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Formal models of intelligence have greatly evolved since 
Spearman’s (1904) fundamental finding of the positive 
manifold: the robust pattern of positive correlations 
between scores on cognitive tests (Carroll, 1993). In 
explaining this manifold, contemporary models have 
diverged from the popular reflective latent factor models 
(e.g., Spearman, 1927) to various proposed mechanisms 
of emergence (Conway & Kovacs, 2015). Models that 
have been key in expanding the realm of explanatory 
mechanisms include sampling models (Bartholomew, 
Deary, & Lawn, 2009; Kovacs & Conway, 2016; Thomson, 
1916; Thorndike, Bregman, Cobb, & Woodyard, 1926), 
gene–environment interaction models (Ceci, Barnett, & 
Kanaya, 2003; Dickens, 2007; Dickens & Flynn, 2001, 
2002; Sauce & Matzel, 2018), and network models ( Jung 
& Haier, 2007; van der Maas et al., 2006, van der Maas, 
Savi, Hofman, Kan, & Marsman, 2019). We embrace this 
trend because exploring alternative mechanisms for the 
positive manifold may significantly aid us in our under-
standing of intelligence (Bartholomew, 2004).

The contributions of Dickens and Flynn (2001) and 
van der Maas et al. (2006) have been serious attempts to 
encapsulate development into the theory of general intel-
ligence. Here, we combine ideas from both their Gene × 
Environment and network approaches to conceptualize 
general intelligence as dynamically growing networks. 

This approach creates a completely novel conception of 
the shaping of intelligence—idiographic and develop-
mental in nature—that uncovers some of the complexity 
thus far obscured. Our proposed formal model not only 
explains how idiographic networks can capture intelli-
gence’s positive manifold and hierarchical structure but 
also opens new avenues to study the complex structure 
and dynamic processes of intelligence at the level of an 
individual.

The article is divided into two parts. In the first part, 
we briefly review current formal models of intelligence 
and discuss the desire to give idiography and develop-
ment their deserved place within this tradition of formal 
models. In the second part, we introduce an elaborate 
developmental model of intelligence. We explain how the 
model captures various stationary and developmental 
phenomena and portray an individual’s complex cognitive 
structure and dynamics. Finally, in the Discussion section, 
we explore the model’s implications and limitations.
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Abstract
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learning to coalesce.
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Formal Models of Intelligence

In this first part, we begin with a discussion of the primary 
modeling traditions in intelligence research. This discus-
sion is followed by an analysis of what we call idiographic 
and developmental blind spots in formal models of intel-
ligence: the failure of factor models in particular to seri-
ously consider idiography and development. Finally, we 
discuss a formal mechanism for development, called 
Pólya’s urn scheme, to elucidate how surprisingly simple 
growth mechanisms can create phenomena that are key 
in the development of intelligence.

The positive manifold and its 
explanations

The first challenge for theories of general intelligence is 
to explain the pattern of positive correlations, the posi-
tive manifold, between scores on cognitive tests across 
individuals. Thus far, the proposed explanations form a 
colorful palette of diverse conceptions. We summarize 
four influential explanations—captured in Figure 1—that 
were formalized in various theories of intelligence. This 
summary requires two remarks. First, we use the terms 
model and theory interchangeably. However, whereas 
models provide a conceptual representation (e.g., the 
factor model), strictly speaking, they carry no theoretical 

load. Theories, on the other hand, add theoretical inter-
pretation to a model (e.g., the—rather vague—theory 
that the factor named g represents mental energy). Here, 
we consider conceptually different models that have 
been used for serious theories of intelligence. In the 
following, we will shortly introduce each of the four 
models one by one and discuss their differences and 
similarities.

Factor models.  Spearman (1904) not only discovered the 
positive manifold but also gave it an elegant explanation. 
In his two-factor model, Spearman (1927) introduced the 
general factor, g, assuming the existence of an underlying 
common source that explains the scores on multiple cog-
nitive tests (see Fig. 1a). Although lacking a formal expla-
nation, Spearman primarily hypothesized it to be some 
source of mental energy. Note that whereas intelligence 
generally is viewed as an intraindividual characteristic, g 
stems from an interindividual observation and must be 
understood in that context (Borsboom, Kievit, Cervone, & 
Hood, 2009). Spearman’s factor-analytic approach inspired 
many scholars to propose models in the same tradition.

Among the most influential contributions is Thurstone’s 
(1938) theory of primary mental abilities. Thurstone ini-
tially argued that Spearman’s unitary trait is a statistical 
artifact and proposed a multifactor model that also 
explains the positive manifold and is thus consistent with 
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Fig. 1.  Four explanations of the positive manifold (simplified). Circles represent unob-
served entities, whereas boxes represent observed entities. Dashed lines represent relations 
that have an influence over time. g = general intelligence, x = cognitive test, c = basic cog-
nitive process (of person j at time t), G = genetic endowment, m = measured IQ of person 
j at time t, e = environment of person j at time t, K = genetic and environmental factors.
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g but consists of seven distinct latent constructs. Other 
theorists followed this approach, with Guilford (1967, 
1988) pushing the limits by ultimately including 180 fac-
tors in his influential structure of intellect model. 
Thurstone, on the other hand, eventually had to climb 
down because verifying his model on a new empirical 
sample compelled him to add a second-order unitary 
factor to his model. This work set the stage for various 
hierarchical models of intelligence (Ruzgis, 1994).

The marriage between a multifactor theory and a 
hierarchical theory has evolved into what is currently 
the most widely supported factor-analytic model of 
intelligence: the Cattel–Horn–Carrol theory (McGrew & 
Flanagan, 1998). The first theory, Cattell and Horn’s gf-gc 
model (Cattell, 1963; Horn & Cattell, 1966), postulated 
eight or nine factors, including the well-known fluid 
and crystallized intelligence (derived from Hebb’s intel-
ligence A and B; Brown, 2016; Hebb, 1949). Crystallized 
intelligence refers to one’s obtained knowledge and 
skills, whereas fluid intelligence refers to one’s capacity 
to analyze novel problems independent of past knowl-
edge and skills. The second theory, Carroll’s three-
stratum hierarchy (Carroll, 1993), postulated a hierarchy 
of three levels, or strata, consisting of a general ability, 
broad abilities, and narrow abilities. In Cattel–Horn–
Carrol theory, the broad stratum consists of Cattell and 
Horn’s primary abilities.

Sampling models.  In the past decade, after a century-
long dominance of factor theories of general intelligence, 
three alternative theoretical approaches to explaining the 
positive manifold have been introduced or reintroduced. 
The first, the sampling (or bonds) model, was originally 
advocated by Thomson (1916, 1951) and Thorndike et al. 
(1926) as an alternative to Spearman’s g theory. Rather 
than by introducing a general factor that explains cogni-
tive performance, the sampling model suggested that the 
positive correlations between test scores simply originate 
from insufficiently specific cognitive tests. Different tests 
share many of the involved underlying basic cognitive 
processes (or bonds), and this overlap in processes that 
the tests tap into will necessarily result in positive corre-
lations between tests (see Fig. 1b).

Bartholomew et al. (2009), Bartholomew, Allerhand, 
and Deary (2013), and more recently Kovacs and 
Conway (2016) reintroduced the sampling theory of 
general intelligence. The former generalized Thomson’s 
model to account for multiple latent factors, and the 
latter further extended sampling theory to account for 
the effects of domain-general executive processes, iden-
tified primarily in research on working memory, as well 
as more domain-specific processes.

Gene–environment interaction models.  A decidedly 
more recent explanatory mechanism for the positive manifold 

was introduced by Dickens and Flynn (2001, 2002). In 
aiming to solve the paradox of both high heritability esti-
mates in IQ and large environmental influences on IQ, 
they hypothesized a gene–environment interaction, in 
which, through reciprocal causation, IQ influences one’s 
close environment and that environment in turn influences 
one’s IQ, creating a multiplier effect (see Fig. 1c). More-
over, rises in the IQ of others may also affect one’s IQ, a 
so-called social multiplier. Dickens (2007) extended the 
multiplier model to include multiple abilities. As Dickens 
and Flynn (2001) noted, their model is similar to Scarr’s 
(1992) model of intelligence and school achievement. More 
general theories that relate complex gene–environment 
interactions to the positive manifold can be traced back to, 
for instance, the work of Tryon (1935).

Evidence suggests that indeed such gene–environment 
interactions exist (e.g., Tucker-Drob & Bates, 2015), and 
social multipliers are hypothesized to be involved with 
differences in the Flynn effect—generational changes in 
the IQ test scores of a population—across intelligence 
domains (Pietschnig & Voracek, 2015). Moreover, in an 
effort to reconcile genetic and environmental claims on 
cognitive ability, Ceci et al. (2003) nicely summarized 
a variety of models that are built on multiplier princi-
ples. Among Dickens and Flynn’s (2001) models for 
intelligence, they distinguished four other areas in which 
models with similar dynamics have been proposed, such 
as in dynamical systems theory and bioecological the-
ory. Each of these areas provide a compelling case for 
multiplier effects in cognitive development.

Network models.  The final new explanation of the pos-
itive manifold, based on network modeling, was intro-
duced by van der Maas et al. (2006) and has since seen 
various developments (van der Maas et al., 2019). Inspired 
by dynamical explanations of ecosystems—such as food 
webs—the idea of their mutualism model is that the cog-
nitive system consists of many basic processes that are 
connected in a network with primarily positive interac-
tions (see Fig. 1d). These processes, which the authors 
define “in a general sense, including such notions as mod-
ules, capacities, abilities, or components of the (neuro)
cognitive system, . . . have mutual beneficial or facilitating 
relations” (pp. 844–845). One may recall that, although 
less formally, Ferguson (1954) too theorized that “differ-
ences in ability are the results of the complex interaction 
of the biological propensities of the organism” (p. 99). How-
ever, the mutualism model adds that, during development, 
the initially uncorrelated basic processes become corre-
lated because of positive reinforcements, as “each pro-
cess supports the development of other processes” (van 
der Maas et al., 2006, p. 845). And indeed, these mutual 
positive reinforcements too exhibit a multiplier effect.

This network approach has particularly resonated 
in the domain of psychopathology, resulting in a recent 
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surge of research (see Borsboom, 2017, for a compre-
hensive overview). In intelligence, van der Maas, Kan, 
Marsman, and Stevenson (2017) extended the mutualism 
model, allowing for test sampling, mutualistic relations 
and multiplier effects, and central cognitive abilities. 
Lastly, an entirely different research tradition—brain 
modeling—also provides an important class of network 
models. The parieto-frontal integration theory provides 
a network model based on various neuroimaging studies 
and connects parietal and frontal brain regions to 
explain individual differences in intelligence ( Jung & 
Haier, 2007).

Differences and similarities.  What unites these diverse 
models is that they all explain the positive manifold equally 
well. Yet a lot sets them apart. In g factor models, the cor-
relations are due to a common source of cognitive perfor-
mance in many domains. The g factor is understood as a 
so-called reflective latent variable. That is, in theorizing the 
nature of intelligence, the general factor is understood as 
a causal entity. Spearman’s notion of mental energy is an 
example of that. Note that this notion of a psychological g, 
reflective and causal in nature, is a hypothesized one and 
not uncontroversial.

In the mutualism model, there is no such common 
source. Rather, the positive manifold emerges from the 
network structure. The nevertheless apparent statistical 
g factor is interpreted as formative variable because an 
index variable of the general quality of the cognitive 
system (Kovacs & Conway, 2019; van der Maas, Kan, & 
Borsboom, 2014), akin to economical indices such as 
the Dow Jones Industrial Average. Contrary to psycho-
logical g, this psychometric g is well established and 
noncontroversial (e.g., Carroll, 1993).

In sampling theory, the statistical g factor should also 
be interpreted as a formative variable. But that is not to 
say that sampling theory and the mutualism model are 
very similar. In sampling theory, the positive manifold 
is essentially a measurement problem. If we would be 
able to construct very specific tests targeted at the fun-
damental processes, the overlap in measurement would 
disappear, and so will the correlations between tests. In 
the mutualism model, on the other hand, the correla-
tions are real, created during development, and will not 
disappear when IQ tests become more specific.

In both the multiplier effect model and mutualism 
model, the positive manifold emerges from positive 
reciprocal reinforcements. However, the two models 
differ in several key respects. Most important, the mutu-
alism model proposes an internal developmental pro-
cess, whereas the multiplier model depicts development 
through an interaction with the external environment.

Finally, and importantly, as, for instance, Bartholomew 
et al. (2009) and Kruis and Maris (2016) noted, g theory 

and sampling theory and factor models and network 
models cannot be statistically distinguished on the basis 
of correlation indexes alone, nor do they necessarily 
contradict one another. Van der Maas et al. (2017) illus-
trated this in their unified model of general intelligence. 
However, this is not to say that these models are equiva-
lent with respect to their explanatory power. Each con-
ception might tap into a different granularity of general 
intelligence, ultimately aiding us in our understanding 
of the construct. In addition, it is not to say that the 
models cannot be distinguished. Time-series data and 
experimental interventions may very well distinguish 
between the models (e.g., Ferrer & McArdle, 2004; 
Kievit et al., 2017; McArdle, Ferrer-Caja, Hamagami, & 
Woodcock, 2002). Marsman et  al. (2018) described 
these issues in more detail.

The developmental blind spot

Intelligence cannot be understood in isolation. It is a 
product of genetic, environmental, and developmental 
factors and must be considered within this complex 
context. Nonetheless, particularly the development of 
intelligence has long been an afterthought in its formal 
modeling tradition. We briefly provide two possible 
reasons for this unfortunate fact and in the process aim 
to convey the importance of exploring formal develop-
mental notions of intelligence.

One dominant model.  A first reason for the develop-
mental blind spot is the dominance of g theory. Although 
g does not necessarily nail down its origin, be it genetic, 
environmental, or both, it does not naturally capture 
development. Ackerman and Lohman (2003) concisely 
summarized this by explaining that

one of the most intractable problems in evaluating 
the relationship between education and g is the 
problem of development and age. As near as we 
can tell, g theories have failed to provide any 
account of development across the lifespan. (p. 278)

Note that Nisbett et al. (2012) observed that “the high 
heritability of cognitive ability led many to believe that 
finding specific genes that are responsible for normal 
variation would be easy and fruitful” (p. 135). Although 
arguably a reification fallacy, a better understanding of 
the—relative—contribution of genes to intelligence is 
of obvious importance. Nisbett et  al.’s conclusion, 
directly following the previous quote, summarized this 
obtained understanding: “So far, progress in finding the 
genetic locus for complex human traits has been lim-
ited” (p. 135). After several attempts in the past decade, 
the generally shared insight is that many genes may be 
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involved with small effects (e.g., Hill et al., 2018; Lee 
et al., 2018) and that environmental factors require a 
better understanding. This polygenic view, or possibly 
even omnigenic view (Boyle, Li, & Pritchard, 2017), 
supports a both more complex and more realistic the-
ory of intelligence.

The closest factor models have come to providing 
an account of development across the life span is in 
Cattell’s (1987) investment theory. In his landmark 
book, Cattell hypothesized that one develops a pool of 
crystallized intelligence by the “investment” of fluid 
intelligence in conjunction with the “combined result 
of the form of the school curriculum, and of the social, 
familial, and personal influences which create interest 
and time for learning simultaneously in any and all 
forms of intellectual learning” (p. 140). This idea, 
derived from Hebb’s (1949) two intelligences (intelli-
gence A, “an innate potential, the capacity for develop-
ment,” and intelligence B, “the functioning of a brain 
in which development has gone on”; Brown, 2016), was 
never formalized but is argued to explain the Matthew 
effect (Schalke-Mandoux, 2016)—a key developmental 
phenomenon discussed in the next section.

In his investment hypothesis, Cattell (1987) thus 
explicitly sketched an evident role for the environment 
in which genes and the environment are united to 
explain individual differences in intelligence. More 
recent insights, however, demand a further integration 
of the two. In discussing the puzzling heritability 
increase, Plomin and Deary (2015) explained that

Genotype-environment correlation seems the 
most likely explanation in which small genetic 
differences are magnified as children select, modify 
and create environments correlated with their 
genetic propensities. This active model of selected 
environments—in contrast to the traditional model 
of imposed environments—offers a general para
digm for thinking about how genotypes become 
phenotypes. (p. 98)

This developmental notion of a gene–environment 
interaction (Tabery, 2007) suggests a causal mechanism 
between the two that may give rise to the phenotype 
IQ.

Dickens and Flynn’s (2001) novel formal multiplier 
model capitalized on such a developmental gene–
environment interaction, giving the high heritability of 
IQ a convincing explanation. According to their model 
(see Fig. 1c), children not only actively select their envi-
ronment in accordance with their genetic endowment, 
but also this environment influences their IQ, creating 
reciprocal causal relations between the phenotype and 
the environment. This way, Dickens and Flynn arrived 
at a truly developmental model of intelligence.

Even more recently, and following a decidedly differ-
ent track, van der Maas et al. (2006) showed how inter-
actions between cognitive processes are capable of 
explaining high heritability. Whereas Dickens and Flynn 
(2001) broke g into genetic and environmental factors, 
van der Maas et al. (2006) proved that a single underly-
ing factor is no intrinsic requirement for explaining some 
of the most important phenomena in intelligence.

One dominant phenomenon.  A second reason for the 
developmental blind spot is the primary focus on the posi-
tive manifold. Thanks to the work of particularly Spearman 
(1904) and Carroll (1993), the positive manifold is an 
undisputed phenomenon. In turn, static factor models 
have provided an elegant parsimonious explanation of this 
phenomenon. Yet, the positive manifold lacks a similarly 
strong developmental companion that can function as a 
yardstick for the proposed models. Cattell (1987) beauti-
fully stressed the importance of such a phenomenon:

The theorist who wants to proceed to developmental 
laws about abilities—who wants to be “dynamic” 
in his explanations of the origin, growth, and 
nature of intelligence—must be patient to make 
and record observations first. He can no more focus 
meaningful movement without this “description of 
a given moment” than a movie director can get 
intelligible movement in a film without the 
individual “static” frames themselves presenting 
each a clearly focused “still.” (p. 4)

One phenomenon, the Matthew effect, results from 
exactly those descriptions of given moments: static 
frames that have been put in chronological order to give 
a description of the development of cognitive abilities. 
The Matthew effect is characterized by initially diverging 
yet increasingly stable patterns of development, as illus-
trated in Figure 2a, and may serve as a primary candidate 
for the role of developmental companion to the positive 
manifold.

Originally coined by Merton (1968) to describe the 
widening gap in credit that scientists receive during their 
career, the term Matthew effect refers to the popular 
catchphrase “the rich get richer and the poor get poorer” 
and is named after the biblical figure Matthew. Although 
the Matthew effect does not necessarily involve the 
poor getting poorer, it does involve a widening gap 
between the rich and the poor in which the rich and 
the poor can be metaphors (e.g., for the skilled and the 
unskilled).

The Matthew effect is in no way an isolated phe-
nomenon. Although the preferred term varies between 
(and within) disciplines, including cumulative advan-
tage, preferential attachment, and dynamic comple-
mentarity, the intended process is essentially the same. 
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Other related terms, on the other hand, such as the 
fan-spread effect and power law, may refer to the 
observed effect rather than the underlying process 
(Bast & Reitsma, 1998; Perc, 2014). Perc (2014) pro-
vided a comprehensive overview of the Matthew effect 
in empirical data.

Stanovich (1986) was probably the first to link the 
Matthew effect to education in an attempt to concep-
tualize the development of individual differences in 
reading. In this field, he argued, initial difficulties with 
reading acquisition can steadily propagate through 
reciprocal relationships with related skills, ultimately 
creating more generalized deficits.

Yet, the effect is not undisputed. For instance, 
Shaywitz et al. (1995) found a Matthew effect for IQ 
but not for reading when controlling for regression to 
the mean. Moreover, there is also evidence for the 
opposite developmental trajectory, the so-called com-
pensation effect. This effect, for instance found by 
Schroeders, Schipolowski, Zettler, Golle, and Wilhelm 
(2016), describes a closing rather than widening gap.

Complicating things further, it is often hypothesized 
that both the factors driving and combating the gap 
influence development. This is, for instance, clearly 
explained by Schroeders et  al. (2016): “It seems that 
the compensation effect of a formalized learning envi-
ronment counteracts the effect of cumulative advan-
tages that is present in a non-formalized setting”  
(p. 92). This idea at least provides an explanation for 

the more ambiguous status of these two developmental 
phenomena, especially compared with the positive 
manifold.

However, and importantly, evidence for a “general 
factor of cognitive aging” is consistent with the Matthew 
effect. In an exciting meta-analysis, Tucker-Drob, 
Brandmaier, and Lindenberger (2019) showed that 
“individual differences in longitudinal changes in dif-
ferent cognitive abilities are moderately to strongly cor-
related with one another” (p. 21). Such a developmental 
notion of a positive manifold strongly supports a 
Matthew effect because it implies that a future cognitive 
state positively depends on a past cognitive state. More-
over, the authors were right to warn that the observed 
general factor of cognitive aging does not necessarily 
imply a single cause. Rather, “an equally logical pos-
sibility is that the common factor of change represents 
an emergent property of dynamical systems processes 
that occur more directly between etiological factors and 
ability domains” (Tucker-Drob et al., 2019).

Summarizing, it should not come as a surprise that 
Protopapas, Parrila, and Simos (2014) suggested to 
focus on the reciprocal relations that drive Matthew 
effects rather than estimating the gap itself. And intrigu-
ingly, one deceptively simple mechanism—driven by 
such reciprocal relations—can actually explain the 
Matthew and compensation effects. However, before 
we introduce the mechanism, we first briefly discuss a 
second blind spot: idiography.
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Fig. 2.  Pólya urn demonstrations of (a) the Matthew effect and (b) the compensation effect. Starting with an urn that contains a white 
marble and a black marble, in each trial the drawn marble is replaced with two or three marbles of the same color, depending on the 
desired effect. The figures show the development of the proportion of marbles for 50 independent urns.
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The idiographic blind spot

Confusingly, whereas it is generally understood that 
intelligence is a property of a single individual, many 
key phenomena in intelligence—including the positive 
manifold and Matthew and compensation effects—
reflect structural differences between multiple individu-
als. Jensen (2002) warned us for this confusion, by 
explaining that

it is important to keep in mind the distinction 
between intelligence and g. . . . The psychology 
of intelligence could, at least in theory, be based 
on the study of one person, just as Ebbinghaus 
discovered some of the laws of learning and 
memory in experiments with N = 1.  .  .  . The g 
factor is something else. It could never have been 
discovered with N = 1, because it reflects 
individual differences in performance on tests or 
tasks that involve any one or more of the kinds 
of processes just referred to ads intelligence. The 
g factor emerges from the fact that measurements 
of all such processes in a representative sample 
of the general population are positively correlated 
with each other, although to varying degrees.  
(p. 39–40)

Jensen’s (2002) warning is far from frivolous and 
concerns the broader field of psychological science. 
For instance, Molenaar (2004) and Borsboom et  al. 
(2009) expanded on this cautionary tale by showing 
that intraindividual (idiographic) interpretations of 
interindividual (nomothetic) findings lead to erroneous 
conclusions, only exempting cases in which very strict 
assumptions are met. Consequently, models of indi-
vidual differences should be based on models of the 
individual—a message that is reinforced by Molenaar’s 
urgent call for an idiographic approach to psychological 
science: explaining nomothetic phenomena with idio-
graphic models.

One promising approach to idiography are network 
models, briefly discussed in relation to the mutualism 
model from van der Maas et  al. (2006). Indeed, net-
works are an ideal (and idealized) tool for modeling 
the individual. These networks, or graphs, are a general 
and content-independent method for representing rela-
tional information. It graphically represents entities, 
typically rendered as circles called nodes or vertices, and 
their relations, typically rendered as lines called edges 
or links. Because networks are content-independent, 
few sciences, if any, fail to appreciate their value. Nota-
ble applications span from social networks, describing 
relations between individuals (e.g., Duijn, Kashirin, & 
Sloot, 2014), to attitude networks, describing relations 

between attitudes across individuals (e.g., Dalege, 
Borsboom, van Harreveld, Waldorp, & van der Maas, 2017), 
and psycho-pathological networks, describing relations 
between symptoms within individuals (e.g., Kroeze et al., 
2017).

In the next section, we discuss a simple yet powerful 
mechanism that explains idiographic development. 
Although the mechanism is too simplistic for our ultimate 
aim—the formal model of intelligence introduced in sec-
ond part—it convincingly conveys the power of simple 
developmental mechanisms. We show how it explains 
the previously discussed Matthew and compensation 
effects as well as the third source phenomenon. Finally, 
we use a simple network transformation to illustrate the 
benefit of networks in idiographic science.

Idiographic development: the case  
of Pólya’s urn

Before we proceed with the second part—the introduc-
tion of the model—we briefly discuss an elegant 
abstraction of a growth process. The Pólya–Eggenberger 
urn scheme (Eggenberger & Pólya, 1923), or simply 
Pólya’s urn, intuitively mimics a system that grows 
dynamically through preferential attachment and hence 
gives us a convenient tool to illustrate a basic mecha-
nism of development. Moreover, we use the obtained 
surface understanding of Pólya’s urn to clarify not only 
the Matthew and compensation effects but also the third 
source phenomenon.

A brief example may clarify the mechanism. Imagine 
a girl receiving a tennis racket for her birthday. Before 
her first tennis lesson, she practices the backhand twice 
at home, incorrectly unfortunately. Then, during the first 
lesson, her trainer demonstrates to her the correct back-
hand. She now has three experiences, two incorrect and 
one correct. Now, suppose her backhand development 
is based on a very simple learning schema. Whenever 
a backhand return is required, she samples from her 
earlier experiences, and the sampled backhand is then 
added to the set of earlier experiences. How will she 
develop? That is, how will her backhand develop in the 
long term? And what is the long-term expectation for 
her equally talented twin sister with the same trainer?

Pólya’s urn gives us an important intuition. It is rep-
resented as an urn that contains two different-colored 
marbles, say black and white. One marble is randomly 
drawn from the urn and replaced by two marbles of 
the same color, a procedure that is repeated n  trials. 
The time course of this process is rather counterintui-
tive. One might expect this process to diverge to 
extreme values, but it rather progresses toward a ran-
dom number between 0 and 1.1 As can be deduced 
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from this process, it ensures dynamical growth through 
preferential attachment: The urn grows each trial, with 
a preference toward the most abundant color.

In the example of the girl learning to play tennis, 
her previous experience thus affects her future experi-
ence. With two incorrect experiences and one correct 
experience, her next experience is most likely incorrect. 
However, because it is a stochastic process, her next 
experience might as well be correct, creating a new 
situation in which she has a 50% chance of hitting the 
ball correctly on her next try. Of course, this is the case 
assuming that she practices on her own. A second inter-
vention by her trainer might help her to increase her 
chances of hitting the ball correctly.

The applicability of Pólya’s urn is endless, and vari-
ous modifications have been proposed to accommodate 
a diversity of issues. In Eggenberger and Pólya’s (1923) 
original work, the number of replaced marbles can be 
of any positive value, and Mahmoud (2008) described 
a number of modifications to this basic scheme. Impor-
tant applications range from the evolution of species 
(Hoppe, 1984) to unemployment (Heckman, 1981).

Crucially, models of contagion—such as Pólya’s 
urn—cannot be statistically distinguished from factor 
models. This situation is analogous to the previously 
discussed incapacity of statistical models to distinguish 
between factor models, sampling models, and network 
models. Greenwood and Yule (1920) provided the 
probability distributions that result from contagious 
processes and latent causes, and later it was realized 
that both distributions can be rewritten into the beta-
binomial distribution. The importance of this fact for 
epidemiology, in which it is well known, can hardly be 
overlooked: Imagine combating Ebola from an entirely 
genetic perspective rather than preventing contagion. 
However, in intelligence research, this realization is just 
as fundamental: The fit of a statistical model to corre-
lational data cannot illuminate the actual underlying 
causal processes.

Pólya’s urn and the Matthew effect.  Here, we are con-
cerned with the urn’s ability to simulate typical develop-
mental patterns of cognitive ability. We consider the 
unmodified version of Pólya’s urn that we described previ-
ously. Figure 2a shows the proportions of white marbles 
for 250 trials from 50 independent urns. As you can see, the 
urn compositions quickly diverge. The earlier trials have 
the largest effects, with gradually decreasing influence over 
time. Indeed, this pattern closely resembles the general 
Matthew effect, in which at the start, within-person vari-
ance is high, gradually decreasing over time, and between-
person variance is low, gradually increasing over time.

Pólya’s urn might thus be conceived as a model for 
a developmental process that produces a Matthew 

effect. The initial configuration of the urn depicts the 
genetic component, whereas the trials represent the 
environmental experiences. The white marbles can, for 
instance, represent skills that reinforce advantageous 
experiences, whereas the black marbles might repre-
sent misconceptions that reinforce disadvantageous 
experiences. Via a strict random process, the urns’ con-
figurations diverge in a similar vein as the multiplier 
process of in Dickens and Flynn (2001). In this Pólya 
process, skills and misconceptions are reinforced, ulti-
mately growing toward a stable state.

However, one significant additional property over the 
multiplier mechanism must not be overlooked. Because 
the distribution of color of each independent urn is 
exactly equal at the start, it is shown that Pólya’s urn 
does not require initial genetic differences for the mul-
tiplier process to do its work. This illuminating effect is 
not necessarily an artificial property of Pólya’s urn: For 
example, Freund et al. (2013) showed that individual 
differences actually can emerge in genetically identical 
mice. Summarizing, Pólya’s urn shows that neither 
genetic nor environmental differences are necessarily 
required for individual differences to arise, although 
surely, one should not be fooled into thinking that those 
therefore play no role in intelligence. We briefly expand 
on this observation in the section following the next.

Pólya’s urn and the compensation effect.  Naturally, 
environmental influences are less random than assumed 
here. One strong systematic influence is formal education, 
which is hypothesized to create compensatory effects that 
counteract the Matthew effect. Figure 2b shows what this 
effect could look like. To obtain the effect, we slightly 
adapted Pólya’s urn to allow for one possible effect of 
education. Rather than reinforcing an advantageous expe-
rience with one extra marble, we now reinforce it with 
two extra marbles, with p = .5, while keeping the rule for 
reinforcing disadvantageous experiences the same. An 
adaptation such as this can, for instance, be conceptual-
ized as the beneficial effect of practice and instruction in 
education. Likewise, remediation of disadvantageous 
experiences such as errors may too create a compensa-
tion effect and can be modeled by not reinforcing such an 
experience with an extra marble.

Pólya’s urn and the third source.  One more connec-
tion deserves to be discussed: Pólya’s urn and the third 
source of developmental differences. The third source refers 
to phenotypic variability that cannot be attributed to either 
genetic or environmental factors. To explain the third source 
phenomenon, two articles (Kan, Ploeger, Raijmakers, Dolan, 
& van der Maas, 2010; Molenaar, Boomsma, & Dolan, 1993) 
proposed rather complicated nonlinear models. Conve-
niently, the third source becomes directly apparent in Pólya’s 
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urn. In the two examples of Pólya processes in Figure 2, 
both the genetics (the initial urn configurations) and the 
environment (the rules for drawing and replacing the mar-
bles) are identical. Yet, the developmental trajectories vary 
greatly.

The third source is also clearly shown when herita-
bility estimates are calculated for Pólya’s urn. If solely 
genetic and environmental factors would contribute to 
phenotypic variability, heritability estimates in Pólya’s 
urn—with identical initial urn configurations and 
growth mechanisms—would be 1. In Figure 3, we show 
the heritability estimates over time based on identical 
twins with identical environments. Clearly, heritability 
estimates are not 1 even for twins whose initial urns 
already contain 10 times as many marbles as the urns 
used in Figure 2 and are therefore less prone to diverge.

Pólya’s urn as a network.  By transforming the exam-
ple of Pólya’s urn to a network representation, the benefit 
of networks in an idiographic science is clearly shown. 
Conveniently, Pólya’s urn permits a simple transforma-
tion to such a network representation. Imagine a net-
work with two types of nodes: black nodes that represent 
some kind of misconception and white nodes that represent 

some kind of correct conception. Analogous to the urn 
example, the initial network may consist of a disconnected 
black and white node. Now, on each trial, one node is 
randomly attached to one of the existing nodes in the 
network, copying its color. This simple mechanism 
ensures that the probability of a new node receiving a 
certain color is proportional to the number of existing 
nodes with that color, essentially a preferential attach-
ment mechanism.

Each of the Pólya’s urn networks in Figure 4—graphs 
created with the qgraph package (Version 1.6; Epskamp, 
Cramer, Waldorp, Schmittmann, & Borsboom, 2012) for 
the R software environment (Version 3.6.1; R Core 
Team, 2019)—represents a different individual and 
already illustrate their benefit in an idiographic science: 
For each individual, the values of the nodes and pres-
ence of the links are shown. However, the unidimen-
sional structure of this simple urn example is too 
simplistic for the ultimate objective to describe a mul-
tidimensional intelligence. While preserving the net-
work perspective, in the next part, we introduce a new, 
formal, and multidimensional model of intelligence—a 
theory that explains both stationary and developmental 
phenomena, an abstraction that concretely describes 
an individual’s skills and knowledge on the level of 
specific educational items, and an avenue for separating 
the role of genetics and the environment.

The Wiring of Intelligence

At the intersection of the issues discussed in the previ-
ous part, we propose a novel formal model of intelli-
gence.2 We conceptualize intelligence as evolving 
networks in which new facts and procedures are wired 
together during development. Take Cornelius, a 6-year-
old student who has just started to learn addition. In 
his—still limited—cognitive network, some first addi-
tion nodes can be observed. One obtained node rep-
resents the “7 + 7 = 14” fact. He memorized this fact 
from one of those times his older brother Pete was 
showing off what he had learned that day at school, 
and the node is therefore not connected to other facts 
and procedures. Some other obtained nodes, such as 
the “2 + 2 = 4” and “2 + 3 = 5” facts, are connected to 
his counting skill because Cornelius still counts his 
fingers to obtain the answers to those problems. 
Another group of interconnected yet unobtained nodes 
seems to share a common cause: Cornelius’s teacher 
recently tried to explain how one should add single-
digit numbers and two-digit numbers, and Cornelius 
now systematically—and mistakenly—adds 1 rather 
than 10 to the sum of the units. Thus, Cornelius’s com-
plete cognitive network can be seen as a collection of 
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Fig. 3.  Heritability estimates of 200 identical twins in Pólya’s urn. 
Initial urn configurations are sampled such that each urn contains 
black and white marbles. The standard growth mechanism is used for 
all twins: One marble is randomly drawn from the urn and replaced 
by two marbles of the same color. This process is repeated until the 
urn contains 800 marbles. At each developmental step (x-axis), the 
heritability is calculated (y-axis) as the squared correlation between 
the proportions of white marbles in current and past developmental 
steps of a twin pair, averaged over all twin pairs. This process is 
repeated for different initial urn sizes (line type and line color).
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his obtained and unobtained facts and procedures that 
steadily evolves during his development.

In this second part, we first describe a static model, 
hereafter referred to as wired intelligence, and clarify 
how it explains two key stationary phenomena: the 
positive manifold and intelligence’s hierarchical struc-
ture. We then describe a dynamic model, hereafter 
referred to as wiring intelligence, and clarify how it 
explains developmental phenomena such as the 
Matthew effect and the age dedifferentiation hypoth-
esis. The model’s composition of a static and dynamic 
part reflects its twofold aim—explaining stationary and 
developmental phenomena—and stresses the poor 

balance in substantiation of the phenomena in both 
categories. Moreover, it enables the static and dynamic 
part to be assessed and further developed in relative 
isolation.

Statics: wired intelligence

We conceptualize intelligence as an individual’s net-
work of interrelated cognitive skills or pieces of knowl-
edge, such as illustrated in Figure 5. In this network,  
G = (V, E), the set of p distinct cognitive skills or pieces 
of knowledge (terms used interchangeably in the 
remainder of the article) are represented as labeled 
nodes V and their possible relations as edges E. It is 
assumed that the set E contains all p(p – 1)/2 possible 
relations between the p nodes of the network. To each 
node i in the network, we associate a random variable 
that takes one of two values,

xi
i

=
1

1

+
−

if the skill or knowledge  is obtained

if the skill  or knowledge  is unobtainedi



 .

Furthermore, we associate to each edge e i j= 〈 〉,  in 
E  a random variable ωe  that also takes one of two 
values,

ω ωe i j= =

1

〈 〉,

if a direct connection between skills 

or knowleddge  and  is present

if a direct connection between ski

i j

0
llls 

or knowledge  and  is absent.i j











This assembly of dichotomous nodes and edges thus 
forms our abstraction of idiographic intelligence. In 
addition, two remarks must be made regarding the 
nodes. First, the model is ignorant with respect to their 
exact substance, that is, the cognitive skills or pieces 
of knowledge they represent. Second, besides the 
obtained and unobtained knowledge that the nodes 
represent, it is important to consider that the majority 
of possible nodes is absent from the cognitive network. 
To illustrate, in the network conception of 6-year-old 
Cornelius, nodes that reflect concepts such as integrals 
are most likely unobserved. Thus, the actual presence 
of nodes depends on factors such as maturation and 
education.

Fortuin–Kasteleyn.  The definitions of nodes and edges 
give us a minimal description of the wired intelligence 
network. Now, the model aims to describe the probabili-
ties with which skills are either obtained or unobtained 
and how they are related. It is this description of proba-
bilities that enables us to explain the established station-
ary phenomena.
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Fig. 4.  Two instances of a Pólya’s urn network. Both networks 
started with a single black node and a single white node (t = 0). In  
addition, the networks share an identical growth mechanism: A new 
node is randomly connected to one of the existing nodes and cop-
ies its color. The numbers show the time points at which the nodes 
were added.
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The following model, proposed by Fortuin and 
Kasteleyn (1972, hereafter referred to as the Fortuin–
Kasteleyn model) in the statistical physics literature, 
forms the basis of this approach,

p
x x

F i

p

j i

p

i j
i j

i j( ) =
1 1

2
(1 )(1 )

=1

1

= 1
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




,

(1)

in which θ is a parameter of the model that describes 
the probability that any two skills become connected, 
the factor ( 1)/2x xi j +  is equal to zero whenever x xi j¹  
and equal to one whenever x xi j= , and ZF  is a normal-
izing constant. To illustrate the model, Table 1 shows 
the various possible states of a network with two nodes 
and gives the probabilities for those states given three 
different values of θ.

An important property of the model is that whenever 
two skills are connected to one another, they are neces-
sarily in the same state, that is, they are either both 
present or both absent. Consequently, whenever two 
skills are in different states, that is, one skill is present 
while the other is absent, then these two skills cannot 
be connected to one another. With this simple rule and 
the single parameter θ, the model can describe the joint 

probability distribution of both the nodes (i.e., skills or 
knowledge) and their relations.

Idiography.  This unaltered Fortuin–Kasteleyn model 
already has highly beneficial properties for the study of 
intelligence, making it a convenient point of departure. 
Figure 5 illustrates a few of the properties thus far dis-
cussed. To begin with, we can ensure idiography, the 
first modeling principle. Because the model is character-
ized by both random nodes and edges, both skills and 
their relations may vary across individuals. This is clearly 
seen in the differences between the individuals in the 
figure, Cornelius and Pete, which are instances of the 
exact same model. In Pete’s network, considerably more 
knowledge is obtained than in Cornelius’s network, 
while at the same time it is less densely connected (both 
within domains and between domains). In addition, 
interesting differences between domains exist; Pete 
clearly performs differently on two of the four domains. 
The careful eye spots that the connected nodes form 
clusters only with either obtained knowledge or unob-
tained knowledge, a homogeneity that is dictated by the 
model.

Positive manifold.  The next property of this model we 
turn to is the positive manifold it produces. As discussed 

a b

Fig. 5.  Two instances of the Fortuin and Kasteleyn (1972) model. The cognitive networks of (a) Cornelius and (b) Pete consist of 96 
nodes, equally distributed across four domains (represented by nodes of different shapes). Cornelius has 25 pieces of obtained knowledge 
(white nodes), and Pete has 65 pieces of obtained knowledge. Networks were generated with θW = .07, θB = .005, and µ = .03; parameters 
are introduced in the text of the article.
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in the introduction, the uncontested significance of this 
phenomenon renders a plausible explanation a burden 
of proof for any serious theory of intelligence. Intuitively, 
this property of the Fortuin–Kasteleyn model is shown by 
the fact that the correlation between any two nodes xi 
and x j  in the network is positive. This is the case when-
ever the probability that the two nodes are in the same 
state, p x xi j( = ), is larger than the probability that the 
two nodes are in a different state, p x xi j( )¹ . The follow-
ing equation by Grimmett (2006, p. 11) confirms this,

p x x p i ji j( = ) =
1

2

1

2
( )

1

2
,+ ↔ ≥

in which p i j( )↔  is the probability that nodes i  and 
j  are connected by an open path (i.e., are in the same 
cluster). Because p i j( )↔  is nonzero, p x xi j( = ) is 
strictly larger than 0.5, and the positive manifold 
emerges.

Figure 6 shows the positive manifold using a heat 
map. Each of the patches in the figure represents a 
correlation between two nodes. The positive manifold 
can be deduced from the fact that all patches indicate 
a positive correlation. For this figure, we considered 
1,000 idiographic networks, construed from the Fortuin–
Kasteleyn model, with some important extensions laid 
out in the following sections.

Hierarchical structure.  Arguably the second most impor-
tant stationary phenomenon in intelligence is its hierarchical 
structure. Although the debate on whether g is organized in 
a bifactor or higher-order structure continues to keep 
some intelligence researchers occupied, the fact that some 
cognitive domains form clusters, with higher correlations 
within clusters than between clusters, is uncontested 
(e.g., Carroll, 1993; Spearman, 1904). This phenomenon 
is reflected in the typical block structure seen in correlation 
matrices of intelligence tests (see Fig. 6).

Crucially, although the block structure clearly is pres-
ent, the blocks are not fully isolated. Indeed, the small 
but meaningful correlations outside the blocks indicate 
interactions between the blocks. Simon (1962) termed 
this property near decomposability and demonstrated 
its ubiquitous presence across a multitude of complex 
hierarchical systems. In his words, “intra-component 
linkages are generally stronger than intercomponent 
linkages. This fact has the effect of separating the high-
frequency dynamics of a hierarchy—involving the inter-
nal structure of the components—from the low frequency 
dynamics—involving interaction among components” 
(p. 477). The presence of both a general factor and a 
hierarchical structure can be seen to reflect this.

The human brain serves as a convenient illustration. 
The functional specialization of our brain can cause 
different cognitive tasks to tap into structurally dispersed 
brain areas (e.g., Fodor, 1983; Johnson, 2011; Spunt & 
Adolphs, 2017), making within-community connectivity 
more likely and between-community connectivity less 
likely. An example is the (increasing) functional special-
ization of arithmetic (e.g., Dehaene, 1999; Rivera, Reiss, 
Eckert, & Menon, 2005). Note that the hierarchical struc-
ture seems consistent with brain networks of fluid intel-
ligence (Santarnecchi, Emmendorfer, & Pascual-Leone, 
2017). Naturally, this does not exclude the possible exis-
tence of processes that play a more general, or maybe 
central, role in cognitive functioning, such as mitochon-
drial functioning (Geary, 2018).

In network models, the block pattern is generally 
referred to as a community structure. In the model pro-
posed here, we impose such a structure by creating 
communities of nodes that have a higher probability of 
connecting with nodes within their community than with 
nodes in other communities. Note that the model is 
ignorant with respect to the exact substance, or content, 
of a component because for the theoretical purpose of 
the model, the levels of the hierarchy are irrelevant. Yet, 
for illustrative purposes, in the specification of the model 
hereafter, we assume that the communities are known.

Suppose that there are two communities: skills that are 
related to mathematics and skills that are related to lan-
guage. We partition the set of nodes V into two groups, 
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Fig. 6.  Heat map of the correlational structure of the nodes of the 
Fortuin and Kasteleyn (1972) model. As analogues to Spearman’s 
very first observation of the positive manifold in the correlational 
structure of his cognitive tests, the exclusively positive patches illus-
trate the positive manifold as a constraining property of the Fortuin–
Kasteleyn model. In addition, the hierarchical structure of intelligence 
is clearly reflected in the block structure. Networks were generated 
with θW = .07, θB = .005 , and µ = .03. Corr = correlation.
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V = (VM, VL), one associated to each community. Likewise, 
we partition the set of edges E into three parts, E = (EM, 
EL, EML), in which EM are the relations between different 
mathematics skills, EL the relations between different lan-
guage skills, and EML are all the relations between a math-
ematics-related skill and a language-related skill. In 
principle, we may associate to each community of skills 
c a unique probability θc to connecting its members and 
associate to each pair of communities c and d a unique 
probability πcd to connect members from the community 
c to members of the community d. However, for now, it 
is sufficient to have one probability θW to connect the 
skills within a community and one probability θB to connect 
skills between two different communities. If θW > θB, it fol-
lows that p i j( )↔  is larger for any two skills i and j within 
the same community than for two skills i and j that are not 
a member of the same community. As a result, a hierar-
chical pattern of correlations emerges from the model, 
with higher correlations between skills within a commu-
nity than between skills from different communities.

Figure 5 shows two networks that arose from our 
extended model, of which a formal expression is given 
in the Appendix. The four communities in the networks 
are denoted by the various node shapes. Note that 
communities should not be confused with clusters—the 
nodes, or groups of nodes, that are isolated from the 
rest of the network. In these networks, the within-
community connectivity was set to θW = .07 and 
between-community connectivity to θB = .005. Of 
course, these probabilities can be seen as an empirical 

estimation problem, which we do not consider here. 
Figure 6 shows how the community structure is reflected 
in the correlational structure of 96 nodes across 1,000 
extended Fortuin–Kasteleyn models.

General ability.  Note that the Fortuin–Kasteleyn model 
has no preference toward obtained or unobtained pieces 
of knowledge. However, in the proposed model, we 
assume that there actually is a preference and indeed 
toward general ability. Reminded of the previously men-
tioned 6-year-old named Cornelius, this preference 
reflects the fact that, for instance, education usually is at 
the level of the student and aims at attainable goals (i.e., 
learning generally takes place in the zone of proximal 
development; Vygotsky, 1978), and interactions with the 
environment fit the individual to a large extent (i.e., there is 
a significant degree of reciprocity in people’s intelligence 
and how they create and select their environments and 
experiences; Scarr & McCartney, 1983). Moreover, anticipat-
ing the growth perspective that is introduced in the next 
section, it is evident that individuals tend to become more 
able rather than less able (i.e., if we ignore cognitive decline 
due to aging and degenerative diseases).

To account for this bias toward aptitude, we impose a 
so-called external field µ that is minimally positive. Exter-
nal fields are used in physics to represent some outside 
force that acts on variables in a network, and to under-
stand this idea, magnetism provides a clarifying illustra-
tion. In the study of magnetism, variables in the network 
may represent the electrons in a piece of iron that either 

Table 1.  Evaluation of the Fortuin–Kasteleyn Model With Two Nodes

State p x( ),ω ∝ p x( ),ω θ = 1 θ = 1 2/ θ = 0

x1 = 1+ ; x2 = 1+ ; ω = 1 θ θ/ZF
1 2/ 1 6/ 0

x1 = 1− ; x2 = 1+ ; ω = 1 0 0 0 0 0

x1 = 1+ ; x2 = 1− ; ω = 1 0 0 0 0 0

x1 = 1− ; x2 = 1− ; ω = 1 θ θ/ZF
1 2/ 1 6/ 0

x1 = 1+ ; x2 = 1+ ; ω = 0 1 − θ (1 )/− θ ZF 0 1 6/ 1 4/

x1 = 1− ; x2 = 1+ ; ω = 0 1 − θ (1 )/− θ ZF 0 1 6/ 1 4/

x1 = 1+ ; x2 = 1− ; ω = 0 1 − θ (1 )/− θ ZF 0 1 6/ 1 4/

x1 = 1− ; x2 = 1− ; ω = 0 1 − θ (1 )/− θ ZF 0 1 6/ 1 4/

  ZF = 4 2− θ 1 1 1 1

Note: The eight possible states of a network with two nodes (Column 1), evaluated under the Fortuin–
Kasteleyn model (Columns 2 and 3), for three different values of θ (Columns 4, 5, and 6). States differ 
with respect to whether the nodes (x1 and x2) are obtained (+1) or unobtained (−1) and connected 
(ω = 1) or not connected (ω = 0). The values in the final three columns represent the probabilities of 
observing a certain state of the network (Column 1) given the value of θ (Columns 4, 5, or 6) and are 
calculated from the model (Column 3, i.e., Column 2 proportional to its sum). The bottom row sums 
over all states. Fortuin–Kasteleyn = Fortuin and Kasteleyn (1972).
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have an upward spin (i.e.,       ) or a downward spin 
(xi = 1− ). When the spins align, the iron is magnetic. One 
way to magnetize a piece of iron is by introducing an 
external field (i.e., holding a magnet close to the object) 
that pulls the electrons in a particular direction.

By applying a minimally positive external field, we 
thus ensure that the nodes in the network have a slight 
preference toward general ability. Consequently, on 
average, knowledge is more often obtained than unob-
tained in the population. For an individual network, 
this fact implies that it is more likely that the knowledge 
in a particular cluster is all obtained rather than all 
unobtained. Our model extension that includes the 
external field µ is given in the Appendix. In the net-
works used to create Figures 5 and 6, we set µ = .03.

Moreover, as is shown in the Appendix, the probabil-
ity that a cluster consists of obtained knowledge is 
proportional to the size of the cluster. This means that 
the larger the cluster is, the more likely the nodes in 
the cluster reflect obtained knowledge. This idea 
ensures—with high probability—that the giant compo-
nent (the largest cluster) consists of pieces of knowl-
edge that are obtained rather than unobtained. Note 
that the external field could be negative too, in the rare 
situation that the environment elicits misconceptions.

Dynamics: wiring intelligence

The static wired intelligence model provides a solid 
basis for the second aim. We conceptualize intelligence 
as evolving networks in which new facts and procedures 
are wired together during development. In this section, 
we therefore explore the model from such a develop-
mental point of view. We discuss three scenarios.

Scenario 1: development toward equilibrium.  Al- 
though we do not know the exact causal mechanisms 
that drive development, we can observe the model dur-
ing development. In the first scenario, we started the net-
work in an undeveloped state, with solely unobtained 
pieces of knowledge and no edges. We then used a Gibbs 
sampling procedure to grow the network toward its equilib-
rium state: the extended Fortuin–Kasteleyn model with its 
desirable properties. The positive manifold and hierarchical 
structure displayed in Figure 6, discussed in the previous 
section, necessarily follow from this approach because they 
are properties of the Fortuin–Kasteleyn model.

Here, we are concerned with how the model devel-
ops over time. As the Gibbs sampler rapidly converge 
the networks to an equilibrium state, we slowed down 
the process by updating the nodes and edges in each 
iteration with p = .15. This way, we aimed to get insight 
into how the model behaves toward its equilibrium 
state. In Figure 7, we illustrate, for 1,000 networks, the 

growth in the number of obtained pieces of knowledge 
across the first 30 iterations of the decelerated Gibbs 
sampler. We considered 96 nodes across four domains 
and set the external field to .03, the within-community 
connectivity to .07, and the between-community con-
nectivity to .005.

Figure 7 provides a clear indication of the Matthew 
effect. First, Figure 7a shows the fan-spread effect that 
characterizes the Matthew effect. Although all simulated 
persons were conceived with the exact same cognitive 
networks, early differences in the number of obtained 
pieces of knowledge become more pronounced over 
time, until they stabilize. Figure 7b shows that the vari-
ance in obtained pieces of knowledge across networks 
indeed increases and ultimately stabilizes.

Moreover, Figure 7c shows that the variance in 
obtained pieces of knowledge across subsequent states 
of individual networks decreases over time, an effect 
that is also observed in the example of Pólya’s urn that 
is displayed in Figure 2c. However, as opposed to the 
Matthew effect in the Pólya’s urn example, the positive 
external field in the wired intelligence model ensures 
that a general ability arises.

This scenario, in which a cognitive network grows 
from an undeveloped state into an equilibrium state, 
was also used by van der Maas et al. (2006) in their 
description of the mutualism model. A criticism of this 
approach is that from the onset of development until 
the moment it reaches its equilibrium state, the exact 
properties of the network are unknown. In the next 
scenario, we avoided this issue by inspecting the net-
works solely in equilibrium but across different sizes.

Scenario 2: development in equilibrium.  Rather than  
observing the model during the sampling dynamics, in 
the second scenario, we investigated the development of 
the model across equilibrium states of networks of differ-
ent sizes like—in the previously cited words of Cattell 
(1987)—the movie director that inspects the stills. To this 
end, we sampled networks ranging in size from 20 to 300 
nodes, in steps of four nodes. We set the external field to 
.005, the within-community connectivity to .07, and the 
between-community connectivity to .01.

In Figure 8, we illustrate the growth in obtained 
pieces of knowledge across the increasing number of 
nodes in the respective networks. Naturally, the number 
of obtained pieces of knowledge cannot be higher than 
the total number of nodes in a network, hence the fact 
that all observations are in the lower right triangle. 
Figure 8a again shows the Matthew effect. This time, 
all observations are completely independent from one 
another, so no lines are shown.

Note that when the networks continue to develop, 
they start to bifurcate. In Figure 8b, it is shown that this 

xi = 1
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is the case for networks that contain roughly 100 or 
more nodes. This pattern bears similarities to the 
Matthew effect found in science funding (Bol, de Vaan, 
& van de Rijt, 2018), in which a similar divergence is 
seen for scholars that are just below and just above the 
funding threshold. In the case of science funding, the 
effect is partly attributed to a participation effect: 

Scholars just below the funding threshold may stop 
applying for further funding. In education, this partici-
pation effect is institutionalized through stratification: 
Students just below an ability threshold will receive 
education on a different level.

Here, the bifurcation arises from the preference of 
the Fortuin–Kasteleyn model to form clusters and from 
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the fact that only nodes that are in the same state can 
become connected. As soon as all nodes are connected 
in a giant component, the networks contain either 
obtained or unobtained pieces of knowledge. In addi-
tion, the positive external field ensures that the larger 
the cluster, the higher the probability that it contains 
obtained pieces of knowledge, and hence the larger 
the number of observations near the diagonal. Finally, 
the low connectivity in the simulated networks creates 
some observations in between the two forks of the 
bifurcation.

The growth of cognitive networks can also shed a 
new light on the positive manifold. In Figure 9, the 
positive manifold is shown again but this time across 
four different network sizes. We considered networks 
with 40, 80, 120, and 160 nodes and show that the posi-
tive manifold steadily increases with more nodes. This 
property of the model reflects a much discussed phe-
nomenon in intelligence: the age dedifferentiation 
hypothesis. Dedifferentiation is the gradual increase of 
the factor g or, put differently, the increasingly common 
structure in intelligence across individuals. The hypoth-
esis states that such dedifferentiation takes place from 
adulthood to old age. Age dedifferentiation’s antagonist, 
the age-differentiation hypothesis, posits that differen-
tiation takes place from birth to early maturity.

Evidence for the age differentiation and dedifferen-
tiation hypotheses is both poor and problematic. Many 
scholars have tried to summarize the evidence, but all 

come to the conclusion that the evidence for either of 
the hypotheses is inconclusive. Methodological prob-
lems such as selection effects and measurement bias 
are commonly mentioned to account for the inconclu-
sive evidence (e.g., van der Maas et al., 2006, which 
also discusses similar problems with ability differentia-
tion). In the model proposed here, the strength of the 
positive manifold is primarily determined by the size 
of the giant component, which increases with the size 
of the network.

Scenario 3: a growth mechanism.  Ultimately, the for-
mulation of a formal developmental theory of intelli-
gence requires the identification of mechanisms of 
growth and possibly decline. Although we are unaware 
of growth mechanisms that keep the Fortuin–Kasteleyn 
structure intact, we nonetheless end this section with a 
third approach. We first describe a simple growth mecha-
nism, and because it may force the network out of equi-
librium, we then briefly discuss an additional method that 
repairs the network to ensure that the discussed station-
ary phenomena remain guaranteed during development.

In this scenario, we conceptualize growth as the 
addition of previously absent nodes and edges to the 
cognitive network in which those new nodes may rep-
resent obtained as well as unobtained pieces of knowl-
edge.3 Effectively, in the growth model, edges are 
sampled from the finite set of possible edges that con-
stitute the full network. Nodes connected by a sampled 
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edge—if previously absent—are added to the network. 
Then, the communities of the nodes connected by the 
edge are determined, and the nodes are actually con-
nected in the cognitive network with a probability 
respective to the determined communities. We further 
explicate this growth mechanism below.

Growth mechanism.  Let us start with the sampling 
mechanism for the edges. In our approach, we focus on 
growing the network topology—the wiring of skills and 
knowledge in a cognitive network—and let the states of 
the skills follow this process. To do so, we make use of 
the following factorization of the model:

f x w f x w f w( ) = ( ) ( ),, |

in which f w( ) is the model for the topology, known as 
the random cluster model (Fortuin & Kasteleyn, 1972; 
Grimmett, 2006), that describes the wiring of the cogni-
tive network.

This idea can be summarized as follows. Suppose 
that there is a full theoretical network G V E= ( , ) that 
includes all potential skills, knowledge, and their rela-
tions. At conception, an individual may start with an 
empty network or a small initial subset of the network 

that may represent his or her genetic endowment. As 
time proceeds, skills, knowledge, and their relations 
are added to the network by sampling edges and their 
attached skills and knowledge. An edge e i j= 〈 〉,  between 
skills i  and j  is included in the individual’s cognitive 
network, with simply the previously discussed probabil-
ity θW  to connect the nodes of the same community 
and probability θB  to connect the nodes of two different 
communities.

This very basic growth model allows for substantial 
variation across individual networks, thus satisfying the 
idiography principle. Edges may or may not be sam-
pled, and once sampled, the attached nodes may 
become connected or disconnected, directly or indi-
rectly via paths. The nodes may become obtained or 
unobtained pieces of knowledge and may end up iso-
lated or connected with nodes of the same or other 
communities in small or large clusters. All of this pro-
cess may all vary across development.

Restrained freedom.  Two important remarks must be 
made with regard to this growth process, one on the con-
siderable amount of freedom in this approach and one on 
a self-imposed restriction. First, and importantly, we do not 
prescribe a sampling model. That is, we conceptualize the 
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sampling mechanism as an empirical fact, a process that 
can be simulated by one’s preferred theoretical model. 
To give some examples, edges may be added following 
an educational model (curricula determine the [order of 
the] sampled edges) or using a genetic model (the state 
of the initial network determines the sampled edges) or, 
for instance, reflect the multiplier effect model (both the 
subsequent states of the network and the environment 
determine the sampled edges). The model proposed in 
this article thus provides a unique opportunity to study 
the effects of such diverse sampling models.

Second, and not easily observed, is the fact that the 
suggested growth mechanism cannot guarantee that the 
properties of the static model, such as the positive 
manifold, will continue to hold. Therefore, to keep the 
model tractable during its growth, we impose a restric-
tion that helps retain those properties. Basically, we 
repair the network if it is observed to deviate from the 
static model by re-pairing the most recent set of added 
nodes. This rewiring is sometimes required when two 
clusters are joined in the cognitive network. The pro-
cedure was described by Fill and Huber (2000).

One way to interpret the rewiring that is part of Fill 
and Huber’s (2000) approach is that it inspires a change 
in obtained knowledge of a newly joined cluster. That 
is, unobtained pieces of knowledge could be relatively 
static on a cluster over time but might switch states 
when two clusters are joined, reflecting a new insight. 
Because the giant component is increasingly likely to 
represent obtained knowledge, a newly connected 
component is likely to turn into a component of 
obtained knowledge. This way, learning occurs gradu-
ally in the cognitive network, one skill at a time, but 
also through phases, growing obtained knowledge on 
entire clusters at once.

A second consequence of this effort to retain the 
properties of the static model in a continuously evolv-
ing network is the fact that in the growth mechanism 
we do not determine the states of the nodes during 
development. This means that although at each point 
in time the network can be frozen and the states of the 
nodes determined, subsequent states are independent 
evaluations of the model. Although from a develop-
mental point of view this idea might be seen as prob-
lematic, the justification is twofold. The first is a feature: 
Small clusters—such as clusters of a single node—
represent unconnected knowledge or skills for which 
instability can be an actual property. Across the inde-
pendent evaluations, these small clusters may flicker 
accordingly. On top of that, the positive external field 
discussed in the static model section ensures that the 
larger the cluster, the higher the probability that the 
nodes represent obtained knowledge. This probablity 

thus ensures that the larger the cluster, the more stable 
its state.

To conclude, it must be stressed that the discussed 
restriction—although not necessarily problematic—
primarily provides us with a mathematical convenience 
rather than reflecting an empirical fact. And although we 
believe it is a welcome convenience for this initial sug-
gestion of a growth mechanism, it may well be abandoned 
in future suggestions. For now, the growth and repair 
mechanisms—along with the static model—give us a 
minimal description of a wiring intelligence network.

Discussion

Since Spearman’s first attempt to explain the positive 
manifold, it has been the primary aim for formal theo-
rists of intelligence. Although many scholars followed 
his factor-analytic footsteps, an approach that is domi-
nant as of today, we now also know that it is only one 
of many possible explanations. Recent contributions to 
scholarly intelligence, such as the contemporary mutu-
alism model and multiplier effect model, have greatly 
aided the field by providing novel explanations of a 
much-debated construct. In this article, we took those 
new directions two steps further by providing another 
alternative explanation. First, we introduced a truly 
idiographic model that captures individual differences 
in great detail. In doing so, it bridges the two disciplines 
of psychology by explaining nomothetic phenomena 
from idiographic network representations. Second, the 
model provides a formal framework that particularly 
suits developmental extensions and thus enables the 
study of both genetic and environmental influences 
during the development of intelligence.

The static wired intelligence model proposes a par-
simonious and unified explanation of two important 
stationary phenomena: the positive manifold and the 
hierarchical structure. It does so without a need for 
mysterious latent entities and with an opportunity to 
study individual differences. Indeed, many more—yet 
less robust—phenomena have been identified in the 
past century. Although in its current form the model 
does not aim to explain all of these phenomena, it may 
very well serve as a point of departure for exploring or 
adding more of intelligence’s complexities. The dynamic 
wiring intelligence model is a much more modest con-
tribution, a specimen of the potential of developmental 
mechanisms and an explicit call for increased inquiry 
into both developmental mechanisms and phenomena. 
Nevertheless, it may too serve as a point for departure 
for subsequent theorizing. Importantly and self-evident, 
both parts can be further built on by subjecting them 
to empirical facts.
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An influential division only touched on in the intro-
duction is that of fluid and crystallized intelligence. 
Although no formal theories exist that in detail disam-
biguate the structure or mechanisms underlying both 
components—thus far, the distinction is primarily 
descriptive—it is useful to relate both components to 
the model introduced here. This model clearly reflects 
the crystallized component of general intelligence: The 
static part gives structure to the skills and knowledge 
of the individual, and the dynamic part provides a 
placeholder for the mechanisms through which those 
skills and knowledge are acquired. The fluid compo-
nent, on the other hand, is less easily related to the 
model. One way to think of fluid intelligence in terms 
of the model is that the individual, when confronted with 
novel information or situations, can actively manipulate 
the cognitive network to accommodate that novel infor-
mation or situation, for instance by transforming exist-
ing—or generating new—edges or nodes. Such adaptivity 
is a property of many complex systems and primarily 
modeled by means of evolutionary mechanisms; how-
ever, it is not considered in the current model.

In this Discussion section, we first explain three 
modeling principles and then discuss how the model 
interprets and explains the positive manifold, hierarchi-
cal structure, and developmental effects from an idio-
graphic perspective. Finally, we illustrate how this 
approach provides a unique opportunity to relate 
microlevel phenomena to the macrolevel phenomena 
prominent in intelligence research.

Modeling principles

In building the proposed model, we aimed to follow 
three important principles. First, a scientific theory 
should be formal. That is, the theory should be formu-
lated as a mathematical or computational model. The 
traditional factor models of general intelligence are sta-
tistical models of individual differences. They do not 
specify a (formal) model of intelligence in the individual. 
In contrast, the multiplier effect model and the mutual-
ism model have been formulated mathematically. The 
advantages are that these models are precisely defined, 
predictions can be derived unambiguously, and unex-
pected and undesirable by-effects of the model can be 
detected, for instance in simulations.

The second principle is that a theory of intelligence 
should be idiographic. With the network approach, we 
intend to bridge two separate research traditions: on 
the one hand, experimental research on cognitive 
mechanisms and processes and on the other hand, 
psychometric research on individual differences in 

intelligence. Cronbach’s (1957) famous division of sci-
entific psychology into these two disciplines is still 
very true for the fields of cognition and intelligence. 
In the words of Ferguson (1954), “this divergence 
between two fields of psychological endeavour has led 
to a constriction of thought and an experimental fas-
tidiousness inimical to a bold attack on the problem 
of understanding human behaviour” (p. 95). The model 
proposed in this article brings these fields together by 
enabling explanations of individual differences from 
hypothesized cognitive mechanisms.

Similarly important as the previous idea, the third 
idea is that a theory of intelligence should be psycho-
logical. This idea is expressed in Box’s (1979) famous 
argument that “all models are wrong but some are 
useful” (p. 202). Our aim was a model that is indeed 
illuminating and useful by carefully weighing mathe-
matical convenience and psychological plausibility 
and ensuring it creates novel predictions about, for 
instance, the structure of intelligence and the role of 
education in the shaping of intelligence. Thus, the 
model proposed in this article acknowledges the need 
for explanatory influences of the environment, educa-
tion, and development.

A new perspective

The introduced model strongly adheres to these prin-
ciples and introduces a novel conception of intelli-
gence. Other than by a unified factor (e.g., g models), 
a measurement problem (e.g., sampling models), or 
positive interactions (e.g., mutualism model and mul-
tiplier effect model), we explain the positive manifold 
by the wiring of knowledge and skills, or facts and 
procedures, during development.

In addition, in the model, the hierarchical structure 
of intelligence has an incredibly straightforward expla-
nation: Knowledge and skills that are more related have 
a higher probability of becoming connected. This idea 
follows a simple intuition. If student Cornelius is try-
ing to learn a new word, this word will attach with high 
probability to related words and with low probability 
to distant words. The richer his vocabulary, the higher 
the chance that this new word will stick. In cognitive 
science, this principle is dealt with in the study of 
schemata (e.g., Bartlett, 1932; van Kesteren, Rijpkema, 
Ruiter, Morris, & Fernández, 2014).

Finally, developmental phenomena are an unusual 
suspect in formal models of intelligence. Although 
decidedly less straightforward than the discussed sta-
tionary phenomena, we do believe that developmental 
trends—such as the Matthew and compensation 
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effects—must play a key role in the study of develop-
mental intelligence. As argued by Protopapas et  al. 
(2014) and Schroeders et al. (2016) and as illustrated 
in the example of Pólya’s urn, mechanisms that can 
provide an explanation for both phenomena can turn 
out to be worthwhile in understanding key drivers of 
development.

In the proposed model, we show that a Matthew 
effect may spontaneously appear not only when an 
undeveloped network is grown toward its equilibrium 
state but also when cross-sections of networks in devel-
opment are inspected. This observation of the Matthew 
effect is in line with Schroeders et al.’s (2016) hypoth-
esis for nonformalized learning environments, as dis-
cussed in the introduction. In the model, a nonformalized 
learning environment can simply be seen as the natural 
growth that occurs without an educational intervention, 
whereas formalized learning would comprise small ben-
eficial interventions, such as illustrated with Pólya’s urn.

A second insight from the model is that the continu-
ous differences observed in the Matthew effect can at 
some point start to bifurcate into clearly discrete groups. 
This pattern can be compared with the effect of strati-
fication in education. An even deeper insight of this 
bifurcation process is that growth mechanisms that sat-
isfy the Fortuin–Kasteleyn model must contain a degen-
erative component, such as a forgetting mechanism. 
Only then can some networks grow into a less able 
state. In the next section, we discuss such aspects of a 
growth mechanism. Besides, a more critical assessment 
of the bifurcation is also possible: One may wonder 
whether the strength of the bifurcation in the wired 
intelligence model represents realistic developmental 
patterns. It is therefore important to stress that other 
than the magnetic field that ensures that individuals 
sample skills and knowledge that are within reach (e.g., 
that are within their zone of proximal development), 
in the current parsimonious wired intelligence model, 
there is no mechanism that repairs errors. Such a mech-
anism, such as proper education, would reduce the 
strong observed bifurcation. Nevertheless, it should also 
be noted that in principle, a cognitive network structure 
may actually grow into an increasingly unable state: 
Conspiracy theories could be seen as a practical exam-
ple of that principle and also in, for instance, the bal-
ance-scale task in which some children are seen to 
develop increasingly complex yet incorrect strategies 
( Jansen & van der Maas, 2002).

Finally, what is particularly intriguing about the idio-
graphic network perspective is that the discussed 
phenomena are observed by aggregating specific repre
sentations of many individuals. Here, we like to echo 
Jensen’s (2002) remark that “the psychology of 

intelligence could, at least in theory, be based on the 
study of one person” (p. 39). The proposed model 
overtly distinguishes intelligence from g, and it is 
exactly this fact that makes the idiographic approach 
such a powerful one. Although the study of the indi-
vidual goes beyond the scope of the current research, 
in the following, we do give some context.

An idiographic approach

In addition to the model’s capacity to explain two of 
the—mostly nomothetic and macroscopic—phenomena 
in intelligence, its idiographic nature also enables 
straightforward interpretations of microscopic phenom-
ena. Thus, rather than the previously discussed aggre-
gated phenomena that are at the forefront of intelligence 
research, here we mean the phenomena that reside at 
the level of the individual, the phenomena that origi-
nate from the long traditions of experimental and cog-
nitive psychology. Ebbinghaus’s (1913) law of forgetting 
is one great example that we will first turn to.

In the introduced model, cognitive disability is 
explained as the result of a stochastic process. How-
ever, cognitive networks such as in the proposed model 
moreover allow for intuitive mechanisms of forgetting 
and other degenerative processes. Both nodes and 
edges may be forgotten either randomly or dependent 
on the time a node resides in the network. Moreover, 
forgetting mechanisms can easily become more interest-
ing, for instance, by taking the frequency of activation 
of a node into account or even the degree of a node—
the number of edges it is attached to—because it may 
be viewed to signal robustness. In the proposed model, 
the external field already creates a naive form of forget-
ting: The state of a cluster of nodes is evaluated at each 
iteration, and the probability that the nodes in a cluster 
represent obtained knowledge is a function of the size 
of the cluster. The states of poorly connected nodes may 
therefore vary considerably, whereas well-connected 
nodes tend to stay in the same state.

Very much related to forgetting are the well-established 
testing and spacing effects (e.g., Karpicke & Roediger, 
2008). Again, the model allows one to consider these 
effects within a formalized theory of intelligence. In the 
proposed growth mechanism, testing and spacing are 
reflected in the sampling of the edges. Intuitively, test-
ing and spacing help increase the density of the edge 
structure of a network, which leads to both a more 
resilient network and larger clusters and hence more 
obtained knowledge. Related is the fact that in actual 
learning, the sampling frequency may naturally vary 
from individual to individual. In combination with a 
forgetting mechanism, testing and spacing effects thus 
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help determine the birth and death processes underly-
ing the development of a network.

The network topology itself also allows for interpre-
tations of the individual. The number and size of clus-
ters, or the degree distribution of a network, may, for 
instance, resonate the robustness of the cognitive net-
work. Isolated pieces of unobtained knowledge may 
be viewed as slips, whereas clusters of unobtained 
knowledge may be viewed as structural misconcep-
tions. Note that the preference for clustering in the model 
combined with the positive external field creates a very 
natural dynamic. At first, isolated pieces of unobtained 
knowledge such as slips are quite probable. The prefer-
ence for clustering will then cause some of these pieces 
of unobtained knowledge to evolve into straight miscon-
ceptions. Finally, the external field ensures that miscon-
ceptions that become too pronounced are repaired.

A developmental approach

In discussing the idiographic approach, we already 
alluded to developmental mechanisms. Indeed, we 
believe that to understand intelligence, its development 
must be understood too. In discussing the model, we 
used the first two scenarios to get a grip on its devel-
opmental predictions. In the second scenario, we fol-
lowed the development of the networks as they 
increased in size yet while they remained in an equilib-
rium state. This scenario allowed us to derive the devel-
opmental predictions of the model, such as the Matthew 
effect and ultimately the bifurcation, without the need 
to know the growth mechanism.

Note that these predictions hold in case the networks 
indeed grow within the limits of the equilibrium. Follow-
ing from this, one evident challenge is to study growth 
mechanisms that keep the Fortuin–Kasteleyn properties 
intact. However, the assumption that development takes 
place in equilibrium may just as well turn out to be too 
restrictive. Conveniently, the network approach allows 
one to consider diverse growth mechanisms and study 
the effect on development. Having said that, it may also 
give one too many degrees of freedom. We solved this 
dilemma, which is inherently tied to formal modeling 
approaches, by suggesting a straightforward growth and 
repair mechanism.

Most important though, the true restrictions must 
come from developmental phenomena. This bring us to 
an important question: What are the key developmental 
phenomena in intelligence? As we aimed to reflect in the 
introduction, this is not an unexplored area. Phenomena 
such as the Matthew and compensation effects or the 
age differentiation and dedifferentation hypotheses are 

actively studied. Nevertheless, much confusion still exist 
about these phenomena. As evidenced in the introduc-
tion, contradictory phenomena are being observed, and 
some argue that the causal mechanisms must be studied 
to come to grips with it.

This brings us to a second question: What are the 
important developmental mechanisms? The Pólya’s urn 
example convincingly illustrates the explanatory power 
of a seemingly simplistic growth mechanism. In the 
field of intelligence, the mutualism and multiplier effect 
models give other examples of such mechanisms. In 
addition, we sense that approaching the contradictory 
developmental phenomena with causal mechanisms 
might indeed turn out to be fruitful. The fact that the 
same mechanism under different circumstances can 
explain contradictory phenomena is intriguing and 
should be further explored.

Clues for developmental mechanisms may be found 
in the near field of developmental biology. Plants and 
humans share many important attributes, such as their 
growth, decline, variation, and genetic and environ-
mental influences. Developmental biologist use, for 
instance, the cellular Potts model (Graner & Glazier, 
1992)—a generalization of the Ising model, which is in 
its turn related to the Fortuin–Kasteleyn model—to 
explain a multitude of developmental phenomena. 
Grieneisen, Xu, Marée, Hogeweg, and Scheres (2007) 
used it to explain root growth of plants, Li and 
Lowengrub (2014) used it for the growth of tumor cell 
clusters and Chen, Glazier, Izaguirre, and Alber (2007) 
for morphogenesis. The much less mature field of 
developmental intelligence may greatly benefit from 
the techniques and mechanisms used in these and 
other applications (e.g., Prusinkiewicz & Runions, 
2012). We believe that the fact that the model proposed 
here provides a framework to incorporate such devel-
opmental mechanisms is one of its major strengths, 
and studying developmental phenomena and mecha-
nisms should be a primary concern in intelligence 
research.

Appendix A

The distribution of node states in the 
Fortuin–Kasteleyn (1972) model

The marginal distribution of the node states p(x)—that 
is, the probability of observing a particular configuration 
of skills, knowledge, or abilities—is an integral part of 
our formal theory. In fact, each of the phenomena that 
we aim to explain with the proposed model constitutes 
a particular pattern of observations from this marginal 



The Wiring of Intelligence	 1055

distribution. It is therefore highly convenient that the 
marginal distribution p(x) of the model for the node states 
x and their relations ω is of a known form (e.g., Fortuin 
& Kasteleyn, 1972; Grimmett, 2006). We next show that 
the marginal distribution of the formal model is an instance 
of the Ising network model (Ising, 1925). The Ising model 
is of the form

ω

ω σ µ
∈

−

+
∑ ∑∑ ∑+








Ω

p x p x x x x
I i

p

j i

p

ij i j

i

p

i i( ) ( ) exp,
Z

= =
1

=1

1

= 1 =1 
 ,

in which µi denotes the main effect of node i and σij 
denotes the pairwise interaction between nodes i and 
j . According to the model, nodes i and j  prefer to be 
in the same state when σij > 0 and prefer to be in dif-
ferent states when σij < 0. In the absence of the influ-
ence of other variables in the network, node i  prefers 
to be active (xi = 1+ ) when µi ∝i > 0 and prefers to be 
inactive (xi = 1− ) when µi ∝i < 0. Here, it is assumed that 
both the pairwise interactions σij  and the main effects 
µi are all positive.

Without loss of generality, here we consider the case 
in which the edge set E consists of all p p( 1)/2−  pos-
sible edges between p nodes, with a unique probability 
θij associated to each pair of nodes i and j  and a unique 
external field µi associated to each node i. The Fortuin–
Kasteleyn model that is consistent with this specifica-
tion is (Cioletti & Vila, 2015; Grimmett, 2006)

p x
x x

F i

p

j i

p

ij i j
i j

ij i j( ) =
1 1

2
(1 )(1 )

=1

1

= 1

,
Z , ,ω θ ω θ ω

−

+
〈 〉 〈 〉∏∏

+
+ − −









∏
i

p

i ix
=1

exp( ).µ

The first step in expressing its marginal distribution 
p x( ) is to sum out the edge states

p x p x
x x

F i

p

j i

p

ij
i j

ij

i

( ) = ( ) =
1 1

2
1

=1

1

= 1

=1

ω

ω θ θ
∈
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+
∑ ∏∏

+
+ −







Ω

,
Z

pp

i ix∏exp( )µ .

The second step is to rewrite this expression using 
θ σij ij= 1 ( 2 )− −exp , making use of the assumption that 
σij > 0. Observe that for a pair of nodes i and j , this 
boils down to

θ θ σ

σ σ

ij
i j

ij ij
i j

ij ij

x x x x+
+ − ⇒ − −{ } +

+ −

1

2
1 1 2

1

2
2 = [

exp( )

exp( ) exp( xx xi j − 1] ,)

which leads us to the following equation:

p x x x x
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eexp
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It is now easily seen that

Z ZF

i

p
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p

ij I

x i

p
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p

ij ixexp exp
=1

1

= 1 =1

1
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,µ

in which the sum on the right hand side is taken over 
all 2p possible realizations of x . That is, we have found 
the marginal distribution

p x x x x
I i

p

j i

p

ij i j

i

p

i i( ) =
1

,
=1

1

= 1 =1Z
exp

−

+
∑∑ ∑+








σ µ

that we set out to do.
Observe that the original Fortuin–Kasteleyn model 

for the complete edge set E is consistent with an impor-
tant special case of the Ising model that is known as 
the Curie-Weiss model (Kac, 1968). This version of the 
Ising model is obtained whenever all pairwise interac-
tions are constrained to have the same value (i.e., all 
pair of nodes have the same wiring probability θ in the 
Fortuin–Kasteleyn model and the external fields are all 
equated to zero), for example,

p x x x x
C i

p

j

p

i j
C

( ) =
1

=
1

,
=1

1

1Z Z
exp exp( )σ σ

−

+
+∑∑











in which x x
i i+ ∑=  is the sum over all node states. The 

model was introduced by Kac as a simple model for 
magnetism on the basis of the magnetic theories of 
Curie and Weiss (for a recent review of the model’s 
theoretical properties, see Kochmański, Paszkiewicz, & 
Wolski, 2013). The relation between the Curie-Weiss 
model and contemporary psychometric models is 
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discussed by Marsman et  al. (2018), and Marsman, 
Tanis, Bechger, and Waldorp (in press) studied its sta-
tistical properties. Here, the Curie-Weiss model serves 
as the starting point for our analysis because it is the 
simplest nontrivial network model that is consistent 
with the positive manifold.

The positive manifold and the Rasch model

In the previous section, we showed that the marginal 
distribution of the node states in the Fortuin–Kasteleyn 
model is an Ising network model. Marsman, Maris, 
Bechger, and Glas (2015) and Epskamp, Maris, Waldorp, 
and Borsboom (2018) showed that this Ising network 
model is statistically equivalent to multidimensional 
item-response theory (IRT; Reckase, 2009), which is a 
class of latent variable models for binary response vari-
ables that are commonly used in educational measure-
ment. It is important to note that when the pairwise 
interactions in the Ising model are constrained to have 
the same value (e.g., the Curie-Weiss model), it is a 
special case of the marginal Rasch model (Marsman 
et al., 2018), for example,

p x p x f( ) = ( ) ( ) ,
∫ |η η ηd

in which p x( )|η  is the simplest nontrivial IRT model 
that is known as the Rasch model and f ( )η  is a prob-
ability distribution for the latent variable. The interac-
tion strength σ of the Curie-Weiss model functions as 
an a priori variance in the latent variable distribution 
f ( )η . One important observation is that the Rasch 
model, just as the unidimensional factor model, is con-
sistent with the positive manifold (Holland & 
Rosenbaum, 1986). Because the Curie-Weiss model is 
a marginal Rasch model, it is also consistent with the 
positive manifold. Fortuin, Kasteleyn, and Ginibre 
(1971) showed the same for the Fortuin–Kasteleyn 
model, which follows from their expression of the two-
point correlation

p x x p i ji j( = ) =
1

2

1

2
( )

1

2
,+ ↔ ≥

that we discussed earlier (see also, Grimmett, 2006).

The hierarchical structure and 
multidimensional IRT 

To accommodate the hierarchical pattern in observed 
correlations, we group nodes into communities and 
introduce a single probability θW for connecting nodes 
within a community and a single probability θB—with 

θB < θW —to connect nodes from different communities. 
The extended Fortuin–Kasteleyn model that we pro-
pose is then of the form

p x
x x

F i j EW

W i j
i j

W i j

i

( ) =
1 1

2
(1 )(1 )

,

,

,
Z , ,ω θ ω θ ω
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×
jj EB

B i j
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x x

∈
〈 〉 〈 〉∏ +

+ − −








θ ω θ ω, ,

1

2
1 (1 )( ) ,

in which EW  denotes the set of edges relating skills 
within a community and EB denotes the set of edges 
relating skills between communities. In the two-com-
munity structure that is described in the main text, the 
within-community edge set EW  is the union of the edges 
within the mathematics community and the edges 
within the language community, E E EW M L= ∪ , and the 
between edge set is simply EML. The two community-
specific probabilities θW and θB  in our Fortuin–Kasteleyn 
model translate to community-specific interaction terms 

σ θW W=
1

2
(1 )− −ln  and σ θB B=

1

2
1− −ln( ) 

in the associated Ising model.
One way to represent the structure this imposes on 

the Ising model is to consider it in the form

p x x x
I

( ) =
1

=
1

2
,

Z
exp TΣ








in which Σ = [ ]σij  is a p p×  connectivity matrix that consists 
of two parts:

Σ = ( ) = ,σ σ σ σ σB p W B B p C1 1+ − +C C

in which 1p is the p p×  matrix of ones, σ σ σC W B= > 0− , and 
C = [ ]cij  is a p p×  matrix with entry cij = 1  when nodes 
i  and j  belong to the same community and cij = 0 oth-
erwise. When the nodes are ordered with respect to 
their communities, we find that C—and thus also  
Σ—is a block-diagonal matrix.

Observe that we can decompose the quadratic form 
x xT Σ  as follows

x x x x x xT T
B p C B

i

p

i

c

n

C

i c

iΣ = =
=1

2

=1

σ σ σ σ1 +( ) 







 +











∑ ∑ ∑

∈

C
V




2

,

in which the second term on the right consists of a sum 
over nodes i  in a community c for communities 
c n= 1, , . As a result, the marginal distribution of the 
node states is formulated as
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

,

which can be related to a ( 1)n + -dimensional IRT model 
using the ideas of Marsman et al. (2015) and Epskamp et al. 
(2018). For our example with n = 2 communities, the matrix 
of discriminations—or factor loadings—of the three-
dimensional IRT model is of the form

Λ =

2 2 0

2 2 0

2 0 2

2 0 2

σ σ

σ σ

σ

σ σ

B C

B C

B C

B C

  

  

σ


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
















,,

which reflects one single overarching dimension that 
is consistent with the positive manifold and n commu-
nity-specific dimensions that are consistent with the 
hierarchical structure.

The external field

In our model, we assume a slight preference toward 
the acquisition of knowledge, which we incorporate by 
including a positive external field. By introducing the 
external field—using the approach of Cioletti and Vila 
(2015)—the model extends into
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x x
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i
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θ ω θ ω

µ

, ,

1

2
(1 )(1 )

,exp

in which µ denotes the external field and x+ denotes 
the sum over all node states.

In the Ising network model, the external field is a 
main effect that is associated with the nodes; node i 
tends to +1  when µ ∝i > 0  and to −1 when µ ∝i < 0. In the 
IRT model, the external field is an item easiness param-
eter; item i is correctly answered (+1) more often when 
µ ∝i > 0 and answered incorrectly more often when µ ∝i < 0.4 
In the Fortuin–Kasteleyn model, the external field has 
a similar effect; node i tends to +1 when µ ∝i > 0 and to −1 
when µ ∝i < 0. However, in the Fortuin–Kasteleyn model, 

this influence of the external field is a population effect 
because for individual networks, the external field acts 
on the clusters and not on the individual nodes.

The effect of the external field for an individual 
network in the Fortuin–Kasteleyn model is most easily 
revealed through the conditional distribution p x( )|ω , 
which factors into the conditional distribution

p x p x i K
k

i k( ) = ( ( )),
=1

( )

| |ω ω
ωκ

∏ ∈

in which κ( )ω  denotes the number of open clusters in 
a network and Kk ( )ω  the set of nodes that are in clus-
ter k, k = 1 ( ), , κ ω . The probability that the node states 
in cluster k are equal to +1 is (Cioletti & Vila, 2015)

p x i Ki k

ii Kk

ii Kk
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+ ∈
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pp −
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∈∑ µ

ω ii Kk ( ) .

Observe that this probability depends on the sum of 
the external fields of all nodes in the cluster. In the 
model, there is a positive external field µ that applies 
to all nodes equally. In this case, the probability that 
the node states in cluster k are equal to +1 is

p x i K

K

K K

i k

k

k k

( = 1 ( ))

=
| ( )|

| ( )| | ( )|

+ ∈

( )
( ) + −( )

|

exp

exp exp

ω

ω µ
ω µ ω µ

,,

in which | ( )|Kk ω  is the size of cluster k. With µ ∝ > 0, 
this probability is strictly larger than .5 for each cluster, 
and it is an increasing function of cluster size. The 
original symmetric case is obtained when µ ∝ = 0, which 
reveals the uniform assignment of the values +1 and 
−1 across clusters.
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Notes

1. Intuitively, the process can be understood as follows. At t = 0, 
the space of probable outcomes after an infinite amount of trials 
is 0 < ( ) < 1p white . One might imagine that after each trial this 
space of probable outcomes becomes smaller because either 
the upper or lower limit becomes less probable. Ultimately, the 
space of probable outcomes becomes infinitely small, and the 
process is said to have stabilized. Indeed, approaching the limit 
of 1 or 0 in the long run remains a possibility at any point in 
time, but the bandwidth of probable outcomes becomes ever 
smaller. The outcomes follow a uniform distribution in case 
of an equal distribution of color at the start of the process 
or a beta-binomial distribution otherwise. Finally, the earliest 
trials weigh the most in determining the probable outcomes 
because those most severely alter the subsequent proportion 
of marbles.
2. Although mathematical notation is unavoidable, we keep it 
to a minimum and put it at the service of comprehensibility. 
Mathematical proofs that are not key to a basic understanding 
of the model are provided in the Appendix.
3. Formally, two equivalent interpretations may apply. One 
may interpret absence of a node as a state of nodes that reside 
within the current network or as nodes that reside outside of 
the current network. In the former sense, growth is interpreted 
as a change in the state of the node, whereas in the latter sense, 
it is interpreted as the addition of a node not previously present 
in the network. Having said that, the model is not concerned 
with this subtle interpretative distinction.
4. The population average in the latent variable expression of 
the Ising model is fixed at zero in each dimension.
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Kochmański, M., Paszkiewicz, T., & Wolski, S. (2013). 
Curie–Weiss magnet—A simple model of phase transi-
tion. European Journal of Physics, 34, 1555–1573. doi:10 
.1088/0143-0807/34/6/1555

Kovacs, K., & Conway, A. R. A. (2016). Process overlap 
theory: A unified account of the general factor of intel-
ligence. Psychological Inquiry, 27, 151–177. doi:10.1080
/1047840x.2016.1153946

Kovacs, K., & Conway, A. R. A. (2019). What is IQ? Life beyond 
general intelligence. Current Directions in Psychological 
Science, 28, 189–194. doi:10.1177/0963721419827275

Kroeze, R., van der Veen, D. C., Servaas, M. N., Bastiaansen, J. A.,  
Voshaar, R. C. O., Borsboom, D., . . . Riese, H. (2017). 
Personalized feedback on symptom dynamics of psycho-
pathology: A proof-of-principle study. Journal for Person-
Oriented Research, 3, 1–11. doi:10.17505/jpor.2017.01

Kruis, J., & Maris, G. (2016). Three representations of the Ising 
model. Scientific Reports, 6, Article 34175. doi:10.1038/
srep34175

Lee, J. J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., 
Zacher, M., . . . Cesarini, D. (2018). Gene discovery and 
polygenic prediction from a genome-wide association study 
of educational attainment in 1.1 million individuals. Nature 
Genetics, 50, 1112–1121. doi:10.1038/s41588-018-0147-3

Li, J. F., & Lowengrub, J. (2014). The effects of cell compressibil-
ity, motility and contact inhibition on the growth of tumor cell 
clusters using the cellular Potts model. Journal of Theoretical 
Biology, 343, 79–91. doi:10.1016/j.jtbi.2013.10.008

Mahmoud, H. (2008). Polya urn models. Chapman & Hall/
CRC Texts in Statistical Science, New York, NY: Taylor & 
Francis. 10.1201/9781420059847

Marsman, M., Borsboom, D., Kruis, J., Epskamp, S., van Bork, 
R., Waldorp, L. J., . . . Maris, G. K. J. (2018). An introduction 
to network psychometrics: Relating Ising network models 
to item response theory models. Multivariate Behavioral 
Research, 53, 15–35. doi:10.1080/00273171.2017.1379379

Marsman, M., Maris, G., Bechger, T., & Glas, C. (2015). 
Bayesian inference for low-rank Ising networks. Scientific 
Reports, 5, Article 9050. doi:10.1038/srep09050

Marsman, M., Tanis, C. C., Bechger, T. M., & Waldorp, L. J. (in 
press). Network psychometrics in educational practice. 
Maximum likelihood estimation of the Curie-Weiss model.

McArdle, J. J., Ferrer-Caja, E., Hamagami, F., & Woodcock, 
R. W. (2002). Comparative longitudinal structural analy-
ses of the growth and decline of multiple intellectual 
abilities over the life span. Developmental Psychology, 38, 
115–142. doi:10.1037/0012-1649.38.1.115

McGrew, K., & Flanagan, D. (1998). Intelligence test desk 
reference (ITDR): The Gf-Gc cross-battery assessment. 
Pearson Education. Retrieved from https://psycnet.apa 
.org/record/1998-07192-000

Merton, R. K. (1968). The Matthew effect in science. Science, 
159, 56–63. doi:10.1126/science.159.3810.56

Molenaar, P. C. M. (2004). A manifesto on psychology as 
idiographic science: Bringing the person back into sci-
entific psychology, this time forever. Measurement: Inter
disciplinary Research & Perspective, 2, 201–218. doi:10 
.1207/s15366359mea0204_1

Molenaar, P. C. M., Boomsma, D. I., & Dolan, C. V. (1993). 
A third source of developmental differences. Behavior 
Genetics, 23, 519–524. doi:10.1007/bf01068142

Nisbett, R. E., Aronson, J., Blair, C., Dickens, W., Flynn, J., 
Halpern, D. F., & Turkheimer, E. (2012). Intelligence: 
New findings and theoretical developments. American 
Psychologist, 67, 130–159. doi:10.1037/a0026699

Perc, M. (2014). The Matthew effect in empirical data. 
Journal of the Royal Society Interface, 11. doi:10.1098/rsif 
.2014.0378

Pietschnig, J., & Voracek, M. (2015). One century of global IQ 
gains. Perspectives on Psychological Science, 10, 282–306. 
doi:10.1177/1745691615577701

Plomin, R., & Deary, I. J. (2015). Genetics and intelligence 
differences: Five special findings. Molecular Psychiatry, 
20, 98–108. doi:10.1038/mp.2014.105

Protopapas, A., Parrila, R., & Simos, P. G. (2014). In search 
of Matthew effects in reading. Journal of Learning 
Disabilities, 49, 499–514. doi:10.1177/0022219414559974

Prusinkiewicz, P., & Runions, A. (2012). Computational mod-
els of plant development and form. New Phytologist, 193, 
549–569. doi:10.1111/j.1469-8137.2011.04009.x

R Core Team. (2019). R: A language and environment for 
statistical computing (Version 3.6.1) [Computer software]. 
Retrieved from https://www.r-project.org/index.html

Reckase, M. D. (2009). Multidimensional item response theory. 
New York, NY: Springer.

Rivera, S., Reiss, A., Eckert, M., & Menon, V. (2005). 
Developmental changes in mental arithmetic: Evidence 
for increased functional specialization in the left inferior 
parietal cortex. Cerebral Cortex, 15, 1779–1790. doi:10 
.1093/cercor/bhi055

https://psycnet.apa.org/record/1998-07192-000
https://psycnet.apa.org/record/1998-07192-000
https://www.r-project.org/index.html


The Wiring of Intelligence	 1061

Ruzgis, P. (1994). Thurstone, L. L. (1887–1955). In R. J. 
Sternberg (Ed.), Encyclopedia of human intelligence (pp. 
1081–1084). New York, NY: Macmillan.

Santarnecchi, E., Emmendorfer, A., & Pascual-Leone, A. 
(2017). Dissecting the parieto-frontal correlates of fluid 
intelligence: A comprehensive ALE meta-analysis study. 
Intelligence, 63, 9–281. doi:10.016/j.intell.2017.04.008

Sauce, B., & Matzel, L. D. (2018). The paradox of intelli-
gence: Heritability and malleability coexist in hidden 
gene-environment interplay. Psychological Bulletin, 144, 
26–47. doi:10.1037/bul0000131

Scarr, S. (1992). Developmental theories for the 1990s: Develo
pment and individual differences. Child Development, 63, 
1–19. doi:10.2307/1130897

Scarr, S., & McCartney, K. (1983). How people make their 
own environments: A theory of genotype – > environment 
effects. Child Development, 54, 424–435. doi:10.2307/ 
1129703

Schalke-Mandoux, D. S. (2016). The impact of educational 
attainment and grade retention on the development of intel-
ligence (Doctoral dissertation). doi:10.17169/refubium-12167

Schroeders, U., Schipolowski, S., Zettler, I., Golle, J., & Wilhelm, O.  
(2016). Do the smart get smarter? Development of fluid 
and crystallized intelligence in 3rd grade. Intelligence, 59, 
84–95. doi:10.1016/j.intell.2016.08.003

Shaywitz, B. A., Holford, T. R., Holahan, J. M., Fletcher, J. M., 
Stuebing, K. K., Francis, D. J., & Shaywitz, S. E. (1995). 
A Matthew effect for IQ but not for reading: Results from 
a longitudinal study. Reading Research Quarterly, 30, 
894–906. doi:10.2307/748203

Simon, H. A. (1962). The architecture of complexity. Proceedings 
of the American Philosophical Society, 106, 467–482. 
Retrieved from http://www.jstor.org/stable/985254

Spearman, C. (1904). “General intelligence,” objectively 
determined and measured. The American Journal of 
Psychology, 15, 201–292. Retrieved from http://www 
.jstor.org/stable/1412107

Spearman, C. (1927). The abilities of man: Their nature and 
assessment. Retrieved from https://archive.org/details/
abilitiesofman031969mbp

Spunt, R. P., & Adolphs, R. (2017). A new look at domain spec-
ificity: Insights from social neuroscience. Nature Reviews 
Neuroscience, 18, 559–567. doi:10.1038/nrn.2017.76

Stanovich, K. E. (1986). Matthew effects in reading: Some 
consequences of individual differences in the acquisi-
tion of literacy. Reading Research Quarterly, 21, 360–407. 
Retrieved from http://www.jstor.org/stable/747612

Tabery, J. (2007). Biometric and developmental gene–envi-
ronment interactions: Looking back, moving forward. 

Development and Psychopathology, 19, 961–967. doi:10 
.1017/s0954579407000478

Thomson, G. H. (1916). A hierarchy without a general fac-
tor. British Journal of Psychology, 1904-1920, 8, 271–281. 
doi:10.1111/j.2044-8295.1916.tb00133.x

Thomson, G. H. (1951). The factorial analysis of human abil-
ity. Retrieved from https://archive.org/details/factoriala 
nalysi032965mbp

Thorndike, E. L., Bregman, E. O., Cobb, M. V., & Woodyard, E.  
(1926). The measurement of intelligence. New York, NY: 
Teachers College Bureau of Publications.

Thurstone, L. L. (1938). Primary mental abilities. Chicago, IL: 
University of Chicago Press.

Tryon, R. C. (1935). A theory of psychological components—
an alternative to “mathematical factors.” Psychological 
Review, 42, 425–454. doi:10.1037/h0058874

Tucker-Drob, E. M., & Bates, T. C. (2015). Large cross-national 
differences in gene × socioeconomic status interaction 
on intelligence. Psychological Science, 27, 138–149. 
doi:10.1177/0956797615612727

Tucker-Drob, E. M., Brandmaier, A. M., & Lindenberger, U.  
(2019). Coupled cognitive changes in adulthood: A 
meta-analysis. Psychological Bulletin, 145, 273–301. 
doi:10.1037/bul0000179

van der Maas, H. L. J., Dolan, C. V., Grasman, R. P. P. P., 
Wicherts, J. M., Huizenga, H. M., & Raijmakers, M. E. J.  
(2006). A dynamical model of general intelligence: The pos-
itive manifold of intelligence by mutualism. Psychological 
Review, 113, 842–861. doi:10.1037/0033-295x.113.4.842

van der Maas, H. L. J., Kan, K.-J., & Borsboom, D. (2014). 
Intelligence is what the intelligence test measures. 
Seriously. Journal of Intelligence, 2(1), 12–15. doi:10.3390/
jintelligence2010012

van der Maas, H. L. J., Kan, K.-J., Marsman, M., & Stevenson, 
C. E. (2017). Network models for cognitive development  
and intelligence. Journal of Intelligence, 5(2), 16. doi:10 
.3390/jintelligence5020016

van der Maas, H. L. J., Savi, A. O., Hofman, A., Kan, K.-J., & 
Marsman, M. (2019). The network approach to general 
intelligence. In D. J. McFarland (Ed.), General and spe-
cific mental abilities (pp. 108–131). Cambridge, England: 
Cambridge Scholars Publishing

van Kesteren, M. T. R., Rijpkema, M., Ruiter, D. J., Morris, R. G. M.,  
& Fernández, G. (2014). Building on prior knowledge: 
Schema-dependent encoding processes relate to aca-
demic performance. Journal of Cognitive Neuroscience, 
26, 2250–2261. doi:10.1162/jocn_a_00630

Vygotsky, L. S. (1978). Mind in society. Cambridge, MA: 
Harvard University Press. 

http://www.jstor.org/stable/985254
http://www.jstor.org/stable/1412107
http://www.jstor.org/stable/1412107
https://archive.org/details/abilitiesofman031969mbp
https://archive.org/details/abilitiesofman031969mbp
http://www.jstor.org/stable/747612
https://archive.org/details/factorialanalysi032965mbp
https://archive.org/details/factorialanalysi032965mbp

