table 2
Observed patterns of changes in relative EEG spectral power in patients compared to con-
trols in the five frequency bands.

Frequency band ECNS condition
(eyes-closed without spike)

ECWS condition
(eyes-closed with spike)

Brain regions exhibiting significant
changes in scalp EEG relative power

Brain regions exhibiting
significant changes in
scalp EEG relative power

δ (0-3.5Hz) - LF, RF ↓
C, RC, RT↓

θ (4-8Hz) C, RC, RT ↑
LP, P, RP ↑

All cortical regions ↑

α (8.5-13Hz) PF, LF, RF ↓
LT, RC↑
LP, P, RP, O↓

LP, P, RP, O↓

β1 (13.5-20Hz) PF↓
C, RC↓
LP, P, RP, O↓

C, RP↓

β 2 (20.5-30Hz) PF↓
RC, C, LC↓
LP, P, RP, O↓

PF, LF, F↓
C, RC↓
LP, P, RP, O↓

The significant increase (↑) or decrease (↓) in EEG relative power was identified by statis-
tical comparisons (p b 0.01) between controls and patients. See Fig. 1 for the abbreviations
used for brain regions.
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occipital regions especially under the ECWS conditions in comparison to
ECCT.

The group IAF values are shown in Fig. 4. The IAF values of ECCTwere
significantly higher than those found for both the epileptic conditions in
all regions excluding the right frontal region. ECNS showed was lower
IAF values in comparison to ECWS in almost all cortical regions.

3.1.1. Statistical comparisons of EEG cortical sources
To further investigate the impact of BECTS on the cortical sources of

resting state EEG rhythms, we computed TSMs in the five frequency
bands under the ECNS and ECWS conditions (Figs 5–7, S2–4). Fig. S5
shows the spatial extent of the distributed sources of interictal spikes lo-
calized using eLORETA and averaged across all patients. As shown, only
the right centro-temporal regions are highly involved in the generation
of the spikes.

Compared to controls, patients exhibited increased θ,α and β2 activ-
ity under both conditions in the right centrotemporal regions, which are
involved in the generation and propagation of the spikes. However, the
spectral power increases of cortical sources were more pronounced
in the presence of CTS, and were also observed in β1 in the right
centrotemporal region and its immediately surrounding regions.

In patients, the right temporo-parieto-occipital junction also showed
increased θ andα activities under the ECNS condition (Fig. 5). However,
Fig. 3. Average normalized spectral power maps (±standard deviation) in the sensor space u
(ECNS, no spike condition, middle boxplots) and patient group (ECWS, with spike condition, r
are shown in solid boxplots. Asterisks indicate statistically significant differences (p b 0.01) be
the presence of CTS within EEG segments increased power in higher
frequencies (β1 and β2) in the right temporo-parieto-occipital junction
(Fig. S4). Furthermore, in patients, the bilateral temporal poles
displayed increased cortical activities in all five-frequency bands
under both conditions. To a lesser degree, the left centrotemporal area
including the insula also exhibited increased power in all bands.

Compared to controls, patients were characterized by significantly
decreased power in all bands in bilateral frontal and occipital lobes, es-
pecially in the presence of CTS. Other spurious increases/decreases in
the power of various bands were also observed in deeper structures
(see supplementary figures).
4. Discussion

This study was the first attempt to investigate differences in the to-
pographic distribution of EEG relative and absolute spectral power
and EEG cortical sources between healthy control subjects and patients
with BECTS under the eyes-closed resting state condition in five fre-
quency bands. Our findings demonstrated that BECTS has a profound ef-
fect on the spectral power of resting state EEG activities and cortical
sources by activating/deactivating cortical regions.

In the sensor space, we found significant increases in relative and
absolute θ power in all brain regions especially in the epileptogenic
zone in the right centrotemporal region in comparison to healthy con-
trols. Meanwhile, the θ power decreased in frontal and occipital regions
in comparison to central region of epileptic patients. This observation is
consistent with results from other studies conducted on Temporal Lobe
Epileptic patients (TLE) (Quraan et al., 2013). Several studies (Clemens,
2004; Clemens et al., 2000; Douw et al., 2010; Schneebaum-Sender
et al., 2012) have reported enhanced θ power in children with epilepsy
with and without medication in comparison to controls (Clemens
et al., 2010). However, it has been shown that the increased theta
power in some cerebral regions is more pronounced in epileptic pa-
tients taking anti-epileptic drugs (Béla et al., 2007; Clemens, 2008;
Clemens et al., 2006; Kikumoto et al., 2006). Nevertheless, in our
study the drug effect can be ruled out to explain the spectral differ-
ences between the ECNS (eyes-closed without spike) and ECWS

(eyes-closed with spike) conditions.
Significant increases in θ, α, and β cortical sources were observed in

the source space of the right centrotemporal area, the region of CTS gen-
eration, under the ECWS condition. Centrotemporal spikes are known to
be highly reproducible sharp waves with similar morphological charac-
teristics, high amplitudes and durations of more than 70 ms corre-
sponding to frequencies above the θ band (Panayiotopoulos, 1999a,b.
Therefore, in our analysis, the increased relative power in frequencies
nder the eyes-closed condition for the control group (ECCT, left boxplots), patient group
ight boxplots) in δ, θ and α bands. Significant differences between ECCT and ECNS/ECWS
tween ECNS and ECWS.



Table 3
Absolute power (µV2/Hz) computed for each region, frequency band and all the conditions.

Region Freq. Band δ
mean±std

Θ
mean±std

α
mean±std

β1

mean±std
β2

mean±std

PF ECCT 0.0504±0.0013 0.0076±0.0003 0.0049±0.0008 0.0013±0.0001 0.0005±0.0000
ECWS 0.0444±0.0009 0.0135±0.0018 0.0035±0.0002 0.0001±0.0000 0.0003±0.0001
ECNS 0.0604±0.0007 0.0073± 0.0007 0.0018±0.0025 0.0008±0.0009 0.0004±0.0035

L ECCT 0.0495±0.0014 0.0072±0.0003 0.0052±0.0009 0.0016±0.0001 0.0008±0.0001
ECWS 0.04010±0.005 0.0146±0.0011 0.0040±0.0004 0.0012±0.0002 0.0004±0.0003
ECNS 0.0535±0.0074 0.0082±0.0068 0.0026±0.0028 0.0012±0.0009 0.0007±0.0005

F ECCT 0.0465±0.0022 0.0089±0.0006 0.0068±0.0011 0.0019±0.0002 0.0007±0.0001
ECWS 0.0481±0.0048 0.0167±0.0009 0.0056±0.0009 0.0022±0.0002 0.0007±0.0002
ECNS 0.0483±0.0032 0.0130±0.0010 0.0049±0.003 0.0027±0.0001 0.0012±0.0009

RF ECCT 0.0473±0.0018 0.0074±0.0004 0.0051±0.0008 0.0016±0.0001 0.0007±0.0001
ECWS 0.0425±0.0041 0.0123±0.0015 0.0044±0.0004 0.0015±0.0002 0.0006±0.0001
ECNS 0.0557±0.0021 0.0083±0.0077 0.0029±0.0034 0.0015±0.0013 0.0007±0.0001

LC ECCT 0.0390±0.0017 0.0088±0.0006 0.0088±0.0007 0.0019±0.0002 0.0007±0.0001
ECWS 0.0369±0.0051 0.0128±0.0012 0.0044±0.0007 0.0015±0.0003 0.0004±0.0001
ECNS 0.0403±0.0062 0.0102±0.0006 0.0048±0.0042 0.0015±0.0015 0.0005±0.0002

C ECCT 0.0411±0.0020 0.0097±0.0004 0.0080±0.0010 0.0017±0.0002 0.0005±0.0001
ECWS 0.0367±0.0041 0.0157±0.0011 0.0047±0.0008 0.0012±0.0002 0.0003±0.0001
ECNS 0.0382±0.0021 0.0118±0.0074 0.0039±0.0030 0.0011±0.00105 0.0003±0.0002

RC ECNS 0.0422±0.0017 0.0076±0.0004 0.0081±0.0007 0.0017±0.0002 0.0007±0.0001
ECWS 0.0381±0.0046 0.0157±0.0014 0.0055±0.0011 0.0015±0.0002 0.0003±0.0001
ECNS 0.0420±0.0037 0.0103±0.0063 0.0035±0.0031 0.0014±0.0012 0.0005±0.0004

LT ECCT 0.0460±0.0009 0.0094±0.0006 0.0079±0.0007 0.0018±0.0001 0.0007±0.0001
ECWS 0.0405±0.0033 0.0126±0.0020 0.0041±0.0005 0.0016±0.0002 0.0007±0.0001
ECNS 0.0432±0.0052 0.0111±0.0051 0.0036±0.0037 0.0018±0.0017 0.0009±0.0010

RT ECCT 0.0456±0.0016 0.0085±0.0004 0.0063±0.0006 0.0020±0.0002 0.0007±0.0001
ECWS 0.0429±0.0029 0.0149±0.0014 0.0054±0.0004 0.0016±0.0001 0.0005±0.0001
ECNS 0.0467±0.0032 0.0104±0.0082 0.0031±0.0038 0.0015±0.0011 0.0007±0.0000

LP ECCT 0.0434±0.0021 0.0101±0.0005 0.0197±0.0014 0.0023±0.0003 0.0005±0.0000
ECWS 0.0385±0.0043 0.0155±0.0016 0.0053±0.0010 0.0013±0.0003 0.0003±0.0001
ECNS 0.0422±0.0056 0.0116±0.0087 0.0048±0.0064 0.0013±0.0013 0.0003±0.0008

P ECCT 0.0370±0.0020 0.0079±0.0006 0.0109±0.0014 0.0016±0.0002 0.0004±0.0001
ECWS 0.0346±0.0023 0.0149±0.0023 0.0041±0.0008 0.0011±0.0002 0.0003±0.0000
ECNS 0.0401±0.0034 0.0129±0.0093 0.0041±0.0036 0.0011±0.0012 0.0002±0.0013

RP ECCT 0.0394±0.0015 0.0089±0.0004 0.00173±0.0017 0.0024±0.0017 0.0003±0.0003
ECWS 0.0428±0.0051 0.0153±0.0002 0.00059±0.0008 0.0014±0.0002 0.0003±0.0000
ECNS 0.0443±0.0076 0.0125±0.0028 0.00043±0.0044 0.0011±0.0012 0.0003±0.0001

O ECCT 0.0426±0.0018 0.0092±0.0007 0.0173±0.0004 0.0024±0.0005 0.0006±0.0000
ECWS 0.0435±0.0045 0.0136±0.0024 0.0064±0.0008 0.0013±0.0002 0.0003±0.0000
ECNS 0.0482±0.0056 0.0108±0.0020 0.0051±0.0008 0.0011±0.0002 0.0002±0.0000
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above the θ band can be simply explained by the presence of CTS in EEG
segments.

The increase in relative power of higher frequencies especially sev-
eral hundred milliseconds around CTS (Bourel-Ponchel, 2013; Gotman
et al., 2005) resulted in a less significant increase in the power of low
frequencies (δ band). Under both conditions, in most frequency bands,
similar trends of spectral changes were observed in BECTS patients,
which may reflect the modulatory effect of epileptic networks on the
Fig. 4. Individual alpha frequency (IAF) for all the 13 regions (see Fig. 2 for abbreviations).
spectral power of cortical sources regardless of the presence of CTS in
the scalp EEG segments analyzed. These findings indicate that, even in
the absence of CTS in the scalp EEG, the activity of epileptic networks
in BECTS has a profound impact on the EEG resting activity. This finding
is consistent with those reported in other resting state studies (Ciumas
et al., 2014; Kim et al., 2014; Pardoe et al., 2013). However, the presence
of CTS clarified spectral differences between patients and controls with
a wider spatial impact within the β1 band.

IAF differences between the groups may reflect decreased cognitive
performances in patients as suggested in several studies (Angelakis
et al., 2004; Khader et al., 2010; Klimesch et al., 1993). The lower IAF
was correlated with lower power at parietal and occipital region espe-
cially under the ECWS condition. This finding might explain cognitive
and attention impairment in BCECTS patients (Holmes and Lenck-
Santini, 2006; Metz-Lutz et al., 1999).

Another major finding of this study was the increased relative θ and
α power under the ECNS condition, and the increased relative α, β1 and
β2 power under the ECWS condition consistently in the right temporo-
parieto-occipital (TPO) junction. This finding may suggest that the epi-
leptic zone in BECTS impairs the right temporo-parieto-occipital region.
The temporo-parieto-occipital region is believed to be involved in high
level neurological functions (De Benedictis et al., 2014), especially audi-
tory, visual, somatosensory and memory processes. Impairment of the
TPO in children with epilepsy has been shown to be associated with
higher activity in this region (Barba et al., 2007; Besseling et al., 2013;
Hewett et al., 2011; Tang et al., 2014), which is likely to have neurobio-
logical relevance determined by anatomical development and
neurocognitive factors (Jiang et al., 2015; Tang et al., 2014). The



Fig. 5. Statistical maps of differences between cortical sources computed under the eyes-closed condition for the control group (ECCT, left boxplots) and the patient group (ECNS, no spike
condition, right boxplots) in θ andα bands. The results have been projected onto the cortical layer of the realistic headmodel (a) and the MNI152 MRI (b). Color bars indicate significant
differences between ECCT and ECNS, red (ECCT N ECNS) and blue (ECCT b ECNS).
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disconnection or resection of TPO in children with epilepsy has been
shown to increase the likelihood of alternative epilepsy treatment
(Ansari et al., 2010; Mohamed et al., 2011), which may indicate the in-
volvement of the TPO region in epileptic networks.

The bilateral increases in all bands under both conditions in the
poles of the temporal lobes, known to be the regions responsible for lan-
guage and speech processing, suggest possible interhemispheric syn-
chronization in temporal regions due to CTS. Several studies (Ay et al.,
2009; Baglietto et al., 2001; Kossoff et al., 2007; Liasis et al., 2006;
Metz-Lutz et al., 1999; Northcott et al., 2007) have discussed the im-
paired visual and auditory networks and alternation of source activities
at the bilateral poles of the temporal lobes in BECTS patients.

A compelling finding of the present study was the decreased ac-
tivities of cortical sources in the frontal and occipital lobes in BECTS
patients compared to healthy subjects in all frequency bands and
conditions, notably under the ECWS condition. The frontal and occip-
ital cortical depression in BECTS patients is likely to be associated
with decreased activity of the default mode network (Archer et al.,
2003; Blumenfeld et al., 2004; Fahoum et al., 2013; Gotman et al.,
2005; Ibrahim et al., 2014; Laufs et al., 2007; Ligot et al., 2014;
Yang et al., 2014). This finding is also in line with the frontal decrease
in the relative power of lower frequencies observed in the time–
frequency domain several hundred milliseconds before and after
centrotemporal spikes in BECTS patients (Bourel-Ponchel, 2013).
The reduced activity of the prefrontal and frontal lobes might also
explain some of the cognitive impairments and other brain
malfunctions related to benign epilepsy (Holmes and Lenck-
Santini, 2006; Weglage et al., 1997), as it has been shown that any
Fig. 6. Statistical maps of differences between cortical sources computed under the eyes-closed
condition, right boxplots) in θ andα bands. The results have been projected onto the cortical la
differences between ECCT and ECWS, red (ECCT N ECWS) and blue (ECCT b ECWS).
dysfunction in this region in childhood is likely to affect cognitive de-
velopment (Badre et al., 2009; Stuss and Alexander, 2000).

Certain discrepancies between the topographic distribution of scalp
EEG relative spectral power (in the sensor space) and the spatial distri-
bution of cortical sources (in the source space) in different frequency
bands were observed in this study. In our study, the increased or de-
creased cortical activities in various frequency bands estimated by
means of the eLORETA approach were not expected to exactly follow
the same spatial pattern of the spectral changes obtained using power
spectrum analysis in the sensor space. The discrepancies can be ex-
plained by methodological differences between the approaches. Our
STP maps were obtained by averaging the relative power values over
groups of electrodes in each of 13 regions, while eLORETA maps were
t-maps generated from statistical analysis of all 6234 voxels, whose
source activities were estimated using all electrodes. Frequency-
domain eLORETA generally provides better results for EEG resting analy-
sis because the estimated neuronal generator distribution, when using
this approach, does not depend on the polarity of the scalp EEG maps
(Pascual-Marqui, 2014).

A potential limitation of our study is the sample size. For the thirteen
cerebral regions, we computed the minimum sample size (Freedman
et al., 2001) with the statistical power of 80%. The average sample size
required for performing statistical comparisons between the groups
was about 7 which was less than the sample sizes (eleven patients
and twelve controls) set in our study.

Our overall findings indicate that, in addition to the dysfunction of
the right centrotemporal region,which is the epileptic focus, cortical de-
pression of frontal and occipital regions may show resting network
condition for the control group (ECCT, left boxplots) and patient group (ECWS, with spike
yer of the realistic headmodel (a) and the MNI152 MRI (b). Color bars indicate significant



Fig. 7. Statistical maps of differences between cortical sources computed under the no-spike (ECNS, left boxplots) and with-spike (ECWS, right boxplots) eyes-closed conditions in δ andα
bands for the epileptic group. The results have been projected onto the cortical layer of the realistic head model (a) and the MNI152 MRI (b). Color bars indicate significant differences
between ECNS and ECWS, red (ECns N ECWS) and blue (ECNS N ECWS).
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disruption in benign childhood epilepsy with centrotemporal spikes.
These findings encourage further investigation into the impact of
BECTS on the resting state networks.

Appendix A. Supplementary data

Supplementary data associated with this article can be found online
at http://dx.doi.org/10.1016/j.nicl.2015.08.014.
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