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Abstract: Biopolymers, in particular collagen and fibrinogen, are the leading materials for use in
tissue engineering. When developing technology for scaffold formation, it is important to understand
the properties of the source materials as well as the mechanisms that determine the formation of the
scaffold structures. Both factors influence the properties of scaffolds to a great extent. Our present
work aimed to identify the features of the molecular characteristics of collagens of different species
origin and the changes they undergo during the enzymatic hydrolysis used for the process of scaffold
formation. For this study, we used the methods of gel-penetrating chromatography, dynamic light
scattering, reading IR spectra, and scanning electron microscopy. It was found that cod collagen
(CC) and bovine collagen (BC) have different initial molecular weight parameters, and that, during
hydrolysis, the majority of either type of protein is hydrolyzed by the proteolytic enzymes within the
first minute. The differently sourced collagen samples were also hydrolyzed with the formation of
two low molecular fractions: Mw ~ 10 kDa and ~20 kDa. In the case of CC, the microstructure of the
final scaffolds contained denser, closely spaced fibrillar areas, while the BC-sourced scaffolds had
narrow, short fibrils composed of unbound fibers of hydrolyzed collagen in their structure.

Keywords: scaffold; biopolymers; collagen; fibrinogen; hydrolysis; thrombin; pancreatin

1. Introduction

The issue of restoring the integrity and functional adequacy of damaged or lost tissues
is one of the most pressing challenges in modern medicine. At present, it is inextrica-
bly linked with the task of creating new materials for regenerative medicine. Such new
biomimetic materials require certain universal properties (lack of toxicity, biocompatibility,
low immunogenicity, etc.), as well as the ability to simulate the individual properties that
determine the original tissue-specific features of the material being repaired (biodegrada-
tion rate, porosity, mechanical integrity, elasticity, etc.) while providing low-cost, minimally
labor-intensive solutions. One of the main properties required of materials for tissue engi-
neering and of the scaffolds based on them is good regenerative potential. This is provided
by the biological activity of the material and its structural properties.

The biological activity that can be attained, and the structure of the material or scaffold
that can be generated, strongly depend on the components from which they have been
formed. Therefore, it is extremely important to be aware of the required properties of the
material being developed as early as at the stage of selecting its constituents. Collagen is
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a recognized leader among components for creating biomaterials, scaffolds, and tissue-
engineered constructs. It is known for its intense biological activity, which is preserved
during the formation of various materials, scaffolds, inks for bioprinters, etc. [1–4]. The
unique properties of this protein make it possible to create biomimetic constructs similar
in structure to natural extracellular matrices [5–7]. The resulting materials/scaffolds have
a porosity and microfiber structure that enables them to provide a large surface area
for cell attachment and appropriate conditions for maintaining their viability, migration,
and proliferation [8–10]. This protein blends perfectly with other materials, providing
the possibility for creating hybrid or polycomposite scaffolds with improved properties
compared to monocomposite constructs [11–13]. In particular, the combination of collagen
and fibrin makes it possible to obtain hybrid scaffolds with mechanical characteristics
that differ from those made purely of collagen or fibrin [14,15]. For example, the creation
of collagen-based scaffold materials is carried out by introducing fragments of synthetic
polymers into their composition, which contribute to the formation of the necessary spatial–
geometric structures [16–19]. It is known, for example, that scaffolds based on collagen
and acrylates possess improved mechanical properties and cytocompatibility [20–25].
It should also be taken into account that collagen is a thermally unstable polymer; at
temperatures above 30–40 ◦C, its denaturation with the formation of gelatin begins [26–29].
Comparative data on the properties of hybrid materials based on collagen and gelatin
proves the perspective of their use in combination or replacement of collagen with gelatin
in scaffold-based technologies [30–32].

Early on, various types of collagen were isolated and described. They were shown to
differ in their amino acid sequences and degree of modification—the extent of hydroxyla-
tion or glycosylation [33,34]. However, only in recent years have works begun to appear
in which collagens belonging to the same type have been shown to demonstrate different
properties depending on the species of animal from whose tissues they have been iso-
lated [35–38]. A.M. Carvalho et al. [39] set forth a comparative study of type I collagen
isolated from bovine skin, cod skin, and rat tails. The authors proved that, depending
on their origin, the collagen samples varied in their amino acid composition, exhibited
distinctive features in infrared spectra, and had dissimilar denaturation temperatures. The
α-chains of the cod collagen had higher electrophoretic mobility compared with those
of the mammalian collagens, which was due to their having a lower molecular weight.
According to M. Gauza-Włodarczyk [40], certain differences were also established between
fish collagen and cattle collagen when comparing their thermal properties. It is notable that
analysis, using a bioinformatic analysis, of collagen from five sources of various origins
revealed their differences, these being most pronounced between phylogenetically distant
species, for example, between pigs and fish [41]. That is, the nature of the substrate from
which the biopolymer is isolated largely determines its properties. Few data have appeared
in the literature attesting that the nature of the collagen used can determine the properties
of scaffolds. Therefore, A. Sorushanova et al. [42] showed that the properties of collagen
sponges correlated with the origin of the collagen (from pig skin or bovine skin). Bovine col-
lagen sponges had a larger pore diameter compared to sponges derived from pig collagen
using the same technology. The bovine collagen sponges were more resistant to enzymatic
denaturation and had a higher absorption capacity and elastic modulus. Another work has
established that sheep collagen scaffolds have significantly higher ultimate strain and stress
resistance and strength compared to scaffolds derived from cattle or pig collagen. They
also appear to be more resistant to collagenase degradation compared to the cattle collagen
samples, which, themselves, show a higher resistance than pig collagen scaffolds [43].

In our early works, it was established that hybrid hydrogel scaffolds formed from
either cod collagen (CC) or bovine collagen (BC) in combination with fibrinogen (Fg) under
the same conditions varied in their structural and mechanical properties [44]. Thus, it
was shown that scaffolds made using BC had a denser structure compared to scaffolds
made using CC. Differences in the elastic properties were also revealed. In particular,
the compressive stress at a deformation value of 50% for the scaffold samples made
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using BC was 1.6 times higher than that for scaffold samples made with CC. It was also
established that scaffolds made with CC and BC both had good biocompatibility and
provided conditions that enabled stem cells to be maintained in a viable state, additionally
sustaining their three-dimensional growth [44].

The technology for the formation of these scaffolds is based on enzymatic hydrolysis
of the proteins [45]. The use of proteolytic enzymes, in the presence of which the spatial
structure of scaffolds are formed from fragments of the protein hydrolysates, is not unique
and is in widespread use in work with biopolymers [19,46–49]. Despite this, many of the
processes and mechanisms involved in the formation of these structures (especially when
it comes to composite or hybrid materials) remain unexplored.

This work aims to identify the features of the molecular characteristics of collagens
of different species origin (bovine and marine) and the changes they undergo during
enzymatic hydrolysis by pancreatin and thrombin during scaffold formation, as well as
the features of the supramolecular structures in the composition of the hybrid hydrogel
scaffolds resulting from their combination with fibrinogen.

2. Results and Discussion
2.1. Characteristics of Native Collagen—CC and BC

As evidenced by data in the literature, the characteristics of native collagen isolated
from the tissues of various animal species differ significantly in several parameters: molec-
ular weight characteristics, amino acid ratios and sequences, as well as in their physico-
chemical properties [50–53]. Taking into account the purpose of this study, in comparable
conditions, we investigated native collagen of the first type from cod skin isolated accord-
ing to the author’s method [54] and bovine collagen-reagent by Sigma-Aldrich Company,
isolated from calf skin [55]. Cod collagen and bovine collagen were isolated under compa-
rable conditions by extraction with a solution of acetic acid [54,56]. The retention of the
native protein structure for both cod collagen and bovine collagen is proved by the data of
their molecular weight parameters. They are presented in Table 1.

Table 1. Molecular weight parameters * of the high molecular collagen (HMC).

Item No. Nature of
Collagen

Mw × 10−3,
kDa Mw/Mn Content of HMC in the Dry

Residue of Collagen, %

1

CC

250–300 1.2–1.3 95–97

2 17–20 1.1–1.2 3–5

3 9–10 1.1–1.2 trace amounts

4

BC

600–950 1.2–1.6 92–93

5 17–20 1.1–1.2 7–8

6 9–10 1.1–1.2 trace amounts
Note: Mw—average molecular weight, Mw/Mn—coefficient of polydispersion. * Results obtained for a series
of samples.

The main collagen fraction is high molecular weight for both cod collagen and bovine
collagen. However, the Mw of the original native bovine collagen is several times higher
than that of cod collagen. The Mw of cod collagen has a value of ~300 kDa, corresponds
to the literature data, and obviously represents a helix of three α-chains, each of which
has a molecular mass of ~100 kDa [33,34]. Bovine collagen is identified as an associate of
2–3 collagen macromolecules with MW of ~300 kDa, the formation of which is possible,
according to the literature data, in concentrated aqueous collagen solutions due to inter-
molecular bonds [57,58]. The polydispersity coefficients in the case of bovine collagen are
higher than in the case of cod collagen (Table 1, lines 1, 4). Moreover, in native collagen
of both cod and bovine collagen, small amounts of low-molecular-weight fraction with
Mw of ~17–20 kDa and traces of a polymer with Mw of ~9–10 kDa appear. Apparently,
these are products of partial hydrolysis of native collagen. Close values of hydrolysates
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according to Mw values when analyzed by the GPC method draw attention to themselves
(Table 1). The MWD curves, according to the GPC data of cod collagen (Figure 1a) and
bovine collagen (Figure 1b), have an identical form. According to the goal of this study, it
is important that both initial proteins are dissolved in aqueous 0.5–1.0 M acetic acid. Such
solutions are the starting point for experiments.
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Figure 1. MWD curve of the initial samples of CC (a) and BC (b).

The high degree of similarity of the proteins is also evidenced by the IR spectra of
the CC and BC films (Figure 2)—they are practically the same. They have absorption
bands characteristic of proteins, corresponding to oscillations in the following ranges:
1600–1700 cm−1—NH- and C=O-bonds; 1510–1570 cm−1—plane bending vibrations of
NH-bonds; 1200–1350 cm−1—bending vibrations of C-N and NH-bonds; 1720–1730 cm−1—
stretch vibrations of the carboxyl group, C=O.
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2.2. Characteristics of the CC and BC Hydrolysis Products

A comparative analysis of the molecular weight characteristics of the CC and BC
hydrolysis products formed in the presence of the proteolytic enzymes pancreatin and
thrombin was carried out at room temperature. The results indicate similarities and
differences for the hydrolysis process occurring under comparable conditions for the
specified substrates. The majority of the high molecular BC and CC macromolecules at
room temperature are destroyed within the first minute in the presence of both thrombin
and pancreatin. However, there are differences in the amounts of the low molecular
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fractions and the behavior of the initial CC and BC during the process of hydrolysis (data
on hydrolysis in the presence of thrombin are shown in Table 2).

Table 2. Molecular weight parameters of the initial and thrombin hydrolyzed CC and BC samples.

Item No. Sample

Parameter Values during Hydrolysis

Initial
Min

3 Days
1 60

Mw, kDa Mw, kDa Mw, kDa Mw, kDa

Value Fraction, % Value Fraction, % Value Fraction, % Value Fraction, %

1
CC

300 96 125–127 15 124 16 121 16
2 17–18 4 17–18 2 17–18 2 17–18 8
3 - - 9–10 83 9–10 82 9–10 76

4
BC

950 93 990 7 980 8 >103 10
5 17 7–8 17 5 17 1–2 17 3
6 - - 9–10 88 9–10 90–91 9–10 87

Note: collagen:thrombin ratio = 102:1.

It may be recalled that in the process of enzymatic hydrolysis of collagen, both by
denaturation via the destruction of the triple-stranded structure and by the destruction of
individual chains to low-molecular-weight peptides and oligomeric peptides can occur [59].
The CC and BC hydrolysates consist of several fractions, two of them with close Mw values
and a polydispersity coefficient close to 1.0: most of them have Mw ~ 9–10 kDa (80–90%),
while smaller proportions have Mw ~ 17–20 kDa (less than 10%).

The CC digest solution contains no initial polymer with Mw ~ 300 kDa but does
contain macromolecules with Mw ~ 100 kDa [60]. This Mw corresponds to the length
of one α-chain; apparently, these are the products of the CC denaturation [33,34]. In the
case of BC hydrolysis, ≤10% of the initial high-molecular-weight fraction remains during
enzymic hydrolysis in all samples even after prolonged contact with the enzyme for 3 days
(Table 2, line 4), while no denaturation products are left. Figure 3 shows the MWD curve
dynamics of the enzymatic hydrolysis products of CC and BC over 3 days, from which it is
obvious that there is a general tendency for the reduction of collagen macromolecules to
low molecular fractions with Mw ~ 9–10 kDa and ~17–20 kDa for both types of collagen,
with each of the two different proteolytic enzymes. The hydrolysis products of CC and BC
are shown schematically in Figure 4.
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Note, particularly, that CC and BC hydrolysates (Figure 3), as well as the fibrinogen
hydrolysate [61], have fractions with practically the same Mw values, namely ~9–10 kDa
and ~17–20 kDa. This is crucial to define the scaffold formation process. Apparently, due
to the fact that proteolytic enzymes hydrolyze the peptide bond formed by the amino
acid residues of arginine and lysine [62–64], the Mw of the hydrolysates have similar
values. It has been suggested [61] that the formation of a hybrid scaffold upon hydrolysis
of a mixture of Fg and collagen by thrombin occurs through the fusion of the collagen
hydrolysate fibers during the aggregation of the fibrin monomer into the network structure
of its polymer [65], thus forming the spatial structure of the scaffold. In the process of
enzymatic hydrolysis, the intrinsic viscosity of the collagen solution according to the
Mark–Houwink equation (Equation (1)) changes for bovine collagen and cod collagen from
1.03 and 2.35 values up to 0.09 values (the Mw was calculated for the hydrolyzate with Mw
~ 10 kDa, the predominant content of which takes place in both cases). This leads to an
increase in the mobility of collagen macromolecules in solution and the formation of the
spatial organization of the copolymer.
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[η]= KMα (1)

where K and α are the individual constants of the polymer (for collagen, the values of
K = 1.34 × 10−4, α = 0.71) [66,67].

The data obtained in this work are consistent with this hypothesis.
A schematic representation of the enzymatic hydrolysis of collagen is shown in

Figure 5.
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2.3. The Role of Collagen Hydrolysates in the Formation of the Spatial Structure of Scaffolds

In order to clarify the picture of the supramolecular design of scaffolds, joint hydrolysis
by thrombin of a 1:1 ratio of Fg and collagen at a high protein concentration (about 1%)
was carried out. After 10 min, a coagulate had formed in the solution (Figure 6a) that was
analogous to a hybrid scaffold obtained from collagen and fibrinogen (Figure 6b).
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It has previously been noted that a water-insoluble fibrin-polymer can be dissolved in
dilute solutions of urea or acetic acid [65]. We were able to dissolve hybrid hydrogel scaf-
folds, based on both CC and BC combined with Fg and obtained according to Section 3.3,
in 3% acetic acid over a period of 5 days. Analysis of these solutions using both GPC
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and dynamic light scattering indicated the destruction of the high molecular structure.
According to the GPC data, four fractions were present in the solutions (Figure 7). The
two low molecular fractions had Mw values of ~10 kDa and ~20 kDa (Mw/Mn ~ 1.0). The
high molecular fraction had Mw values less than 150 kDa with Mw/Mn = 1.2–1.3 for CC,
while that derived from BC was less than 240 kDa with Mw/Mn = 1.4–1.6 (Table 3). The
contents of the first three fractions for BC and CC are comparable. The high molecular
fraction of the scaffold hydrolysate with BC is of greater importance in comparison with
that for CC, the value of the polydispersity coefficient and its content being much higher.
The rather high polydispersity of the high molecular fractions, especially in the case of BC,
indicates their heterogeneity in terms of Mw. The latter suggests that this is an incompletely
hydrolyzed high molecular polymer.

Mar. Drugs 2021, 19, x FOR PEER REVIEW 8 of 18 
 

 

two low molecular fractions had Mw values of ~10 kDa and ~20 kDa (Мw/Мn ~ 1.0). The 
high molecular fraction had Mw values less than 150 kDa with Мw/Мn = 1.2–1.3 for CC, 
while that derived from BC was less than 240 kDa with Мw/Мn = 1.4–1.6 (Table 3). The 
contents of the first three fractions for BC and CC are comparable. The high molecular 
fraction of the scaffold hydrolysate with BC is of greater importance in comparison with 
that for CC, the value of the polydispersity coefficient and its content being much higher. 
The rather high polydispersity of the high molecular fractions, especially in the case of 
BC, indicates their heterogeneity in terms of Mw. The latter suggests that this is an 
incompletely hydrolyzed high molecular polymer. 

  
(a) (b) 

Figure 7. MWD curves of polymer fractions of hybrid scaffold hydrolysates based on fibrinogen with collagen: CC (a) and 
BC (b). 

Table 3. Molecular weight parameters of scaffold hydrolysates based on fibrinogen and collagens 
of different origins. 

Item No. 
Scaffold Based 

on 
Мw × 10−3, kDa Мw/Мn Content, % 

1 CC 

120–150 1.2–1.3 15 
20 1.0 12 
10 1.0 58 

oligomers 1.2 15 

2 BC 

200–240 1.4–1.6 30 
20 1.0 14 
10 1.0 46 

oligomers 1.2 10 

The particle size distribution curves for the scattering intensity of acetic acid 
solutions of scaffolds with CC (a) and BC (b) (Figure 8) are very similar to each other. The 
method allows us to specify three groups of macro coils of sizes up to ~50 nm, ~50–150 
nm, and ~250–500 nm. Accordingly, the first group can be attributed to individual 
macromolecules, which were recorded using GPC, with Mw up to 150 kDa. The other two 
groups are associations of macromolecules peculiar to such concentrated aqueous 
solutions of polar monomers [57] that include natural proteins. 

Figure 7. MWD curves of polymer fractions of hybrid scaffold hydrolysates based on fibrinogen with collagen: CC (a) and
BC (b).

Table 3. Molecular weight parameters of scaffold hydrolysates based on fibrinogen and collagens of
different origins.

Item No. Scaffold Based on Mw × 10−3, kDa Mw/Mn Content, %

1 CC

120–150 1.2–1.3 15
20 1.0 12
10 1.0 58

oligomers 1.2 15

2 BC

200–240 1.4–1.6 30
20 1.0 14
10 1.0 46

oligomers 1.2 10

The particle size distribution curves for the scattering intensity of acetic acid solutions
of scaffolds with CC (a) and BC (b) (Figure 8) are very similar to each other. The method
allows us to specify three groups of macro coils of sizes up to ~50 nm, ~50–150 nm, and
~250–500 nm. Accordingly, the first group can be attributed to individual macromolecules,
which were recorded using GPC, with Mw up to 150 kDa. The other two groups are
associations of macromolecules peculiar to such concentrated aqueous solutions of polar
monomers [57] that include natural proteins.
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2.4. Features of the Supramolecular Structure of Structure-Forming Biopolymers and Scaffolds
Produced from Them

Scanning electron microscopy was used to analyze the supramolecular structures of
CC and BC scaffolds formed in association with Fg. Figure 9 shows samples of films of the
initial CC (a), BC (b), Fg (c), and the structure of the flocculants based on Fg with CC (d).
The photographs show that both types of collagen have a fibrillar structure, represented by
lengthwise stretched fibers. In the process of preparation and formation of collagen films
(in the process of water evaporation, a discrepancy between the rate of water evaporation,
the density of the material for research, etc.), the samples of different morphology were
obtained. However, threadlike structural homogeneity of both cod collagen and bovine
collagen draws attention to itself. Native Fg, unlike collagen, does not have a fibrillar
structure and is present in the form of plates with uneven edges. The picture of the
structure of the coagulate obtained by the combined hydrolysis of CC and Fg is in marked
contrast (Figure 9d). It is characterized by developed reticular microarchitectonics with a
system of heterogeneous pores. The unity of the structure is noteworthy. It is impossible
to distinguish the Fg or collagen fibers, indicating the formation of uniform structural
elements from fibrin and collagen hydrolysates as a result of the enzymatic hydrolysis.
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At the next stage, we studied the structure of hybrid hydrogel scaffolds based on Fg
with CC (Figure 10a,c) and BC (Figure 10b,d) obtained through the enzymatic hydrolysis
reaction, as well as of solutions of these scaffolds in 3% acetic acid (Figure 10e,f), respectively,
for CC and BC). The surface structure of the scaffolds (Figure 10a,b) was characterized by
the presence of closely spaced fibers and resembled the fibrillar structure of native collagen
(Figure 9a,b). However, it should be noted that the surface structure of the CC and BC
scaffolds was not identical. The fibers of scaffolds with CC were stretched lengthwise and
tangled with each other longitudinally. The fibers of the BC scaffolds were also oriented
lengthwise. However, unlike the fibers of the CC scaffolds, the fibers of the BC scaffolds
were “branched” and tangled in both the longitudinal and transverse directions. It should
be noted that during the scaffold formation, all components and production environments
were identical, except for the type of collagen. Thus, differences in the collagen, or rather
in the products of its hydrolysis, must have determined the differences in the structural
characteristics of the scaffolds. This was despite the amount of fibrinogen in the composite
for preparing the scaffolds being 22 times higher than the amount of collagen. Thus,
even with such an unequal ratio, collagen plays an essential role in the formation of the
structural elements of such scaffolds. This is consistent with our earlier data, which showed
differences in scaffold densities and their elastic properties [44]. Differences in internal
architectonics were also discussed, so we shall now focus on discussing the features of the
internal structure of the scaffolds compared with the structure of the coagulate obtained by
the combined hydrolysis of Fg and collagen.
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structure of scaffolds dissolved in 3% acetic acid—lyophilisates (e,f).

The structure of the hybrid scaffolds (Figure 10c,d) was different from the structure of
the coagulate (Figure 9d). Thus, when comparing the structural elements, it can be noted
that the membranes between the pores in the scaffolds are thicker and that pores of a much
larger size can be observed. These differences could be due to three factors. The first is
the different ratio of concentrations of the main structure-forming proteins in the scaffolds
and coagulate. In the coagulate, the ratio of Fg and collagen was 1:1, while in the scaffolds,
it was 22:1, respectively. The second is the difference in the composites. The coagulate
composite consisted of a solution of “pure” Fg and “pure” collagen. The composite for the
formation of scaffolds also contained “pure” collagen, but the fibrinogen was in the form
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of blood plasma cryoprecipitate. It is known that blood plasma cryoprecipitate contains
not only fibrinogen but also other proteins, for example, factor XIII, fibronectin, fibrinolysis
inhibitors, and cell adhesion molecules [68,69]. According to the literature, these proteins
can also take part in the formation of the scaffold structure by forming bonds with the
fibrin matrix [70–72]. The third factor is the PEGylation of the protein. For the methodology
used to produce the hybrid scaffolds studied here, the proteins present in blood plasma
cryoprecipitate, including the fibrinogen, are exposed to PEG, which, according to the
literature, can lead to cross-linking of the protein molecules [73,74]. However, despite these
factors and the revealed differences, the general picture is that the hybrid hydrogel scaffold
and the structure of the coagulate had much in common. Thus, the internal architectonics
of the scaffolds (Figure 10c,d) was represented by a three-dimensional structure with
a heterogeneous pore system and was similar to the three-dimensional structure of the
coagulate obtained by the combined hydrolysis of Fg and collagen (Figure 9d). It was
impossible to distinguish individual fibrin or collagen fibers in the study using scanning
electron microscopy of the dehydrated sections of scaffold samples, as in the case of the
coagulates. Thus, we can conclude that the formation of the structural elements of hybrid
scaffolds based on Fg and collagen as a result of enzymatic hydrolysis is principally due to
the interaction of the hydrolysates of the main structure-forming proteins. They determine
the presence of a three-dimensional structure with heterogeneous porosity. At the same
time, differences regarding the fiber thicknesses, their interlacing, the size of the walls
between the pores, the sizes of the pores, etc., can be due to various factors, including the
origin of the collagen and the characteristics of its hydrolysates. The latter is confirmed by
the results of the study of the polymer structures and the freeze-dried solutions of scaffolds
in 3% acetic acid. The images for scaffolds with CC (Figure 10e) and scaffolds with BC
(Figure 10f) show differences in their microstructure. Both samples, with either cod or
bovine collagen, have fragments of interconnected fibers, although these are less extensive
than in the initial collagen. However, the sample with CC presents only located fibrillar
areas, while the sample with BC showed narrow, short fibrils in its structure. Most likely,
these fibrils are composed of the unbound fibers of high molecular BC that were found to
be present in hydrolysates using the GPC method (Tables 1 and 3, Figures 3 and 7). They
have Mw greater than those of CC and are distinguished by their different structure.

3. Materials and Methods
3.1. Enzymatic Hydrolysis of Collagen of Various Origins

Pancreatin (Hubei Maxpharm Industries Co, LTD, Wuhan, China) of proteolytic
activity 2 U/mg, and thrombin (Renam NPO, Moscow, Russia) of proteolytic activity
2 U/mg, were used as the enzymes for the hydrolysis of both the bovine and cod collagen
at 25 ◦C, in aqueous solution at pH ~ 7.0. For the hydrolysis, a 1% solution of each type of
high molecular collagen (HMC) was prepared. Then 1M NaOH was added to the 1% HMC
solution to neutralize any acid, with the solution subsequently brought to the required
volume with distilled water.

The hydrolysis was carried out by adding the relevant enzyme to the resulting mixture
at a mass ratio of collagen: enzyme of 102:1. Samples (1 mL) were taken from the reaction
medium at regular intervals after the addition of the enzyme. For these, the hydrolysis was
interrupted by adding a 4% acetic acid solution (1 mL) to the samples [2,44].

3.2. Combined Hydrolysis of CC and Fg by Thrombin

Enzymatic hydrolysis was carried out using thrombin (Renam NPO, (Russia)) at a
protein:thrombin ratio of 103:1 at 25 ◦C, in aqueous solution at pH ~ 7.0. For hydrolysis, a
1% aqueous solution of the relevant protein was prepared. Then, 1 mL samples were taken
at certain intervals after the addition of the enzyme. The hydrolysis was interrupted by
adding a 4% acetic acid solution (1 mL) to the samples.
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3.3. Formation of Hybrid Hydrogel Scaffolds Based on Fg and Collagen

Human blood plasma cryoprecipitate obtained from the GBUZ NO blood center
(Nizhny Novgorod, Russia) was used as a source of fibrinogen. The protein was PEGylated
(PEG-NHS; Sigma-Aldrich, Darmstadt, Germany). Then a solution of 2% collagen was
added—either CC isolated from cod skin [54] or BA—bovine collagen (Sigma-Aldrich,
Germany). Phosphate buffer (PBS) was added to the resulting mixture at a 7:1 ratio. To
polymerize the mixture, a solution of human thrombin (80 U/mL; Sigma-Aldrich, Germany)
in 1% CaCL2 solution was introduced into it. Studies with the scaffolds were carried out
24 h after their formation. For this, the newly formed scaffolds were flushed with 5 mL of
PBS and incubated in a CO2 incubator [45,75].

3.4. Freeze Drying

Samples of aqueous solutions for analysis on an electron microscope were placed in a
container, frozen with liquid nitrogen, connected to a vacuum unit, and with a decrease in
pressure of 0.5–1.0 mbar the water was sublimated into a trap while maintaining a negative
temperature of the mixture for at least 4 h.

3.5. Scaffold Dissolution

Scaffolds were dissolved at room temperature in 15 mL of a 3% aqueous solution of
acetic acid for 3 days.

3.6. Reading IR Spectra of CC and BC (See Article in “Inorganic”)

An IRPrestige-21 (Shimadzu, Kyoto, Japan) spectrophotometer was used to record
the absorption spectra. Range of wave numbers: 500–550 cm−1. Accuracy: ±0.05 cm−1.
Reflecting KBr plates were used to prepare the films.

3.7. Determination of the Molecular Weight Characteristics of Proteins Using Gel-Penetrating
Chromatography (GPC)

To identify the molecular weight characteristics of the proteins in aqueous solution, a
high-performance liquid chromatograph—Shimadzu CTO20A/20AC (Shimadzu, Kyoto,
Japan)—with an LC-Solutions-GPC software module was used. Columns—Tosoh Bio-
science TSKgel G3000SWxl—with a pore diameter of 5 µm were used for the separation.
We used an ELSD-LT II low-temperature light-scattering detector. The flow rate was
0.8 mL/min, with the eluent being a 0.5 M acetic acid solution. Calibration was performed
using narrow disperse dextran samples (molecular mass range: 1000–410,000 Da). Before
measurements, the solution was filtered through a polyethersulfone filter with a pore size
of 0.45 µm.

3.8. Scanning Electron Microscopy

To determine the structural characteristics of the collagen, fibrinogen, and scaffolds, a
JSM-IT300 scanning electron microscope (JEOL Ltd., Tokyo, Japan) was used. The diameter
of the electron probe was 5 nm, and the operating voltage was 20 kV. In order to avoid
charging the samples, detectors of low-energy secondary electrons and backscattered
electrons were used in low vacuum mode.

3.9. Dynamic Light Scattering Method

The average hydrodynamic weight diameters of the scaffold particles with CC and
BC in acetic acid solution were determined using dynamic light scattering (DLS) in the
polymodal analysis mode of the correlation function. The measurements were carried out at
25 ± 0.1 ◦C at an angle of 90◦ over a range from 0.1 to 5000 nm in 1 cm polystyrene cuvettes
using a NanoBrook Omni spectrometer (Brookhaven Instruments, NY, Holtsville, NY, USA).
The accumulation time of the correlation function was 180 s. The hydrodynamic weight
diameter was calculated as the average of 10 parallel measurements. Before measurements
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were recorded, the cuvette was dedusted three times by rinsing with distilled water filtered
through a polyethersulfone filter with a pore size of 0.2 µm.

The samples for measurement were also filtered through a polyethersulfone filter with
a pore size of 0.2 µm.

4. Conclusions

Based on the studies described, it can be stated that the CC and BC materials used have
different initial molecular weight parameters. In the process of hydrolysis, during the first
minute under standard conditions, the majority of each of the two types of protein (>80%)
was hydrolyzed by the proteolytic enzymes pancreatin or thrombin (collagen:pancreatin
ratio = 10:1). In the subsequent period of monitoring of the molecular weight parameters,
the values for the BC samples underwent little further change. In the case of CC, the
hydrolysis process continued until there had been a complete disappearance of the high
molecular fraction. It was shown that all the collagen samples, regardless of the nature of
the initial substrate, were hydrolyzed with the formation of two low molecular fractions,
either of Mw ~ 10 kDa or ~20 kDa, with the main part of the hydrolysate (more than 80%)
falling within the fraction with an Mw of less than 10 kDa, and this tendency could be
observed throughout the entire process. It was found that the concentration of the enzyme
had practically no effect on the molecular weight parameters of the final products of the
protein degradation. Based on the scanning electron microscopy results, it can be concluded
that there are differences in the microstructure of the scaffolds containing collagen from
the different sources. Thus, the nature of the collagen source determines its molecular
weight characteristics as well as those of its hydrolysates. The latter, in turn, mediate the
formation of the structural elements and directly impact the microarchitectonics of the
scaffolds formed during enzymatic hydrolysis. We anticipate that the data from our study
will, in the future, make it possible both to predict the structural characteristics of scaffolds
at the production stage and to offer the opportunity to modulate their properties. Of course,
this requires further wide-ranging studies.
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