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Abstract

There is a wide diversity of bioinformatic tools available for the assembly of next generation

sequence and subsequence variant calling to identify genetic markers at scale. Integration

of genomics tools such as genomic selection, association studies, pedigree analysis and

analysis of genetic diversity, into operational breeding is a goal for New Zealand’s most

widely planted exotic tree species, Pinus radiata. In the absence of full reference genomes

for large megagenomes such as in conifers, RNA sequencing in a range of genotypes and

tissue types, offers a rich source of genetic markers for downstream application. We com-

pared nine different assembler and variant calling software combinations in a single tran-

scriptomic library and found that Single Nucleotide Polymorphism (SNPs) discovery could

vary by as much as an order of magnitude (8,061 SNPs up to 86,815 SNPs). The assembler

with the best realignment of the packages trialled, Trinity, in combination with several variant

callers was then applied to a much larger multi-genotype, multi-tissue transcriptome and

identified 683,135 in silico SNPs across a predicted 449,951 exons when mapped to the

Pinus taeda ver 1.01e reference.

Introduction

Radiata pine (Pinus radiata D.Don) is New Zealand’s most widely planted exotic forestry spe-

cies [1] and breeding programmes are moving towards the implementation of genomics tech-

nologies to deliver genetic gains through selective breeding for traits of importance. Prior to

the advent of Next Generation Sequencing platforms, Expressed Sequence Tag (EST) libraries,

based on captured and sequenced cDNA have been a mainstay of gene discovery and func-

tional genomics [2, 3]. Expressed Sequence Tag (EST) libraries have long been a rich resource

for markers such as microsatellites or Simple Sequence Repeats (SSRs) [4, 5]. Indeed, the con-

served nature of gene sequence across conifers has meant that frequently, EST based markers

from one species can be studied in related species, giving insight to evolutionary processes and

increasing the pool of available markers across a genus [6–8]. Fortunately, Next Generation

Sequencing (NGS) is changing the face of molecular biology and marker discovery [9–11]. At

its inception in 2006, the Illumina platform generated average read lengths of 35 bases and 1
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Gigabase (Gb) of sequence in a single run. The latest HiSeq and Miseq instruments and associ-

ated chemistries (Illumina, San Diego, USA) are now generating read lengths up to 300 bases

and up to 1500 Gb of sequence per run [12]. Long-read third-generation technologies [13, 14]

are generating even more impressive sequence lengths, albeit with diminished base-calling

accuracy.

Within a single NGS experiment, it is possible to 1) generate de novo sequence, and 2) per-

form polymorphism discovery. Ideally, genomic resources are generated via whole genome

sequencing (WGS) to capture variation in both genic and non-genic space, however, due to

the enormous size of conifer genomes [15–17], which can exceed 30 Gb, various methods of

reduced representation sequencing [18, 19] are frequently utilised to reduce costs, while still

providing a genome-wide snapshot of the variation. Focusing on transcriptomic sequence

allows for the generation of contiguous consensus sequences (contigs) that can be mined for

polymorphic loci and provide a catalogue of gene space, even in the absence of a species-spe-

cific reference genome [20].

The goal of genomic selection is to overcome the need for long breeding cycles, minimise

dependency on expensive field trials, and increase the speed of genetic gain through selective

breeding. Analysis of various deployment scenarios for genomic selection in conifers suggests

potential increases in delivery of genetic gain of 80% or more, driven in particular via shorten-

ing the breeding cycle [21].

For genomic selection to be a viable strategy, sufficient numbers of well-spaced DNA mark-

ers must be identified [22, 23]. Currently, the only DNA markers present at sufficient fre-

quency, combined with ease of identification and a variety of screening platforms [24], are

single nucleotide polymorphisms (SNPs) [25]. Many markers are not suitable for genotyping,

either due to technical limitations of an assay platform or due to lack of relevance to the popu-

lations of interest, therefore, an extensive resource of high quality SNPs is required for the

development of high density genotyping panels, integral to genomic selection approaches [26].

In eucalypts, for example, ~47 million SNP markers were identified and screened before

60,904 were committed to a multi-species SNP array [27]. Over 500,000 SNPs were vetted to

produce the OvineSNP50 bead chip [28].

Genomic selection assumes that at least some of the markers will be in linkage disequilib-

rium (LD) with the traits of interest [26]. Therefore, the interrogation of transcriptomes for

these sequence variants assumes that much of the genetic variation of interest will be in LD

with expressed genes captured in the transcriptome [29–31]. To maximise the number of

SNPs detected, we investigated transcriptomes from a range of tissues and genotypes. While

selection of tissue types was based on those more likely to be expressing genes regulating our

key traits, growth rate, wood density and needle health, ultimately good genome coverage is

more important for genomic selection than the identification of specific causative quantitative

trait nucleotides (QTN) [22].

Such is the power of NGS technology that the generation of large sequencing datasets has

ceased to be the research bottleneck; fast and effective bioinformatic processing of the NGS

datasets is now the focus of many groups. Unlike the hardware and chemistry developed to

generate these datasets, much of the analysis software being developed is freely available,

including a wide variety of bioinformatics tools available for sequence assembly and in silico
polymorphism discovery [32]. Therefore we sought to determine the most appropriate method

for large scale analyses in multiple datasets [33]. Conifer genomes are very large and with latest

estimates of gene models in excess of 50,000 in P. taeda [34], we compared the ease of use and

performance of several publicly available global and local short read sequence alignment tools.

In combination with various polymorphic prediction software, we tested a single dataset from

a single genotype, prior to selecting a preferred method for application within our larger
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multi-genotype, multi-tissue transcriptome sequencing dataset. Here we report on the genera-

tion of the first large scale SNP marker resource for radiata pine, developed using this variant

calling workflow.

Methods

Tissue collection

All trees sampled were New Zealand Forest Research Institute research trees, with the excep-

tion of tree1. Tree 1 was identified as a malformed 6 year old tree within a commercial forest

of Kaingaroa Timberlands LTD, who provided permission for us to sample the tree, as mal-

formed trees are removed as part of routine thinning operations to improve the overall quality

of a forest block. In order to generate a rich transcriptomic resource, that captured a wide sub-

set of expressed genes and genetic variation, a range of Pinus radiata genotypes, tissue types

were collected at different developmental and temporal stages (Table 1). To prevent degrada-

tion of RNA, each sample was harvested directly into liquid nitrogen and stored at -80˚C. For

the pilot genotype, Tree 1, developing xylem tissue were harvested from the bent stem (Fig 1A)

of a 6-yr-old tree [35] by peeling away a bark window (Fig 1B) to expose the developing cam-

bium [36]. Xylem was similarly collected for Trees 6–8, with phloem collected for Trees 6 and

7 by removing the underside of the bark window (Fig 1B). For Trees 2, 3, and 4, bud samples

were harvested from growing vegetative meristems, preferentially during the early spring flush

(Fig 1C), Tree 6 buds were collected in autumn. Needles were also harvested during the spring

flush for Trees 2–5. For Trees 3 and 5, needles infected with a foliar pathogen, Phytophthora
pluvialis (Pp), were also sampled. Inoculation of this material was performed by exposing indi-

vidual branches of the trees to approximately 1x 104 zoospores in a closed bag for 24 hours [N.

Table 1. Transcriptomes generated from the following tissues.

Genotype Tissues Date

collected

Tree Owner Tree location

Tree 1 6 year old

Opposite wood xylem (OW)

Mar 2008 Waimangu Forest owned by Kaingaroa Timberlands LAT -38.258

LON 176.414

6 year old

Compression wood xylem (CW)

Mar 2008

Tree 2 Needles (N) Nov 2012 Scion Clonal archive LAT -38.156

LON 176.270Spring Buds (SB) Nov 2012

Tree 3 Needles (N) Nov 2012 Scion Clonal archive LAT -38.156

LON 176.270Needles (infected) (NI) Nov 2012

Spring Buds (SB) Nov 2012

Tree 4 Needles (N) Nov 2012 Scion Clonal archive LAT -38.156

LON 176.270Spring Buds (SB) Nov 2012

Tree 5 Needles (N) Nov 2012 Scion Clonal archive LAT -38.156

LON 176.270Needles (infected) (NI) Nov 2012

Tree 6 Spring xylem (SPX) 1.4 metres Nov 2000 Scion research Trial RO 664/3

Forest owned by Kaingaroa Timberlands

LAT -38.622

LON 176.345Summer xylem (SUX) 1.4 metres Mar 2001

Autumn Buds (AB) Mar 2001

Summer phloem (Ph) 1.4 metres Mar 2001

Tree 7 2 year old Seedling xylem (X) Oct 2012 Scion Field Trial LAT -38.155 LON 176.268

2 year old Seedling phloem (Ph) Oct 2012

Tree 8 Summer xylem (SUX) 1.4 metres Mar 2001 Scion research Trial RO 664/3 Forest owned by Kaingaroa Timberlands LAT -38.622

LON 176.345

https://doi.org/10.1371/journal.pone.0205835.t001
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Williams, pers. comm.] (Fig 1D). Fascicles with typical lesion development were collected at 7,

9 and 11 days post inoculation, and 5 cm of the proximal ends pooled into a single sample.

RNA extraction

Total RNA was extracted from approximately 0.5–1.5 g of tissue using a modified CTAB

method [36], and stored at -80˚C in 10mM Tris-HCl buffer (pH 8.0). Approximately 25 μg of

total RNA from each sample was treated with DNase I enzyme to remove contaminating geno-

mic DNA (gDNA) prior to confirmation of RNA integrity and gDNA removal by agarose gel

electrophoresis. Absence of contaminants was confirmed spectrophotometrically using a

NanoDrop 1000 spectrophotometer (Thermo Scientific, Waltham, USA) and sample concen-

trations estimated using a Qubit RNA BR kit on the Qubit v1 fluorometer (Thermo Scientific).

RNA sequencing

New Zealand Genomics LTD (NZGL, Dunedin, New Zealand) performed sequencing on the

RNA extracted from all trees (Trees 1–8). RNA quality (18S and 26S ratios) and RNA concen-

tration were determined using the RNA 6000 LabChip in an Agilent 2100 Bioanalyzer (Agilent

Technologies, Santa Clara, California, USA). Thereafter, samples progressed through sequenc-

ing on the next-generation Illumina Hiseq 2000 sequencing platform (Illumina Inc. San

Diego, California, USA). The total number of reads and RNA input metrics are summarised in

S1 Table.

Sequence assembly

All programmes and software used in this analysis are listed in Table 2. All raw read outputs

from the Illumina Hiseq 2000 were filtered to remove reads containing only the 3’ adaptor

fragment. The remaining ’clean’ short reads progressed to downstream sequence assembly

programmes on a genotype-by-genotype basis, for alignment into contigs, scaffolds and finally

unigenes. All nucleotides in raw reads from BGI were supplied with a Solexa technology-based

quality score; conversions to Sanger quality scores, where required, were performed using

MAQ (Mapping and Assembly with Quality) [37]. Two assembly programmes were used in

this study: pilot assemblies with Tree 1 were performed using both SOAPdenovo [37] and

Trinity v r2012-01-25 [38], while subsequent assemblies (Trees 2–8) were performed using

only Trinity v r2013-01-25 [38]. Datasets in the Trinity assembly were treated as paired end. A

final multi-genotype assembly (Trees 1–8, all tissues) was performed with Trinity v r2013-02-

25 [38].

Fig 1. Tissues used to isolate RNA. A) compression (CW) and opposite wood (OW), B) developing xylem and

phloem, C) developing buds and D) on-tree needles inoculated and un-inoculated with Phytophthora pluvialis spores.

https://doi.org/10.1371/journal.pone.0205835.g001
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SNP discovery workflows

To evaluate a different variant calling workflows, different software for the various steps were

tested in a range of combinations (Table 3). For the Tree 1 SOAPdenovo assembly, three dif-

ferent combinations of global alignment, local alignment and SNP discovery tools were trialled

(pipelines 1, 6 and 9 in Table 3). For the pilot genotype Tree 1 Trinity-based assembly, all 9

pipelines (Table 3) were performed. All software used default parameters unless otherwise

described. For the individual assemblies of Trees 2–8, three different SNP discovery pipelines

were applied: rtg-GA, SAMtools [39], and Genome Analysis Toolkit (GATK) [40]. All the

scripts utilised to create different combinations of software supplied as S1 File.

SAMtools (Sequence Alignment/Map) was used to reformat the outputs and identify

sequence variants. All defaults were used, with the following exceptions: 1) to reduce the map-

ping quality for reads with a high number of mismatches, the coefficient to reduce the map-

ping quality of reads that had a higher number of mismatches was set to 50 as recommended

for BWA alignments, 2) Bayesian inference was used to call variants using maximum-

Table 2. Software tools used for short read sequence alignment and SNP detection.

Software Function Version Reference

SOAPdenovo de novo assembly Li et al. (2008)

SOAPdenovo-Trans de novo assembly 1.03 Xie et al. (2014)

Trinity de novo assembly r2012-01-25

r2013-01-25

Grabherr et al. (2011)

Trinity RNASeq de novo assembly r2013-02-25 Grabherr et al. (2011)

Velvet de novo assembly 1.2.10 Zerbino et al. (2008)

Oases de novo assembly 0.2.08 Schulz et al. (2012)

BWA Global alignment 0.5.9-r16 Li and Durbin (2009)

Bowtie2 Global alignment 2.1.0 Langmead et al. (2012)

MAQ Quality score conversion, global alignment, polymorphic site identification 0.7.1 Li, Ruan and Durbin (2008)

rtg-GA Global alignment, polymorphic site identification 2.2.1 www.realtimegenomics.com

Mosaik Global alignment 1.1.0021 Lee (2010)

GATK Local realignment, polymorphic site identification 1.0.5777 McKenna et al. (2010)

BLAST Similarity searching Basic Local Alignment Search Tool 2.2.28+ Altschul et al. (2012)

PERL Scripting language for file manipulation 5.10.1 Christians et al. (2012)

SAMtools Polymorphic site identification 0.1.14

0.1.19

Li et al. (2009)

Freebayes Polymorphic site identification 0.6.5 https://github.com/ekg/freebayes

https://doi.org/10.1371/journal.pone.0205835.t002

Table 3. Different workflows applied for short read sequence alignment and SNP detection in Tree 1 pilot assemblies.

Pipeline Quality score Global alignment software Local realignment software Polymorphic identification

1 Solexa BWA - SAMtools

2 Sanger BWA - SAMtools

3 Sanger BWA GATK SAMtools

4 Sanger BWA GATK GATk

5 Sanger BWA GATK Freebayes

6 Sanger MAQ - MAQ

7 Solexa rtg-GA - rtg-GA

8 Solexa Mosaik GATK GATK

9 Solexa Mosaik GATK freebayes

https://doi.org/10.1371/journal.pone.0205835.t003

Approaches to variant discovery for conifer transcriptome sequencing

PLOS ONE | https://doi.org/10.1371/journal.pone.0205835 November 5, 2018 5 / 14

http://www.realtimegenomics.com/
https://github.com/ekg/freebayes
https://doi.org/10.1371/journal.pone.0205835.t002
https://doi.org/10.1371/journal.pone.0205835.t003
https://doi.org/10.1371/journal.pone.0205835


likelihood inference for the priors, 3) genotypes were called at the variant site, and 4) for areas

of high coverage, (e.g., repeat regions), variants with a read depth greater than 100 were

removed, as there is a known problem assembling abundantly expressed genes [32].

Default parameters were also used for GATK, however, some file reformatting was

required. For BWA alignment files, SAMtools was first used to merge, sort and convert out-

puts into binary sequence alignment/map format (BAM) prior to performing local realign-

ments in GATK. Picard (https://broadinstitute.github.io/picard/) was user to reorder files

prior to running the GATK variant calling tool.

MAQ has a utility to convert Solexa quality scores to Sanger quality scores, a requirement

for MAQ alignments, it also altered the BWA alignment. All defaults were used, with the

exception that paired ends not mapping correctly were discarded.

From the original pilot study with the Tree 1 assemblies, rtg-GA, SAMtools [39], and

Genome Analysis Toolkit (GATK) [40] variant calling algorithms were selected for both per-

formance, and ease of use. Each algorithm was used independently to identify SNPs within

each genotype. SNPs detected by multiple algorithms were only counted once when generating

the total number of SNPs.

SNP markers that were homozygous within an individual were not detectable using the

genotype-by-genotype approach (e.g. A/A in one genotype and T/T in another genotype).

Therefore, to identify SNPs that were variable between genotypes, the raw reads from each

genotype were mapped to the multi-genotype transcriptome using Bowtie2 version 2.1.0 [41],

and polymorphisms identified using SAMtools [39].

Prediction of exons

Neves et al 2013 [42] reported that the presence of undocumented introns within target

regions impacted the efficiency of sequence capture in their exome-capture genotype-by-

sequencing platform. To predict intron/exon boundaries within the multi-genotype transcrip-

tome, the assembly was aligned to the Pinus taeda ver 1.01e genome [43] using the Trinity

assembly pipeline, as it was reported that the latest version (at that time) of Trinity outper-

formed SOAPdenovo with respect to % gene recovery [44].

Filtering SNPs

After SNP discovery via the mapping of raw reads back to the assemblies, additional filtering

was performed to increase the likelihood of detecting biologically real SNPs and not sequenc-

ing or alignment errors. Firstly, SNPs had to be located more than 10 bp from the edge of con-

tig. Secondly, read depth at SNP locations had to be greater than or equal to 10. Thirdly, as

each genotype was from a diploid individual, heterozygous SNPs within an individual should

display approximate allele frequencies of 0.5 across all reads; we widened our criteria to allow

minor allele frequencies of no less than 0.25 within an individual.

Results

Transcriptome assembly in individual genotypes

A total of 18 transcriptome libraries were sequenced (S1 Table), and assembled (Table 4), from

a total of 1.75 billion reads. The number of contigs generated per genotype ranged from

112,461 to 240,053. The N50 contig size ranged from 19,320 to 35,503 bases per genotype. The

raw data files are available at NCBI (www.ncbi.nlm.nih.gov/bioproject/482145).
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Assembly of multi-genotype transcriptome

The 8 individual genotypes, previously assembled independently, were combined into a large

“multi-genotype radiata transcriptome” containing 194,299 contigs, ranging in size from 201

bp to 16,575 bp, with an N50 of 1,434. When mapped to the Pinus taeda ver 1.01e genome

assembly, 144,007 (74%) of the radiata contigs aligned to the P. taeda genome. This enabled

the prediction of 449,951 putative exons, corresponding to 46,342 P. taeda scaffolds.

Variant calling in the pilot genotype (Tree 1)

SOAPdenovo assembly. Three different combinations of global and/or local alignment,

followed by variant calling (pipelines 1, 6 and 9 in Table 3), were tested on the Tree 1 SOAPde-
novo assembly. However, many of the raw ‘clean’ reads could not be remapped onto the uni-

gene sequence, suggesting a problem with this approach. The best result was achieved with

Mosaik (combination 9), although only 36% of the raw reads remapped to the unigene

sequence. This unexpectedly low rate of realignment meant that a high number of polymor-

phisms were likely missed. Therefore, the decision was made to perform a new assembly using

Trinity, and a combined transcriptomic library contig set was created for Tree 1, comprising

137,228 different contigs sequences, ranging in length from 201 to 9,175 bp.

Trinity assembly. Variant calling was undertaken using all nine different combinations of

global alignment, and/or local alignment, and SNP identification software packages (Table 2)

for the Tree 1 Trinity assembly. In all cases, the percentage of raw ‘clean’ reads that remapped

was much higher than with the SOAPdenovo assembly, ranging from 82% (rtg-GA) to 93%

(BWA and Mosaik). For this reason, no further analyses were performed using the SOAPde-
novo assembly, and all subsequent reporting of SNPs were identified solely from the Trinity

assemblies. SNPs were regarded as high confidence when all of the following criteria were

Table 4. Summary of transcriptome assemblies for each genotype using Trinity v2.0.

Tree

ID

Tissues1 Total trimmed

Contigs

Total length

bases (b)

Min contig

(b)

Median

contig (b)

Mean contig

(b)

Max contig

(b)

N50

Contig2
N50 Length

(b)3
N90

Contig4
N90

Length

(b)5

Tree

16
OW, CW 240,053 189,954,978 201 384 791 16,502 35,503 1,517 160,376 288

Tree

17
OW, CW 137,228 201 9,175

Tree 2 N, SB 174,382 135,676,827 201 377 778 11,558 26,833 1,504 116,553 281

Tree 3 N, SB 144,891 128,260,169 201 417 885 13,455 22,746 1,735 92,347 309

Tree 4 SB, N, NI 164,911 140,803,864 201 419 853 11,048 26,095 1,625 107,140 305

Tree 5 N, NI 194,849 142,994,312 201 350 733 11,536 28,358 1,433 132,473 267

Tree 6 SPX, SUX,

AB, Ph

223,427 189,323,752 201 420 847 16,579 34,701 1,591 145,615 727

Tree 7 SUX, Ph 122,659 114,034,559 201 505 929 9,798 21,562 1,672 78,394 346

Tree 8 SUX 112,461 110,811,316 201 511 985 12,357 19,320 1,819 70,137 359

1 See Table 1 for tissue codes
2 N50 contig is the number of large contigs that collectively contain 50% of the nucleotide bases.
3 N50 Length is the length of the shortest N50 contig.
4 N90 contig is the number of large contigs that collectively contain 90% of the nucleotide bases.
5 N90 Length is the length of the shortest N90 contig.
6 SOAPdenovo assembly
7 Trinity assembly

https://doi.org/10.1371/journal.pone.0205835.t004
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satisfied: 1) more than 10 bases from the edge of the unigene, 2) allele frequency between 0.25

and 0.75, 3) a read depth of 10 or more sequences at that SNP position, and 4) at least 60 bases

clear of other polymorphic features on at least one side of the SNP.

The number of high confidence SNPs (Table 5) ranged from 8,061 (pipeline 1) to 86,815

(pipeline 7), with 34,996 being the average number of SNPs detected across all combinations.

Merely the conversion of sequence quality scores from Solexa to Sanger caused an additional

24,127 SNPs to be detected (pipeline 1 vs 2), while the addition of a subsequent local realign-

ment step did not markedly change the SNPs detected (pipeline 2 vs 3). Changing the final

polymorphic identification software from SAMtools to either GATK or Freebayes reduced

SNP numbers by 9,232 or 19,445, respectively (pipeline 3 vs 4 or 5). Use of two other indepen-

dent packages, MAQ (pipeline 6) and rtg-GA (pipeline 7), both without a local realignment

step, gave the highest SNP predictions at 63,488 and 86,815, respectively. Pipelines 8 and 9

both used the original Solexa sequence quality scores and a Mosaik global alignment followed

by a GATK local realignment, but differed in the SNP prediction software used. Approxi-

mately half as many SNPs were predicted using Freebayes in pipeline 9 (17,138) than for

GATK in pipeline 8 (37,575).

SNPs predicted multiple times using different software package combinations were

expected have a higher likelihood of being a true polymorphic event, therefore, we aimed to

Table 5. Pair-wise analysis of SNPs predicted among pairs of pipelines. Diagonal line represents SNPs unique to that combination, with the number of total quality

SNPs identified by each method shown in the final row.

Pipeline 1 Pipeline 2 Pipeline 3 Pipeline 4 Pipeline 5 Pipeline 6 Pipeline 7 Pipeline 8 Pipeline 9

Pipeline 1 2,251 4,175 4,161 800 1,080 2,730 3,873 758 782

Pipeline 2 46 32,048 4,670 7,623 15,470 21,184 4,117 4,677

Pipeline 3 28 4,651 7,615 15,450 21,159 4,116 4,671

Pipeline 4 1,663 1,385 6,106 6,764 7,808 863

Pipeline 5 6,598 8,111 11,506 1,301 2,643

Pipeline 6 8,684 41,058 6,325 7,153

Pipeline 7 16,194 7,246 7,897

Pipeline 8 21,846 2,060

Pipeline 9 31,154

Total quality SNPs identified 8,061 32,188 32,124 22,892 14,679 63,488 86,815 37,575 17,138

Quality scores Solexa Sanger Sanger Sanger Sanger Sanger Solexa Solexa Solexa

Global alignment software BWA BWA BWA BWA BWA MAQ rtg-GA Mosaik Mosaik

Local alignment software - - GATK GATK GATK - - GATK GATK

Polymorphism identification SAMtools SAMtools SAMtools GATK Freebayes MAQ rtg-GA GATK Freebayes

https://doi.org/10.1371/journal.pone.0205835.t005

Table 6. Frequency of SNP detection across all 9 discovery pipelines.

Number of pipelines detecting the same SNP Number of SNPs

9 6

8 74

7 626

6 2,991

5 7,208

4 11,021

3 15,888

2 37,867

1 88,464

Total SNPs 164,145

https://doi.org/10.1371/journal.pone.0205835.t006
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distinguish SNPs common to multiple pipelines from those predicted in only one pipeline.

Using a pair-wise combination approach, each pipeline was compared to the others (Table 5).

Pipelines 6, 7, 8 and 9 each predicted greater than 7,000 unique SNPs, i.e. SNPs not shared

with any other combination.

A total of 164,145 different SNPs were predicted across all pipelines, with only six SNPs pre-

dicted in all 9 software combinations (Table 6). There were 10,905 SNPs detected in 5 or more

combinations, only 6.6% of the total SNPs predicted. A total of 37,814 (23%) SNPs are pre-

dicted by at least 3 or more pipelines. A total of 88,464 SNPs (53.9%) were identified by only a

single software pipeline. Such SNPs should be considered with less confidence for downstream

applications, however, without further testing, we cannot rule out the fact that these predicted

SNPs may actually be true polymorphisms.

SNP discovery in individual genotypes

For SNP discovery within each of the genotypes, we selected the three best SNP prediction

tools identified in the pilot study: rtg-GA, GATK and SAMtools [39]. Using individual Trinity

v 2.0 [38] assemblies for each genotype, with Bowtie2-mapped raw reads [41], three pools of

SNPs were generated per genotype using each of the three SNP prediction tools. These pools

were screened using the same quality criteria as described for Tree 1 to identify high confi-

dence SNPs. A cumulative total of 683,135 unique SNPs were identified across all pipelines in

the 8 genotypes analysed (Table 7). The rtg-GA software predicted the greatest number of

SNPs, followed by SAMtools then GATK. As SNP calling was performed within individuals,

some redundancies are to be expected within this cumulative total; SNP discovery across geno-

types will alter this total as SNPs are identified in multiple genotypes (decreasing the total

number) and new SNPs are detected that were homozygous SNPs within genotypes (increas-

ing the total number).

SNP discovery in multi-genotype transcriptome

For the final round of SNP discovery within the multi-genotype Trinity v 2.0 [38] assembly,

raw reads were mapped back to the contigs using Bowtie2 [41] and SAMtools [39] used to

Table 7. Summary of SNP discovery within individual genotypes.

Genotype Tissues1 SNP discovery algorithms Total SNPs2 Unique SNPs3

rtg-GA GATK SAMtools

Tree 1 OW, CW 59,744 27,627 65,554 152,925 108,319

Tree 2 N, SB 58,320 23,192 53,715 135,227 92,232

Tree 3 N, SB 48,786 20,587 44,897 114,270 76,912

Tree 4 SB, N, NI 57,550 21,303 41,184 120,037 87,291

Tree 5 N, NI 63,650 15,023 39,853 118,526 89,516

Tree 6 SPX, SUX, AB, Ph 63,716 33,965 58,707 156,388 107,290

Tree 7 X, Ph 39,171 19,300 37,053 95,524 65,695

Tree 8 SUX 35,761 14,433 33,938 84,132 55,880

Average 53,337 21,929 46,863 122,129 85,392

Cumulative total 429,698 175,430 374,901 977,029 683,1354

1See Table 1 for tissue codes
2Total SNPs is the cumulative total for a genotype across the three algorithms.
3 All SNPs is the cumulative total for a genotype, with redundant detections across multiple algorithms removed.
4 Cumulative total for all genotypes; SNPS which may be counted multiple times if they appear in multiple genotypes.

https://doi.org/10.1371/journal.pone.0205835.t007
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predict polymorphisms, and use of rtg-GA discontinued. Filtering criteria were applied to

remove SNPs that were identified in sequences with a read depth of less than 10 and/or or less

than 10bp from the edge of a contig. A total of 328,981 unique SNP markers were identified

within the multi-genotype assembly, including 59,424 between-genotype SNPs which were

only identified when multiple genotypes were compared.

Discussion

SNPs identified from tissue-specific transcriptomes can be an ideal resource [45] for candidate

gene SNP discovery or genome-wide SNP identification using platforms such as Illumina’s

Infinium [46] or Affymetrix’s Axiom (www.affymetrix.com) [20, 33]. During the development

and evaluation of the various SNP discovery pipelines described in this work, genotyping plat-

forms that utilise genotype-by-sequencing (GBS) of reduced representation genomic DNA,

either through restriction enzyme digestion [47], or targeted exome capture [42] became more

widely available. These methods capture and sequence all SNP markers within target region,

rather than focussing on specific SNPs as with fixed array SNP chips. Therefore, the accuracy

of in silico SNP predictions became less critical with these alternative genotyping platforms as

preselected SNP markers were not required. However, the prediction of high confidence

SNPs, described here, did influence the selection of genomic sites to target for an exome cap-

ture GBS assay.

Sequence assembly

We tested a number of sequence assembly software packages, including Trinity, SOAPdenovo,

and Velvet/Oases [48, 49] (data not shown), although the latter required more RAM than was

available to us at the time. The unexpectedly low rate of realignment in the SOAPdenovo

assembly (only 36% of the raw reads remapped to the unigene sequence) meant that a high

number of polymorphisms were likely missed. This has been reported for other assemblers as

well as SOAPdenovo when mapping back on assembled contigs [32]. The Trinity package

therefore outperformed during the remapping of the raw reads back against the assembled

contigs, despite generating 43% fewer contigs than the SOAPdenovo assembly with a smaller

maximum contig length (9,175 vs 16,502). Remapping was an essential component of SNP dis-

covery, therefore the best performing assembly package for this step was selected ahead of the

usual quality metrics of contig number, length or N50.

Variant calling

The variation in SNP discovery observed in a single dataset, channelled through a range of bio-

informatic pipelines, varied by over an order of magnitude, (8,061 SNPs with pipeline 1, up to

86,815 SNPs for pipeline 7), and highlights the extent of variation among SNP calling pipe-

lines, with 54% of the 164,145 SNPs discovered in the Tree 1 pilot study being unique to a sin-

gle pipeline. A similar study comparing SNP discovery pipelines in Antarctic fur seals [33]

showed that, between the 4 different methods compared, only 51% of SNP markers were

detected in more than one pipeline. The filtering criteria applied post variant calling is also an

important consideration, as low representation of an allele within a total read depth could be a

dubious variant or sequencing error [19]. However, using these tools in combination can pro-

vide a more robust pipeline for SNP discovery, and we are starting to see this approach of

applying multiple variant calling tools to a sequencing dataset being adopted [20, 50]. A single

variant tool can still be suitable depending on the downstream application, or where added

confidence can be gained through other approaches, such as stringent mapping of segregating

markers in full-sibling populations [51–53].
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There are two processes that current NGS algorithms can employ in the discovery of poly-

morphic loci: (a) global and local sequence alignment, and (b) polymorphism detection. The

Burrows-Wheeler alignment (BWA) can be used to assemble short sequence reads [54] then

SAMTools can be applied for polymorphism discovery [39]. The Genome Analysis Toolkit

(GATk) can be used for quality control, local and global sequence assembly [40], as well as for

polymorphism discovery [55]. A third program, MOSAIK, is another open-source global

assembly tool [56] which can be used in conjunction with FreeBayes to use Bayesian methods

for detection of polymorphisms within short read alignments [57].

Conclusion

The purpose of this work was to evaluate bioinformatic workflows and combinations of soft-

ware for identification of polymorphic loci and the development of a resource for a number of

genomic tools for the radiata pine industry, with a requirement for varying SNP densities. A

large, complex genome and incomplete reference resources precluded whole genome rese-

quencing for SNP marker discovery in radiata pine. Nine different pipelines applied to a single

pilot transcriptome identified SNPs at a rate the ranged over an order of magnitude. However,

the utilisation of transcriptomic RNA sequencing in combination with several variant calling

pipelines and quality filtering, has identified 683,135 in silico SNP markers and 449,951 exome

templates, the first large-scale SNP resource reported for this species. In addition, the P. radi-
ata multi-genotype transcriptome assembly is proving to be a valuable resource and being uti-

lised in multiple downstream projects, including facilitating the assembly of a P. radiata
reference genome, various gene discovery programmes, pedigree reconstruction and genomic

selection.
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