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The blood flow through an overlapping clogged tapered artery in the presence of catheter is discussed. Since cholesterol deposition
is resulting in the stenosis formation, velocity slip at the arterial wall is considered. The equations governing the fluid flow have
been solved analytically under the assumption of the mild stenosis. The analysis with respect to various parameters arising out
of fluid and geometry considered, on physiological parameters such as impedance and wall shear stress at the maximum height
of the stenosis as well as across the entire length of the stenosis has been reported. A table summarizing the locations of extreme
heights and the corresponding annular radii is provided. It is observed that the wall shear stress is the same at both the locations
corresponding to the maximum height of the stenosis in case of nontapered artery while it varies in case of tapered artery. It is also
observed that slip velocity and diverging tapered artery facilitate the fluid flow. Shear stress at the wall is increasing as micropolar
parameter is decreasing and the trend is reversed in case of coupling number.The results obtained are validated by comparing them
with the experimental and theoretical results.

1. Introduction

The cardiovascular system permits blood and bodily fluid to
transport nutrients, gas, and hormones to any or all elements
of the body and collects the waste product, deoxygenated
blood from all elements of the body, thus enabling all
organs of the body to work efficiently. In this world majority
of the deaths are associated with vessel diseases. Among
them maximum deaths are related to the characteristics of
blood flow and vessel moments. In particular the circulatory
connected issues are the major causes of health problems
and deaths in the present world. This is supported by the
report of the World Health Organization (WHO), according
towhich, seventeenmillion deaths in 2008 are associatedwith
the heart. The basic cause of heart related disorders is due
to occlusion, which compromise the functioning of the vital
organs. Most notably, the heart and brain are often affected,
as happens in MI (destruction of heart tissue resulting from
obstruction of the blood supply to the heart muscle) and
stroke.

The deposition of excessive fatty components and abnor-
mal intravascular growth within the lumen of the artery
results in the formation of the stenosis. This results in
the narrowing of the artery and this condition is known
as atherosclerosis. Formation of the stenosis results in the
obstruction of the flow of blood thus resulting in abnormal
variations of the blood flow characteristics. Catheterization is
amethod inwhich a long skinny versatile tube is inserted into
the stenotic artery to treat atherosclerosis. Insertion of such
a tube (called catheter) into the lumen of the artery results
in significant changes in the blood flow, even in massive
arteries. Therefore, the study of catheter effects in physiolog-
ical fluid flow through a stenotic artery is vital. Hence the
mathematical understanding of such a scenario was taken up
by many assorted researchers. In particular understanding
of biological development of blood flow through stenosed
arteries has become prominent and has played a leading role
in the diagnosis and the treatment of heart related diseases.

Huo and Fu [1] reported about the advances that have
taken place in clinical technologies, in the field of respiratory
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mechanics, exchange of gas in lungs, and so forth. Lykoudis
and Roos [2] studied the mechanics of the duct with an
inserted catheter by considering amoving peristaltic wave on
the stationary cylinder. Smith [3] studied the flow through
constricted tube and analyzed the impact of mild, moderate,
and severe stenoses on totally developed flow. He developed
a mathematical model for understanding the dynamics of
blood flow in an exceedingly constricted artery. Back [4]
obtained the influence of catheter radius on resistance to the
flow andpressure drop. In his analysis he used an artificial set-
up and conducted experiments using 33% sugar-water liquid.

All the above mentioned studies modelled blood as a
classical Newtonian fluid. Because of the suspension nature
of the blood cells, human blood exhibits non-Newtonian
behavior at low shear rates. Dash et al. [5] discussed both
steady nature and pulsatile nature of the flow by considering
blood as casson fluid. He considered the presence of periodic
pressure gradient and solved the resulting equations analyti-
cally by using the perturbation technique. He concluded that
because of the yield stress, the insertion of the catheter in
the nursing artery leads to the formation of two yield planes
inside the flow region. Power law fluid flow through a circular
regionwith porouswalls was studied byDevanathan andRaju
[6]. The spiral flow through a regular constricted artery has
been analyzed by Linge et al. [7]. Here he showed that spiral
flow has additional stability in the downstream region when
compared to that of the traditional flow. Srinivasacharya and
Srikanth [8] analyzed the incompressible couple stress fluid
flow through the mild simple stenosis in the presence of the
catheter. Here they concluded that the couple stress fluid
offers more resistance to the flow than that offered by the
Newtonian fluid. Ramana et al. [9, 10] discussed steady and
pulsatile nature of polar fluid through asymmetric tapered
catheterized artery. Here they have given a table showing
the locations of the maximum height of the stenosis and
the corresponding annular radius for various values of the
tapered and shape prameter.

Among the several non-Newtonian fluids present, the
micropolar fluid encompasses special importance as it
exhibits microrotational inertia and microrotational effects
which arise from the naive structure of the fluid.Thismicrop-
olar fluid model can adequately represent fluids consisting
of dipole elements and can support couple stress and body
couple effects as well. The classical Navier-Stokes theory is
incapable of predicting these new physical phenomena. Since
Blood consists of dipole elements, it seems very appropriate
to model blood using micropolar fluid. The angular velocity
at any point in the extended Navier-Stokes equation as
described by Hansen et al. [11] is given by 1/2 curl V and
is independent of the microrotation vector appearing in the
micropolar fluidmodel. Both these quantities will coincide at
the boundary. A detailed literature and development of the
model of micropolar fluid and their applications are given
by Lukaszewicz [12] and Eringen [13]. Srinivasacharya and
Srikanth [14] studied the steady flow of micropolar fluid
through mild symmetric stenosis in the presence of the
catheter. Mekheimer and El Kot [15] considered blood as
micropolar fluid and discussed the effects of the asymmetry
nature of the stenosis in their steady flow analysis.

A lot of work has been done in relation to the devel-
opment of sclerosis, wherein the majority of the studies,
shape of the stenosis was considered to be either symmetric
or asymmetric. But it is understood that the stenosis may
be multiple in nature or develop in an irregular manner.
Further, stenosis may be overlapping or composite in nature.
Haldar [16] investigated the impact of the various forms of
the stenosis on the resistance to the flow in case of power-law
fluid. Srivastava et al. [17] discussed the effects of the catheter
on blood flow through an overlapping stenotic artery. Here a
two-phase macroscopic model of the blood was considered.
Blood flow through overlapping stenosed arteries was also
considered by Riahi et al. [18]. In particular Daniel and his
group investigated the hematocrit and constriction effects on
impedance, shear stress at the boundary. There is no doubt
that tapering in arteries is vital in the mammalian arterial
system and the formation of stenosis on the tapered wall,
may alter the flow dynamics to a great extent. Understanding
the impact of tapered arteries on flow dynamics will be very
useful in the design of prosthetic blood vessels which has
surgical advantages. Mekheimer and El Kot [19, 20] and
Mandal [21] considered the tapering effects in their studies.

In all the above studies usual no-slip condition at the
arterial wall has been considered. However variety of studies
of suspensions of blood flow, have established the likely
presence of slip at the boundary. In particular Brunn [22]
theoretically justified the presence of slip and Bennett [23]
did the same experimentally. In fact it has been shown that
even when the red cells are in contact with the wall they
slip freely. Recently Misra and Shit [24] considered velocity
slip at the arterial boundary to understand the effect of skin
friction, impedance, and so forth by considering Herschel-
Bulkley fluid model.

Hence in this paper we intend to explore the effects of
overlapping stenosis on the physiological parameters of the
blood flow that is modelled using micropolar fluid through
a catheterized tapered artery. Velocity slip at the wall is
additionally thought of.The analysis is done analytically.This
configuration and the related results could be very useful in
the development of various clinical related technologies and
equipments. It is also useful to the scientists engaged in the
design and development of artificial organs.

2. Formulation of the Problem

2.1. Schematic Representation of Overlapping Stenosis. The
schematic diagram of the overlapping stenotic tapered artery
in the presence of catheter is as shown in Figure 1. Here blood
ismodelled by using incompressiblemicropolar fluidwhich is
flowing in an annular region formed by two coaxial cylinders
represented by an artery and a catheter. The radius of the
artery is varying while radius of the catheter 𝑟

𝑐
is fixed. 𝑟

0
is

the annular radius in the nonstenotic portion for nontapered
artery. 𝜁(= tan(𝜙)) is the tapered parameter with 𝜙 being the
tapering angle. 𝜙 < 0, 𝜙 > 0, and 𝜙 = 0 correspond to
converging, diverging and nontapered artery. Here 𝑧

𝐿
and

𝑧
𝑅
correspond to the locations where maximum heights of



Applied Bionics and Biomechanics 3

r

r0

rc

L

L0
L1

𝜀

z
zL zC zR

𝜙 > 0

𝜙 = 0

𝜙 < 0

Figure 1: Overlapping stenotic tapered artery with catheter.

the stenosis is occurring. 𝑧
𝐶
indicates the location on 𝑧-

axis corresponding to the critical height of the overlapping
stenosis.

The mathematical form of the geometry of the overlap-
ping stenotic tapered artery is as described by [17, 19], which
is given by

ℎ (𝑧)

=

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

𝑟
0
+ 𝜁𝑧 −

3

2

𝜖

𝐿
4

1

⋅ [11 (𝑧 − 𝐿
0
) 𝐿
3

1
− 47 (𝑧 − 𝐿

0
)
2

⋅ 𝐿
2

1
+ 72 (𝑧 − 𝐿

0
)
3

𝐿
1

− 36 (𝑧 − 𝐿
0
)
4

] , 𝐿
0
≤ 𝑧 ≤ 𝐿

0
+ 𝐿
1

𝑟
0
+ 𝜁𝑧 otherwise,

(1)

where 𝐿
1
is the length of the stenosis. 𝜖 is the maximum

height of the stenosis and the locations of the maximum
heights of the stenosis are dependent on 𝜁. The locations of
the extreme heights of the stenosis are obtained as the roots
of the cubic equation

144 (𝑧 − 𝐿
0
)
3

− 216𝐿
1
(𝑧 − 𝐿

0
)
2

+ 94𝐿
2

1
(𝑧 − 𝐿

0
)

− 11𝐿
3

1
+

2𝜁𝐿
4

1

3𝜖

= 0.

(2)

2.2. Mathematical Model. The balance equations which gov-
ern the flow of micropolar fluid are

𝐷𝜌

𝐷𝑡

+ 𝜌 (∇ ⋅ 𝑉) = 0,

𝜌

𝐷𝑉

𝐷𝑡

= −∇𝑃 − (𝜇 + 𝜅) ∇ × (∇ × 𝑉)

+ 𝜅∇ × 𝜔 + (𝜆 + 2𝜇) ∇∇ ⋅ 𝑉 + 𝜌𝑓,

𝜌𝑗

𝐷𝜔

𝐷𝑡

= −2𝜅𝜔 + 𝜅∇ × 𝑉 − 𝛾∇ × (∇ × 𝜔)

+ (𝛼 + 𝛽 + 𝛾) ∇∇ ⋅ 𝜔 + 𝜌𝑙,

(3)

where the velocity vector is 𝑉, the microrotation vector is 𝜔,
𝑃 is the fluid pressure. 𝑗, 𝜌 are the microinertia moment and
density parameters, respectively, while 𝑓 and 𝑙 are body force
and body moment, respectively. The material constants 𝛼, 𝛽,
𝛾, 𝜇, and 𝜅 satisfy the following inequalities:

3𝛼 + 𝛽 + 𝛾 ≥ 0, 𝛾 ≥




𝛽




, (4)

2𝜇 + 𝜅 ≥ 0, 𝜅 ≥ 0. (5)

In the absence of body force and body couple the balance
equations (3) of incompressible steady micropolar fluid get
reduced to

∇ ⋅ 𝑉 = 0,

𝜌 (𝑉 ⋅ ∇𝑉) = −∇𝑃 − (𝜇 + 𝜅) ∇ × (∇ × 𝑉) + 𝜅∇ × 𝜔,

𝜌𝑗 (𝑉 ⋅ ∇𝜔) = −2𝜅𝜔 + 𝜅∇ × 𝑉 − 𝛾∇

× (∇ × 𝜔) + (𝛼 + 𝛽 + 𝛾) ∇∇ ⋅ 𝜔.

(6)

The problem has been studied in cylindrical polar coordinate
system (𝑟, 𝜃, 𝑧) with 𝑟 = 0 as the axis of symmetry. Since
the flow is assumed to be axisymmetric, all the flow variables
are independent of 𝜃. The velocity vector 𝑉 is given by 𝑉 =

(V
𝑟
, 0, V
𝑧
) and themicrorotation vector is 𝜔 = (0, ]

𝜃
, 0), where

V
𝑟
, ]
𝜃
, and V

𝑧
are functions of 𝑟 and 𝑧.

Under the above assumptions, (6) will get reduced to

𝜕V
𝑟
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+

V
𝑟
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+

𝜕V
𝑧
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𝜕𝑝
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− 𝜅
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𝜃
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−
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𝑟
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2
) ,

𝜌(V
𝑟

𝜕V
𝑧
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𝑧
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𝑧
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1
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𝑧
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𝜕V
𝑟

𝜕𝑧

−

𝜕V
𝑧

𝜕𝑟

) .

(7)
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The nondimensional variables are defined as

𝑧


=

𝑧
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1

, V
𝑧
=

V
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=
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=

ℎ
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=
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𝑟𝑧
=
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=
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𝑟
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=
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𝐿

,

𝑗


=

𝑗

𝑟
2
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, ]
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=

𝑟
0
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𝑢
0

, 𝜁


=

𝜁𝐿
1

𝑟
0

,

(8)

where 𝑢
0
is the typical axial velocity.

Introducing the above nondimensional variables into (7)
and dropping dashes, we get

𝜉 (

𝜕V
𝑟

𝜕𝑟

+

V
𝑟

𝑟

) +

𝜕V
𝑧

𝜕𝑧

= 0,

Re 𝛿2𝜉𝛿 (V
𝑟

𝜕V
𝑟
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𝑧

𝜕V
𝑟
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)
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− 𝛿
2

𝑁

1 − 𝑁
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2
𝜕
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+

𝜕
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𝑟
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𝑟
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V
𝑟

𝑟
2
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𝑟
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𝑧

𝜕𝑟

+ V
𝑧

𝜕V
𝑧

𝜕𝑧

]

= −

𝜕𝑝

𝜕𝑧

+

𝑁
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(

1

𝑟

𝜕 (𝑟]
𝜃
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)

+

1

1 − 𝑁
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2
𝜕
2V
𝑧

𝜕𝑧
2

+

1

𝑟

𝜕

𝜕𝑟

(𝑟

𝜕V
𝑧

𝜕𝑟

)] ,

𝑗Re 1 − 𝑁

𝑁

𝛿(𝜉V
𝑟

𝜕]
𝜃

𝜕𝑟

+ V
𝑧

𝜕]
𝜃

𝜕𝑧

)

= −2]
𝜃
+ (𝛿
2

𝜉

𝜕V
𝑟

𝜕𝑧

−

𝜕V
𝑧

𝜕𝑟

)

+

2 − 𝑁

𝑚
2

[𝛿
2
𝜕
2]
𝜃

𝜕𝑧
2

+

𝜕

𝜕𝑟

(

1

𝑟

𝜕 (𝑟]
𝜃
)

𝜕𝑟

)] ,

(9)

where 𝑁 = 𝜅/(𝜇 + 𝜅) is the coupling number (0 ≤ 𝑁 < 1),
𝑚
2

= [𝑟
2

0
(2𝜇 + 𝜅)𝜅]/[𝛾(𝜇 + 𝜅)] is the micropolar parameter,

Re = (𝜌𝑢
0
𝑟
0
)/𝜇 is the Reynolds number, and 𝛿 = 𝑟

0
/𝐿
1
and

𝜉 = 𝜖/𝑟
0
.

Under the assumptions of mild stenosis; that is, 𝜉(= 𝜖/

𝑟
0
) ≪ 1 and subject to the additional condition 𝛿(= 𝑟

0
/𝐿
1
) ≈

𝑂(1), we find that 𝜕𝑝/𝜕𝑟 ≪ 𝜕𝑝/𝜕𝑧 and 𝜕]
𝜃
/𝜕𝑧 ≪ 𝜕]

𝜃
/𝜕𝑟.

Table 1

𝜙 Location of 𝑧 ℎ(𝑧) for fixed
value of 𝜖 = 0.1

−0.05
𝑧
𝐿
= 0.7009 0.8392

𝑧
𝐶
= 0.9760 0.8756

𝑧
𝑅
= 1.3231 0.8080

0
𝑧
𝐿
= 0.6882 0.8740

𝑧
𝐶
= 1.0000 0.9250

𝑧
𝑅
= 1.3118 0.8740

0.05
𝑧
𝐿
= 0.6769 0.9081

𝑧
𝐶
= 1.0024 0.9752

𝑧
𝑅
= 1.2998 0.9393

Hence (9) get reduced to
𝜕V
𝑧

𝜕𝑧

= 0, (10)

𝜕𝑝

𝜕𝑟

= 0, (11)

𝜕𝑝

𝜕𝑧

=

𝑁

1 − 𝑁

(

1

𝑟

𝜕 (𝑟]
𝜃
)

𝜕𝑟

) +

1

1 − 𝑁

[

1

𝑟

𝜕

𝜕𝑟

(𝑟

𝜕V
𝑧

𝜕𝑟

)] , (12)

2]
𝜃
= −

𝜕V
𝑧

𝜕𝑟

+

2 − 𝑁

𝑚
2

[

𝜕

𝜕𝑟

(

1

𝑟

𝜕 (𝑟]
𝜃
)

𝜕𝑟

)] . (13)

The dimensionless form of (1) is
ℎ (𝑧)

=

{
{
{
{
{
{

{
{
{
{
{
{

{

(1 + 𝜁𝑧) −

3𝜖

2

⋅ [11 (𝑧 − 𝛾) − 47 (𝑧 − 𝛾)
2

+ 72

⋅ (𝑧 − 𝛾)
3

− 36 (𝑧 − 𝛾)
4

] , if 𝐿
0
< 𝑧 < 𝐿

0
+ 𝐿
1
,

(1 + 𝜁𝑧) , otherwise,
(14)

where, 𝛾 = 𝐿
0
/𝐿
1
.

The nondimensional form of (2), from which the various
locations of 𝑧

𝐿
, 𝑧
𝐶
, and 𝑧

𝑅
for various values of tapered

parameter are calculated, is given by

144 (𝑧 − 𝛾)
3

− 216 (𝑧 − 𝛾)
2

+ 94 (𝑧 − 𝛾)

− 11 +

2𝜁𝐿
1

3𝜖

= 0.

(15)

The locations of the extreme heights of the stenosis (𝑧
𝐿
, 𝑧
𝐶
,

and 𝑧
𝑅
) and the corresponding radii of the annular region

for various values of the tapered parameter 𝜁 are numerically
calculated with fixed values of 𝐿 = 2, 𝐿

1
= 𝐿/2, 𝐿

0
=

(𝐿 − 𝐿
1
)/2, 𝑟
0
= 1. The values are summarized in the form

of Table 1.
The dimensionless boundary conditions are given by

V
𝑧
= 𝑢, ]

𝜃
= 0 at 𝑟 = ℎ (𝑧) ,

V
𝑧
= 0, ]

𝜃
= 0 at 𝑟 = 𝑟

𝑐
,

(16)

where 𝑢 is the velocity slip at the wall of the artery.
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3. Solution of the Problem

From (11), it is observed that the pressure is invariant in the
radial direction. Further (12) can be rewritten as

𝜕V
𝑧

𝜕𝑟

= (1 − 𝑁)(

𝑐
1

𝑟

+

𝑟

2

𝜕𝑝

𝜕𝑧

) − 𝑁]
𝜃
. (17)

Substituting (17) in (13), we get

𝜕
2]
𝜃

𝜕𝑟
2

+

1

𝑟

𝜕]
𝜃

𝜕𝑟

− (𝑚
2

+

1

𝑟
2
) ]
𝜃
=

(1 − 𝑁)𝑚
2

(2 − 𝑁)

[

𝑐
1

𝑟

+

𝑟

2

𝜕𝑝

𝜕𝑧

] .

(18)

The solution of the above equation is

]
𝜃
= 𝑐
2
𝐼
1
(𝑚𝑟) + 𝑐

3
𝐾
1
(𝑚𝑟) −

(1 − 𝑁)

(2 − 𝑁)

[

𝑐
1

𝑟

+

𝑟

2

𝜕𝑝

𝜕𝑧

] . (19)

Using (19) in (17), we get

V
𝑧
=

𝑁

𝑚

(−𝑐
2
𝐼
0
(𝑚𝑟) + 𝑐

3
𝐾
0
(𝑚𝑟))

−

2 (1 − 𝑁)

(2 − 𝑁)

[𝑐
1
ln (𝑟) +

𝑟
2

4

𝜕𝑝

𝜕𝑧

] + 𝑐
4
,

(20)

where 𝐼
1
(𝑚𝑟), 𝐾

1
(𝑚𝑟), 𝐼

0
(𝑚𝑟), and 𝐾

0
(𝑚𝑟) are the modified

Bessels functions of the first order and zeroth order of first
and second kind, respectively. 𝑐

𝑖
, 𝑖 = 1, 2, 3, 4 are the constants

which are evaluated by using the boundary conditions (16).
The nondimensional volumetric flow is obtained using

𝑄 = ∫

ℎ(𝑧)

𝑟
𝑐

2𝑟V
𝑧
𝑑𝑟 in the following simplified form

𝑄 = 2

𝜕𝑝

𝜕𝑧

𝐹 [ℎ (𝑧)] , (21)

where

𝐹 [ℎ (𝑧)] = −

𝑁

𝑚
2
[𝑑
2
(ℎ (𝑧) 𝐼

1
(𝑚ℎ (𝑧)) − 𝑟

𝑐
𝐼
1
(𝑚𝑟
𝑐
))

+ 𝑑
3
(ℎ (𝑧)𝐾

1
(𝑚ℎ (𝑧)) − 𝑟

𝑐
𝐾
1
(𝑚𝑟
𝑐
))]

+ (

1 − 𝑁

2 − 𝑅

)

⋅ [

𝜕𝑝

𝜕𝑧

(

ℎ (𝑧)
4

− 𝑟
4

𝑐

8

)

+ 𝑑
1
(ℎ (𝑧)

2

(ln (ℎ (𝑧)) −

1

2

)

− 𝑟
2

𝑐
(ln (𝑟

𝑐
) −

1

2

))]

+ 𝑑
4
(

ℎ (𝑧)
2

− 𝑟
2

𝑐

2

) ,

(22)

with 𝑑
𝑖
= 𝑐
𝑖
/(𝜕𝑝/𝜕𝑧) and 𝑖 = 1, 2, 3 and 4.

The pressure difference Δ𝑝 across the artery is obtained
from (21) using

Δ𝑝 =

𝑄

2

∫

𝐿

0

1

𝐹 [ℎ (𝑧)]

𝑑𝑧. (23)

3.1. The Resistance to the Flow (Impedance). The impedance
is directly related to the flow rate of the fluid and has direct
impact on physiological dynamics of the flow. Hence the
analysis of the resistance to the flow with respect to various
fluid and geometry parameters is important. The resistance
to the fluid is calculated as

𝜆 =

Δ𝑃

𝑄

=

1

2

∫

𝐿

0

1

𝐹 [ℎ (𝑧) , 𝑟
𝑐
]

𝑑𝑧

=

1

2

[∫

𝐿
0

0

1

𝐹 [ℎ (𝑧) , 𝑟
𝑐
]

𝑑𝑧 + ∫

𝐿
0
+𝐿
1

𝐿
0

1

𝐹 [ℎ (𝑧) , 𝑟
𝑐
]

𝑑𝑧

+∫

𝐿

𝐿
0
+𝐿
1

1

𝐹 [ℎ (𝑧) , 𝑟
𝑐
]

𝑑𝑧] .

(24)

The nondimensional form of the impedance is

𝜆 =

Γ

2

[∫

𝛾

0

1

𝐹 [ℎ (𝑧) , 𝑟
𝑐
]

𝑑𝑧 + ∫

𝛾+1

𝛾

1

𝐹 [ℎ (𝑧) , 𝑟
𝑐
]

𝑑𝑧

+∫

1/Γ

𝛾+1

1

𝐹 [ℎ (𝑧) , 𝑟
𝑐
]

𝑑𝑧] ,

(25)

where Γ = 𝐿
1
/𝐿.

3.2. Wall Shear Stress. One of the basic objectives of the
problems related to physiological fluid dynamics is to predict
shear stress at the wall in clogged arteries. This significantly
influences the rate of mass transport across the artery walls
and the formation of atheroma on the walls of the arteries as
in atherosclerosis. The expression for shear stress is obtained
from

𝜏
𝑟𝑧

= −

𝑁

(1 − 𝑁)

]
𝜃
−

1

(1 − 𝑁)

𝜕V
𝑧

𝜕𝑟

,

𝜏
𝑧𝑟

= −

𝑁

1 − 𝑁

]
𝜃
+

𝜕V
𝑧

𝜕𝑟

.

(26)

Shear stress at the wall for the micropolar fluid is skew-
symmetric. Further using boundary conditions (16), the
nondimensional shear stress at the wall (𝜏

𝑤
) is computed as

𝜏
𝑤
= −

1

(1 − 𝑁)

𝜕V
𝑧

𝜕𝑟








 𝑟=ℎ(𝑧)

. (27)

Therefore

𝜏
𝑤
= −

1

(1 − 𝑁)

⋅ [𝑛
1
(1 + 𝑁

(𝐺 − 𝐻𝑛
2

1
)

𝐹

) (𝑐
1
𝐼
1
(𝑛
1
𝑟) − 𝑐
2
𝐾
1
(𝑛
1
𝑟))]



6 Applied Bionics and Biomechanics

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
40

60

80

100

120

140

𝜙 = 0

𝜙 = −0.05

𝜆

𝜀

𝜙 = 0.05

Figure 2: The variation of impedance with respect to 𝜙 when 𝑁 =

0.75,𝑚 = 50, Γ = 0.5, 𝑟
𝑐
= 0.1, and 𝑢 = 0.01.

−

1

(1 − 𝑁)

⋅ [𝑛
2
(1 + 𝑁

(𝐺 − 𝐻𝑛
2

2
)

𝐹

) (𝑐
3
𝐼
1
(𝑛
2
𝑟) − 𝑐
4
𝐾
1
(𝑛
2
𝑟))] .

(28)

Wall shear stress is calculated in the stenosis region and at the
maximum heights of the stenosis.

4. Results and Discussion

The objective of this analysis is to study the change in flow
pattern and estimate the variation in flow resistance and
wall shear stress in a narrow overlapping stenosed tapered
artery when a catheter is inserted into it. In addition to
the above, velocity slip at the boundary of the artery has
been considered. Blood is modelled as steady incompressible
micropolar fluid. The impact on the physiological parame-
ters is obtained for different parameters arising out of the
geometry and fluid considered, such as 𝑚 (micropolar fluid
parameter),𝑁 (coupling number), 𝑟

𝑐
(radius of the catheter),

𝜖 (maximumheight of the stenosis), and Γ, 𝜙 (tapering angle),
and 𝑢 (slip velocity). The results obtained here have been
validated and the trend is found to be agreeing very well
with the experimental and theoretical results reported in the
literature.

The frictional resistance (𝜆) per unit length of the artery
is calculated using (25). It is clear that under a given pressure
gradient a greater resistance implies less flow of fluid. Thus
the resistance gives the measure of the volume of the fluid
transported in the artery. Figure 2 underlines the importance
of tapering angle 𝜙 on the resistance to the flow. Here it is
observed that impedance is increasing as 𝜙 is decreasing.
Hence it can be concluded that impedance is maximum in
case of converging tapered artery and goes on decreasing
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Figure 3: The variation of impedance with respect to Γ when 𝑟
𝑐
=

0.1,𝑁 = 0.75,𝑚 = 50, 𝑢 = 0.01, and 𝜙 = −0.05.

as the tapered artery diverges. The results obtained above
are in expected lines as the flow rate is less in converging
artery when compared to that of diverging artery. Having
understood the effect of the tapering angle all the further
results are obtained in case of converging tapered artery.
From Figure 3 it is observed that the length of the stenosis
also significantly influences the impedance. As the length
of the stenosis is increasing; that is, as the spread of the
stenosis on the inner wall of the artery is increasing, the
annular region is getting narrowed which leads to high
variation in pressure difference, which further results in high
impedance. The effect of catheter radius on impedance is
shown in Figure 4. Here it is seen that impedance is high
for higher values of the catheter radius. This is because as
catheter radius increases the annular region get narrowed
which results in high impedance. It is also observed that
for few initial values of 𝜖 the increase in impedance is less
and it increases exponentially for higher values of 𝜖. Further
the above results have been validated with the experimental
of Back [4] and with the theoretical results for symmetric
stenosis, as considered by Srinivasacharya and Srikanth [14].
Here, the results obtained by us are in similar lines with that
of the experimental results, thus validating our approach.
Further the present results which are obtained in case of
overlapping stenosis are compared with the results obtained
for symmetric stenosis. Here it is found that impedance is
more in case of overlapping stenosis when compared to that
of symmetric stenosis. Also impedance increases rapidly for
the overlapping stenosis as the ratio of catheter radius to
the radius of the annular region increases. This highlights
the importance of considering overlapping stenosis which
is more natural to occur. The comparision of the results is
shown in the form of Table 2.

It is to be noted that the motion of micropolar fluid
may get affected by the viscous action (𝜇) of the fluid
elements, couple stresses (𝛾) and the direct coupling of
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Table 2: Validation with experimental and theoretical results.

Ratio of the diameter of the catheter to
that of the vessel (in case of Back
[4])/ratio of the radius of the catheter to
that of the annular region (in the present
study and as done by [14])

Impedance as obtained by
Back [4] with 33% sugar-water

solution with kinematic
viscosity ] = 0.035 cm2 s−1

Impedance in case of
symmetric stenosis as in

[14] with𝑁 = 0.75,𝑚 = 50,
Γ = 0.5 at 𝜖 = 0.1

Impedance in the present
work with𝑁 = 0.75,𝑚 = 50,

Γ = 0.5, 𝜁 = 0 at 𝜖 = 0.1

0.001 1.17 37.1729 42.4983
0.01 1.28 41.0176 47.0415
0.1 1.74 60.4443 70.6899
0.2 2.35 92.4108 111.902
0.3 3.29 160.369 209.679
0.4 4.89 391.445 743.398
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Figure 4: The variation of impedance with respect to 𝑟
𝑐
when 𝑁 =

0.75,𝑚 = 50, Γ = 0.5, 𝑢 = 0.01, and 𝜙 = −0.05.

the microstructure to the velocity field (𝜅). All these fluid
parameters can have any value greater than or equal to
zero. Hence, the ratio of the couple stress to viscous effects,
that is, 𝛾/𝜇 and microstrure coupling to the viscous effects,
that is, 𝜅/𝜇, can have any value greater than or equal to
zero. This knowledge will help us to understand the physics
behind the variation in the physiological parameters with
respect to the associated fluid parameters. The influence on
impedance for various values of micropolar parameter is
shown in Figure 5. Here resistance to the flow is decreasing as
𝑚 is increasing. This is because, as 𝑚 increases the coupling
effects of the fluid decrease, thus resulting in less impedance.
The effect of coupling number is depicted in Figure 6, from
which it is observed that impedance is increasing while
coupling number is increasing. Here 𝑁 → 0 when
the ratio of microstructure coupling to the viscous effect
𝜅/𝜇 → 0. Hence it can be technically understood that as the
microstructure coupling effects corresponding to a fluid are
increasing impedance is increasing. The effect of velocity slip
on resistance to the flow is sketched in Figure 7.The resistance
to the fluid flow is higher in the no-slip case and it is observed
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Figure 5: The variation of impedance with respect to 𝑚 when 𝑟
𝑐
=

0.1,𝑁 = 0.75, Γ = 0.5, 𝑢 = 0.01, and 𝜙 = −0.05.

that even a small slip in the velocity at the boundary, facilitates
the fluid flow to a large extent thus reducing the resistance to
the flow. Two different values of the velocity slip 𝑢 = 0.01 and
0.02 are considered at the arterial wall. They correspond to
1% and 2% of the average velocity of the blood, respectively.
Hence it can be concluded that even a small slip in the velocity
has significant effect on resistance to the flow.

Shear stress at the wall is computed at two locations cor-
responding to the maximum height of the stenosis denoted
by 𝑧
𝐿
and 𝑧

𝑅
. Further it is very interesting to note that the

location of 𝑧
𝐿
is dependent on the tapered parameter 𝜁. Same

is the case with the locations of 𝑧
𝑅
which is different for

different tapered parameters. The same have been computed
and have been compiled in the form of Table 1. This change
in the locations which is leading to change in the annular
radii was not considered by any of the earlier researchers to
the best of the knowledge of the present authors. Further this
important hemodynamic index is calculated across the entire
length of the stenosis and it’s variation is also studied.

The effect of tapered parameter at different locations of
maximum height of the stenosis on wall shear stress is shown
in Figure 8. Here it is observed that shear stress at the wall
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is more in case of converging tapered artery followed by
nontapered and diverging tapered artery. Further in case of
converging artery, the wall shear stress is more at 𝑧

𝑅
when

compared to that of at 𝑧
𝐿
, whereas this behavior is reversed

in case of diverging tapered artery. We can also observe that
in case of nontapered artery the wall shear stress is same at
both locations where the maximum height of the stenosis
is occurring. This is because the annular radius varies with
respect to the different locations of the maximum height
of the stenosis. Figure 9 shows the effect of velocity slip
at both locations of the maximum height of the stenosis
on wall shear stress. In general it is observed that shear
stress at the wall is increasing as velocity slip at the wall
is increasing. It is also observed that shear stress is more
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Figure 8: The variation of shear stress at wall with respect to 𝜙 at
bothmaximumheights in the stenosis with fixed values of𝑁 = 0.75,
𝑟
𝑐
= 0.1, 𝑢 = 0.01, and𝑚 = 50.
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Figure 9: The variation of shear stress at wall with respect to 𝑢 at
bothmaximumheights in the stenosis with fixed values of𝑁 = 0.75,
𝑟
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= 0.1, 𝜙 = −0.05, and𝑚 = 50.

at the maximum height corresponding to the location 𝑧
𝑅
.

All further computations are done at the maximum height
corresponding to 𝑧

𝐿
. Figure 10 shows the variation in shear

stress at the wall for various values of the parameters 𝜙 and
𝑚. Here it is observed that the shear stress at the wall is
increasing as the micropolar parameter is decreasing. It is
also understood that for higher values of 𝑚 the variation
in the shear stress at the wall is less. The change in shear
stress at thewall with respect to coupling number and tapered
parameter is shown in Figure 11. From the figure it is clear
that shear stress at the wall increases as the coupling number
increases. The impact of catheter radius on wall shear stress
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at the maximum height of the stenosis is shown in Figure 12.
Here catheter radius is significantly influencing shear stress
at the wall and as catheter radius increases the physiological
parameter also increases. In particular it is interesting to note
that the wall shear stress is maximum in case of converging
tapered artery and thick catheter.

The variation of shear stress at the wall across the entire
length of the stenosis for various values of the parameters
have been discussed in the subsequent figures. The effect
of tapered parameter (in both converging and diverging
cases) and height of the stenosis on wall shear stress in
the stenotic portion is depicted in Figure 13. The fact that
the wall shear stress is more at 𝑧

𝑅
than 𝑧

𝐿
in converging

case as discussed in Figure 8 is also confirmed here. Also
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Figure 13: The variation of shear stress at wall in stenosed region
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= 0.1, 𝑢 = 0.01, and𝑚 = 10.

the behavior is exactly reversed in case of diverging tapered
artery. Further for a given 𝜖 the shear stress at the wall is
more in converging artery than in diverging case. This is
justified because in the converging case the fluid flow velocity
is high in stenotic region than in the diverging case. Thus
as 𝜙 increases shear stress at the wall decreases across the
length of the stenosis. Also it is observed that as 𝜀 increases
the shear stress at the wall across the entire length of the
stenosis shows an increasing trend. Figure 14 shows the wall
shear stress distribution in the stenotic region for different
values of the micropolar parameter and for the fixed values
of the other parameters. As in the case of impedance, as
the micropolar parameter is increasing the wall shear stress
is decreasing. It can be further observed that initially when
value of micropolar parameter is less, small change in𝑚 leads
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to significant change in 𝜏
𝑤
. However the variation in 𝜏

𝑤
is

very less even for a significant change in the values of𝑚when
𝑚 is high. This is because of very less coupling effects for
higher values of 𝑚. The effect of coupling number on wall
shear stress in the stenosed region is as in Figure 15. Here it
is observed that, 𝜏

𝑤
is increasing as 𝑁 is increasing. 𝑁 → 0

as the direct coupling of the microstructure to the velocity
field, that is, 𝜅 goes to zero. Thus the decrease in coupling
number decreases the wall shear stress. The influence of the
radius of the catheter on wall shear stress is observed from
the Figure 16. As the catheter radius increases the wall shear
stress also increases. The effect of velocity slip on shear stress
at the wall is sketched in Figure 17. As the velocity slip at the
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Figure 16: The variation of shear stress at wall in stenosed region
with respect to 𝑟

𝑐
when 𝑁 = 0.75, 𝜖 = 0.1, 𝑢 = 0.01, 𝑚 = 10, and

𝜙 = −0.05.
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Figure 17: The variation of shear stress at wall in stenosed region
with respect to 𝑢 when 𝑁 = 0.75, 𝑟

𝑐
= 0.1, 𝜖 = 0.1, 𝑚 = 10, and

𝜙 = −0.05.

wall increases the stickiness at the wall reduces and velocity
of the flow increases.This results in the high wall shear stress.

5. Conclusion

It is very important to understand the dynamics of blood
flow in human physiological system. In view of this, a mathe-
matical model is developed for axisymmetric flow of blood
through overlapping stenotic tapered artery with velocity
slip at the wall. Under the assumption of mild stenosis,
closed form expressions for the axial velocity, microrotation
vector, impedance and shear stress at the wall are obtained
under appropriate boundary conditions. Via the described
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procedure flow conditions accounting for the presence of
various parameters arising out of the fluid and geometry are
discussed mathematically. Impedance and wall shear stress
are numerically evaluated using Mathematica and Matlab.

(i) The locations of the extremum heights are different
for different tapering angles. It is observed that
impedance and wall shear stress differ significantly at
these locations. In particular, impedance ismaximum
for converging tapered artery at 𝑧

𝑅
. This was ignored

by all the earlier authors to the best of our knowledge.
(ii) Impedance is increasing as the parameters 𝜖, Γ,𝑁, and

𝑟
𝑐
are increasing and the trend is reversedwith respect

to micropolar parameter and slip velocity.
(iii) The variation of shear stress at the wall is directly

proportional to the coupling number, radius of the
catheter, and slip velocity while it is inversely propor-
tional with respect to 𝜙 and𝑚.

(iv) It is that shear stress is increasing linearly for lower
values of the 𝑟

𝑐
, 𝑁, and 𝑢 while it increases exponen-

tialy for higher values of these parameters.
(v) The variation of shear stress across the entire length

of the stenosis with respect to various parameters
has also been studied. The results obtained are in
predicted lines.

(vi) The results obtained have been validated with that of
Back [4] and the pattern obtained is similar.

(vii) The impedance in case of overlapping stenosis is very
high when compared to that of symmetric stenosis.

The mathematical treatment of the above phenomena is very
realistic and is expected to be very useful in predicting the
behavior of physiological parameters in the diagnosis of
various arterial diseases and in the development of artificial
organs.
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