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Background: Extubation failure (EF) can lead to an increased chance of

ventilator-associated pneumonia, longer hospital stays, and a higher mortality rate. This

study aimed to develop and validate an accurate machine-learning model to predict EF

in intensive care units (ICUs).

Methods: Patients who underwent extubation in the Medical Information Mart for

Intensive Care (MIMIC)-IV database were included. EF was defined as the need for

ventilatory support (non-invasive ventilation or reintubation) or death within 48 h following

extubation. A machine-learning model called Categorical Boosting (CatBoost) was

developed based on 89 clinical and laboratory variables. SHapley Additive exPlanations

(SHAP) values were calculated to evaluate feature importance and the recursive

feature elimination (RFE) algorithm was used to select key features. Hyperparameter

optimization was conducted using an automated machine-learning toolkit (Neural

Network Intelligence). The final model was trained based on key features and compared

with 10 other models. The model was then prospectively validated in patients enrolled

in the Cardiac Surgical ICU of Zhongshan Hospital, Fudan University. In addition, a

web-based tool was developed to help clinicians use our model.

Results: Of 16,189 patients included in the MIMIC-IV cohort, 2,756 (17.0%) had EF.

Nineteen key features were selected using the RFE algorithm, including age, body

mass index, stroke, heart rate, respiratory rate, mean arterial pressure, peripheral

oxygen saturation, temperature, pH, central venous pressure, tidal volume, positive

end-expiratory pressure, mean airway pressure, pressure support ventilation (PSV) level,

mechanical ventilation (MV) durations, spontaneous breathing trial success times, urine

output, crystalloid amount, and antibiotic types. After hyperparameter optimization, our

model had the greatest area under the receiver operating characteristic (AUROC: 0.835)

in internal validation. Significant differences in mortality, reintubation rates, and NIV rates

were shown between patients with a high predicted risk and those with a low predicted

risk. In the prospective validation, the superiority of our model was also observed

(AUROC: 0.803). According to the SHAP values, MV duration and PSV level were the

most important features for prediction.
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Conclusions: In conclusion, this study developed and prospectively validated a

CatBoost model, which better predicted EF in ICUs than other models.

Keywords: extubation failure, recursive feature elimination, hyperparameter optimization, categorical boosting,

prospective validation

INTRODUCTION

Extubation, the process of removing an artificial airway to
liberate a patient from mechanical ventilation (MV), leads to
non-negligible risks due to significant respiratory and circulatory
changes. AlthoughMV is an advanced respiratory support widely
used in intensive care units (ICUs) (1), prolonged ventilation
is associated with poorer prognosis and should be avoided
(2, 3). However, premature extubation in unprepared patients
will cause extubation failure (EF), leading to a higher risk of
ventilator-associated pneumonia, extended hospital stays, and
higher mortality (25–50%) (4, 5). Therefore, it is significant
to accurately predict the EF risk and optimize the timing of
MV weaning.

Many factors have been assessed by prior studies for EF
prediction, including Rapid Shallow Breathing Index (RSBI,
f/Vt) (6), prolonged MV (7, 8), and cough strength (9, 10).
Unfortunately, it was shown that these factors as well as
physicians’ judgments were not as accurate as expected (11, 12).
As a result, the current weaning criteria based on these factors
are still unsatisfactory. 10–29% of patients who have met these
criteria still experience reintubation (1, 3).

With the rapid development of precision medicine, machine-
learning approaches, respected as a deep analysis “vehicle,”
have derived predictive tools in a vast range of clinical
applications (13–15). Some previous studies have explored the
ability of machine-learning models to accurately predict EF in
recent years (11, 16, 17). Despite remarkable accuracy, these
studies had a limited sample size, including only hundreds of
observations. Although data resampling methods were applied,
the models might overfit specific populations and therefore, lack
generalization ability. Other studies developed models based on
larger datasets, but they failed to validate their model on an
external dataset (12, 18). Furthermore, score variables such as
Acute Physiology Age Chronic Health Evaluation (APACHE)-
II and Therapeutic Intervention Scoring System (TISS) are
included in all these models, probably making the models
inconvenient for use in clinical settings.

In this study, we aimed to develop and validate a machine-
learning model with good accuracy for a general population. To
this end, we explored a large-scale public database to develop
a prediction model, using features selected according to their
importance and clinical availability. In addition, our model was
further validated in a university teaching hospital prospectively.

MATERIALS AND METHODS

Source of Data
The model was developed and internally validated based on a
sizeable critical care database called the Medical Information

Mart for Intensive Care (MIMIC)-IV (19), which consists of
comprehensive and high-quality data of patients admitted to
ICUs at the Beth Israel Deaconess Medical Center between 2008
and 2019. One author (QZ) obtained access to the database
and was responsible for data extraction. For external validation,
a prospective cohort was developed in the Cardiac Surgical
ICU (CSICU) of Zhongshan Hospital, Fudan University (ZS
cohort). This cohort was approved by its institutional ethics
committee (Approval No. B2019-075R). The study was reported
according to the recommendations of the Transparent Reporting
of a multivariable prediction model for Individual Prognosis Or
Diagnosis (TRIPOD) statement (20).

Selection of Participants
In the MIMIC-IV cohort, patients who underwent extubation
during ICU stays were included. The exclusion criteria were
as follows: (i) age < 18 years, (ii) unplanned extubation, (iii)
not the first extubation during the hospital stay, or (iv) no MV
records before extubation. In the ZS cohort, all eligible patients
that did not meet the exclusion criteria described above from
December 2020 to January 2021, were prospectively enrolled.
Written consent was obtained from patients’ legally authorized
representatives upon admission to the ICU.

Data Collection and Outcome Definition
In the MIMIC-IV cohort, clinical and laboratory variables were
extracted within 4 h before extubation (Supplementary Table 1),
including patient characteristics (age, gender, and ethnicity),
laboratory data (arterial blood gas, full blood count, liver
function, and renal function), vital signs (respiratory rate, blood
pressure, heart rate, peripheral oxygen saturation (SpO2), and
temperature). For some variables with multiple measurements,
average values were assessed. The average amount per hour of
transfusion (red blood cells, platelets, and fresh frozen plasma)
and fluid balance (urine output, crystalloid bolus, and colloid
bolus) were calculated within 24 h before extubation, and were
then normalized by patient weight. Comorbidities were also
assessed based on the recorded International Classification of
Diseases (ICD)-9 and ICD-10 codes (21), and the Charlson
Comorbidity Index was calculated (22). In addition, data on
medications such as heparin, antibiotics and vasopressors, as well
as continuous renal replacement therapy (CRRT) were extracted.
Finally, the 28-day mortality, reintubation, and initiation of non-
invasive ventilation (NIV) after extubation were also assessed. In
the ZS cohort, due to limited manpower, we did not collect all the
variables; instead, key candidate variables were recorded when
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FIGURE 1 | Schematic illustration of the study design. (A) Patients who underwent extubation in the Medical Information Mart for Intensive Care (MIMIC)-IV database

were included in the study and 89 variables were extracted. The dataset was divided into train set (80%) and internal validation set (20%). (B) The recursive feature

elimination algorithm was performed based on the train set, and key features were selected. (C) Hyperparameters was optimized using an automated machine

learning toolkit on the train set. (D) The developed CatBoost model outperformed other models both in the internal validation and prospective validation sets.
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FIGURE 2 | Flow chart of patient selection. MIMIC-IV, Medical Information Mart for Intensive Care-IV; ICU, intensive care unit.

patients underwent extubation. Patients were followed up until
discharge or death.

The primary outcome of the present study was EF, which was
defined as the need for ventilatory support (NIV or reintubation)
or death within 48 h following planned extubation (5, 23).

Statistical Analysis
Baseline characteristics were compared between the successful
extubation group and the EF group in the MIMIC-IV and
ZS cohorts. For continuous variables, values are presented
as the means (standard deviations) (if normal) or medians
[interquartile ranges] (if non-normal), and comparisons were
made using Student’s t-test or the rank-sum test, as appropriate.
For categorical variables, values are presented as total numbers
[percentages] and the Chi-square test or Fisher’s exact test
were used, as appropriate, to examine differences between the
two groups.

An advanced machine-learning model called CatBoost was
developed using the Catboost Python package (version 0.24). As
shown in Figure 1, the MIMIC-IV dataset was first randomly
split into the train set (80%) and internal validation set (20%).
Categorical variables or missing values were not processed, as the
CatBoost algorithm could handle them automatically. Second,
the recursive feature elimination (RFE) algorithm based on
SHapley Additive exPlanations values was performed to screen
out key features, as shown in Figure 1B. Thus, a full CatBoost
model was developed based on the train set with all available
variables to predict EF. Second-order variables were calculated
based on other variables, such as RSBI, Sequential Organ Failure
Assessment (SOFA) and Simplified Acute Physiology Score
(SAPS)-II, were manually excluded. The effects of remaining
features on prediction scores were then measured using the
functions of the SHAP Python package (version 0.32.1), which
assessed the importance of each feature using a game-theoretic
approach (24). The feature with the smallest effect on the
prediction was eliminated in each loop, and a new CatBoost
model was recursively fitted based on smaller feature sets until

a significant decrease in model performance was observed
(25). Finally, key features were selected that had the greatest
importance and were easy to collect in clinical settings.

To further improve the model performance, hyperparameter
tuning was conducted using an automated machine learning
toolkit called Neural Network Intelligence (NNI) designed
by Microsoft Research. We chose the Tree-structured Parzen
Estimator (TPE), one of the sequential model-based optimization
algorithms, as the tuning algorithm. TPE sequentially
constructed models to approximate the performance of
hyperparameters based on historical measurements, and then
subsequently chose new hyperparameters to test based on this
model (26). The hyperparameter search domain is summarized
in Supplementary Table 2. One hundred trials were carried out
and the parameters with the greatest area under the receiver
operating characteristic (AUROC) were saved. A compact
CatBoost model using the saved parameters was then trained
based on the selected features, and then validated in the
validation sets.

AUROCs were also calculated to compare our model
and other predictive factors commonly used in the ICU,
such as RSBI, SOFA, SAPS-II, and ROX (the ratio of pulse
oximetry/fraction of inspired oxygen to respiratory rate).
Additionally, 10 different models were derived in the train
set and compared with our CatBoost model, including K-
Nearest Neighbor (KNN), AdaBoost, Multi-Layer Perceptron
(MLP), Support Vector Machine (SVM), Logistic Regression
(LR), NaiveBayes, Gradient Boosting Decision Tree (GBDT),

random forest, eXtremely Gradient Boosting (XGBoost) and
LightGBM (15). Note that most of these models could not
analyze data with missing values, and therefore, datasets were

imputed by multiple imputation (27). In addition, categorical
variables were converted to one-hot encoding and data were
centered to zero and scaled before training the KNN, MLP, SVM,
LR, and NaiveBayes models. These models and our CatBoost

model were compared both in the internal and prospective
validation sets.
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TABLE 1 | Baseline characteristics of the MIMIC-IV and ZS cohorts.

MIMIC-IV cohort Zhongshan hospital cohort

Success (n = 13,433) Failure (n = 2,756) P-value Success (n = 451) Failure (n = 51) P-value

Age 64 (16) 68 (15) <0.001 60 (13) 63 (12) 0.073

BMI 30 (7) 30 (9) <0.001 24 (12) 26 (4) 0.135

Strokes, n (%) 968 (7) 543 (20) <0.001 23 (5) 7 (14) 0.024

Heart rate (/min) 83 (15) 88 (18) <0.001 85 (14) 95 (20) 0.002

Respiratory rate (/min) 18 (4) 20 (5) <0.001 20 (8) 23 (6) <0.001

MAP (mmHg) 79 (12) 76 (15) <0.001 81 (10) 80 (15) 0.508

SpO2 (%), median [Q1,Q3] 99 [97,100] 98 [96,99] <0.001 99 [98,100] 99 [97,100] 0.433

Temperature (◦C) 37.0 (0.6) 37.1 (0.9) <0.001 36.8 (0.6) 36.9 (0.7) 0.183

pH 7.39 (0.05) 7.36 (0.11) <0.001 7.41 (0.04) 7.44 (0.03) 0.197

CVP (mmHg) 10 (4) 12 (5) <0.001 11 (2) 12 (3) 0.125

Tidal volume (mL/kg), median [Q1,Q3] 5.8 [4.7,7.1] 5.6 [4.4,6.9] <0.001 7.2 [6.3,8.5] 6.9 [5.5,8.2] 0.557

PEEP (cmH2O) 4.6 (1.7) 6.0 (3.0) <0.001 5 (0.0) 5 (0.0) 1.000

Mean airway pressure (cmH2O) 7.3 (2.2) 9.3 (4.1) <0.001 7.1 (0.7) 7.4 (0.8) 0.017

PSV Level (cmH2O), median [Q1,Q3] 5.0 [5.0,5.0] 5.0 [5.0,7.5] <0.001 5 [5.0, 5.0] 5 [5.0, 5.0] 1.000

MV durations (h), median [Q1,Q3] 15.9 [7.2,37.0] 36.9 [15.0,89.6] <0.001 16.0 [13.0,20.0] 36.0 [16.8,61.0] <0.001

SBT success times, n (%)

0 7,803 (58) 1,677 (61) <0.001 0 (0.00) 0 (0.00) <0.001

1 3,645 (27) 531 (19) 449 (100) 45 (88)

2 1,025 (8) 230 (8) 2 (0) 4 (8)

≥3 960 (7) 318 (12) 0 (0.00) 2 (4)

Urine output (mL/kg/h), median [Q1,Q3] 0.9 [0.6,1.5] 0.7 [0.3,1.2] <0.001 1.5 [1.2,1.9] 1.4 [1.1,1.6] 0.024

Antibiotic types, n (%)

0 10,288 (77) 1,764 (64) <0.001 0 (0.00) 0 (0.00) 1.000

1 2,192 (16) 428 (16) 451 (100) 51 (100)

2 752 (6) 334 (12) 0 (0.00) 0 (0.00)

3 169 (1) 169 (6) 0 (0.00) 0 (0.00)

≥4 32 (0) 61 (2) 0 (0.00) 0 (0.00)

Failure type, n (%)

Death / 1,504 (55) / 4 (8)

NIV / 411 (15) / 43 (84)

Reintubation / 902 (33) / 14 (27)

Values are presented as mean (SD) if not otherwise specified. MIMIC-IV, Medical Information Mart for Intensive Care-IV; ZS, Zhongshan; BMI, body mass index; MAP, mean arterial

pressure; SpO2, peripheral oxygen saturation; CVP, central venous pressure; PEEP, positive end-expiratory pressure; PSV, pressure support ventilation; MV, mechanical ventilation; SBT,

spontaneous breathing trial; NIV, non-invasive ventilation.

All statistical analyses in the present study were performed
using Python (version 3.7.6); p < 0.05 was considered
statistically significant.

RESULTS

Baseline Characteristics
As shown in Figure 2, a total of 16,189 and 502 patients who
underwent extubation were ultimately included in the MIMIC-
IV and ZS cohorts, respectively. The MIMIC-IV dataset was then
divided into the train set (n= 12,967) and the internal validation
set (n= 3,222).

A comparison of baseline characteristics between the
successful extubation and EF groups in the MIMIC-IV and ZS
cohorts is summarized in Table 1. In both cohorts, patients in

the failure group had a higher rate of stroke, higher heart rate
and respiratory rate, and mean airway pressure (p < 0.05).
Significant prolonged MV duration and lower urine output were
also observed in the failure group in both cohorts. No significant
difference in pressure support ventilation (PSV) between the
successful extubation and EF group was observed in the ZS
cohort as a PSV level of 5 was routinely set at the beginning (28),
and the level was elevated when the target tidal volume could not
be reached, but not if the patients were unable to tolerate that.

Development of CatBoost Model
The RFE algorithm was performed, and 19 key features
were finally selected, including age, body mass index (BMI),
stroke, heart rate, respiratory rate, mean arterial pressure
(MAP), SpO2, temperature, pH, central venous pressure
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FIGURE 3 | Hyperparameter optimization using an automated machine learning toolkit. (A) Each blue point represents the result of a trial, and the dark orange line

represents the best area under the receiver operating characteristic curve (AUROC). (B) Each line represents a trial, and the green to red color represents its AUROC.

FIGURE 4 | Comparison of the full and the compact CatBoost models. The full model was developed based on all available features while the compact was derived

based on key features selected by the recursive feature elimination algorithm. Both models had optimized hyperparameters. (A) Receiver operating characteristic

curves (ROCs) of the full and the compact models. Distribution of the impacts each feature had on the output of the full model (B) or compact model (C) estimated

using the SHapley Additive exPlanations (SHAP) values. The plot sorts features by the sum of SHAP value magnitude over all samples. The blue to red color

represents the feature value (red high, blue low). The x-axis measures the impacts on the model output (right positive, left negative).
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FIGURE 5 | Comparison of model performance in the internal validation set. (A) Receiver operating characteristic curves (ROCs) of CatBoost and other predictive

factors. (B) Receiver operating characteristic curves (ROCs) of different models. (C) Calibration plot of CatBoost model and Logistic Regression (LR). (D) Decision

curve analysis of CatBoost and LR. (E) Kaplan Meier analysis of 28-day survival in the high- and low-risk groups; (F) Cumulative NIV events in the high- and low-risk

groups; (G) Cumulative reintubation events in the high- and low-risk groups. AUC, area under the curve; RSBI, Rapid Shallow Breathing Index; SOFA, Sequential

Organ Failure Assessment; SAPS-II, Simplified Acute Physiology Score-II; ROX, the ratio of pulse oximetry/fraction of inspired oxygen to respiratory rate; XGBOOST,

eXtremely Gradient Boosting; GBDT, Gradient Boosting Decision Tree; KNN, K-Nearest Neighbor; SVM, Support Vector Machine; MLP, Multi-Layer Perceptron; LR,

Logistic Regression; PPV, Positive Predictive Value; NPV, Negative Predictive Value.

(CVP), tidal volume, positive end-expiratory pressure (PEEP),
mean airway pressure, PSV level, MV duration, spontaneous
breathing trial (SBT) success time, urine output, crystalloid
amount, and antibiotic types. Hyperparameter optimization

was then conducted (shown in Figure 3). After 100 trials,
a CatBoost model with the greatest AUROC was obtained.
The final settings of the hyperparameter search are listed in
Supplementary Table 2.
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TABLE 2 | Model performance in the internal and prospective validation sets.

Model AUROC Best cutoff Gray zone Values in gray zone Youden

index (%)

Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Internal validation

CatBoost 0.84 (0.82–0.85) 0.148 0.07–0.24 1,276 (39.60%) 50 72 (68–76) 78 (76–79) 41 (38–44) 93 (92–94)

LightGBM 0.83 (0.81–0.85) 0.147 0.06–0.24 1,269 (39.39%) 49 70 (66–74) 79 (77–80) 41 (38–44) 93 (92–94)

XGBoost 0.83 (0.81–0.85) 0.156 0.04–0.23 1182 (36.69%) 47 64 (60–68) 84 (82–85) 45 (42–49) 92 (91–93)

GBDT 0.82 (0.80–0.84) 0.144 0.08–0.25 1380 (42.62%) 50 76 (72–79) 74 (73–76) 38 (36–41) 93 (92–95)

Random forest 0.82 (0.80–0.84) 0.183 0.08–0.29 1472 (45.46%) 49 73 (70–77) 75 (74–77) 39 (36–42) 93 (92–94)

AdaBoost 0.80 (0.78–0.82) 0.493 0.49–0.50 1046 (32.30%) 45 61 (57–65) 84 (83–86) 45 (41–49) 91 (90–92)

MLP 0.78 (0.76–0.80) 0.173 0.02–0.35 1737 (53.64%) 43 63 (59–67) 80 (79–82) 40 (37–43) 91 (90–92)

SVM 0.78 (0.76–0.80) 0.142 0.09–0.16 2004 (61.89%) 46 60 (56–64) 86 (85–87) 47 (44–51) 91 (90–92)

LR 0.77 (0.75–0.80) 0.179 0.06–0.25 1840 (56.83%) 44 64 (60–68) 80 (79–81) 40 (37–43) 91 (90–92)

NaiveBayes 0.77 (0.75–0.79) 0.058 0.00–0.49 2711 (83.72%) 41 65 (62–70) 75 (74–77) 36 (33–39) 91 (90–92)

KNN 0.77 (0.74–0.79) 0.188 0.05–0.21 1428 (44.10%) 40 55 (51–59) 85 (84–86) 44 (40–47) 90 (89–91)

Prospective validation

CatBoost 0.80 (0.74–0.86) 0.049 0.04–0.09 198 (39.36%) 48 85 (74–93) 64 (59–68) 21 (15–26) 97 (95–99)

LR 0.77 (0.70–0.84) 0.834 0.37–0.88 246 (48.91%) 38 51 (37–65) 87 (84–90) 31 (21–42) 94 (92–96)

LightGBM 0.77 (0.70–0.84) 0.053 0.04–0.10 260 (51.69%) 44 81 (69–91) 63 (59–68) 20 (15–26) 97 (95–99)

XGBoost 0.77 (0.71–0.82) 0.045 0.03–0.13 217 (43.14%) 48 83 (71–93) 65 (61–70) 21 (15–27) 97 (95–99)

SVM 0.74 (0.67–0.82) 0.956 0.33–0.85 254 (50.50%) 38 41 (28–55) 97 (95–98) 60 (43–77) 94 (91–96)

NaiveBayes 0.74 (0.66–0.80) 0.377 0.42–0.87 230 (45.73%) 35 96 (90–100) 39 (34–43) 15 (12–19) 99 (97–100)

GBDT 0.72 (0.64–0.79) 0.495 0.34–0.85 261 (51.89%) 30 81 (68–91) 49 (44–54) 15 (11–19) 96 (93–98)

MLP 0.71 (0.64–0.78) 0.781 0.37–0.90 275 (54.67%) 31 55 (42–69) 76 (72–80) 20 (14–27) 94 (91–96)

KNN 0.71 (0.65–0.78) 0.63 0.42–0.88 239 (47.51%) 33 69 (55–81) 65 (60–69) 18 (13–24) 95 (92–97)

AdaBoost 0.70 (0.62–0.78) 0.992 0.34–0.88 271 (53.88%) 30 31 (19–44) 98 (97–100) 70 (50–88) 93 (90–95)

Random forest 0.69 (0.62–0.77) 0.64 0.32–0.85 278 (55.27%) 33 48 (31–58) 85 (74–92) 60 (49–72) 93 (91–95)

Models are ordered according to their areas under receiver operating characteristic curves. Youden index was defined as sensitivity + specificity – 1. The bold values indicate the best

performance of the 10 models in the internal or prospective validation. XGBOOST, eXtremely Gradient Boosting; GBDT, Gradient Boosting Decision Tree; KNN, K-Nearest Neighbor;

SVM, Support Vector Machine; MLP, Multi-Layer Perceptron; LR, Logistic Regression; PPV, Positive Predictive Value; NPV, Negative Predictive Value.

As shown in Figure 4A, the CatBoost model with all
available variables had a remarkable AUROC of 0.848, while
the compact model with 19 selected variables had a slightly
lower AUROC of 0.835. SHAP values for the two models
were assessed in the internal validation set, and are shown
in Figures 4B,C, respectively. Feature values were indicated
by a spectrum with blue representing the lowest value. A
positive SHAP value represents an increase in the risk of EF
and vice versa. Features were ranked according to the sum
of absolute SHAP values over all samples. As shown, MV
duration is the most important feature for prediction of EF
in the final model, and a longer duration indicates a higher
EF risk.

Figures 5A,B depicts the comparison between the CatBoost
model and other predictive factors or models. As shown, our
CatBoost model significantly outperformed other predictive
factors or models and had the greatest AUROC. To further
elucidate the performance of our model, a calibration plot
(Figure 5C) and decision curve analysis (Figure 5D) were
performed (29). For simplicity, only the results of CatBoost and
LR are demonstrated. The sensitivity and specificity analysis
of these predictive methods in the internal validation set is
summarized in Table 2. Although the CatBoost model was
not the best on all measures, it had the greatest Youden

Index (0.499) which is considered a more comprehensive
evaluation approach.

Additionally, patients in the internal validation set were
divided into high- and low-risk groups, according to whether
their failure risks predicted by CatBoost were greater than the
median risk in the set. Figures 5E–G shows the survival curves,
cumulative NIV curves, and cumulative reintubation curves of
the two groups, respectively. Log rank p-values are lower than
0.01 in Figures 5E–G, indicating significant differences between
the high- and low-risk groups.

Prospective Validation and a Web-Based
Tool
The results of prospective validation are shown in Figure 6A. It
can be seen that our model also had a better generalization ability
(AUROC: 0.803 [95%CI: 0.74–0.86]) than the other models. The
sensitivity and specificity analyses are summarized in Table 2.

In addition, a web-based tool was established for clinicians
to use the compact model, http://www.aimedicallab.com/tool/
aiml-extfailure.html. An example of using our tool is depicted
in Figure 6B. A user needs to enter the variable values when
weaning, leaving missing values blank and clicking the “predict”
button. The risk of EF assessed by the CatBoost model, and the
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FIGURE 6 | Application of the CatBoost model. (A) Receiver operating characteristic curves of different models in the prospective validation set. (B) An example of

the web-based tool. (C) The prediction results of the CatBoost model and the top 10 important features were summarized. A green bar indicates a protective factor

while a red bar represents a risk factor. The bar length corresponds to the magnitude of protection or risk.

top 10 important features will be shown to the user, as shown in
Figure 6C.

DISCUSSION

In this study, we developed and validated an accurate machine-
learning model for predicting EF in ventilated critically ill
patients. To our knowledge, this is the first model constructed
on a large-scale public database and then further validated in a
university teaching hospital prospectively. Moreover, different to
previously published models, we provide an open and accessible
data interface for the public to use and validate our model.

Eighty-nine variables were evaluated, and key features were
screened out, improving model usability compared with previous
studies.We eventually selected 19 key features that could bemore
easily obtained, including age, BMI, stroke, heart rate, respiratory

rate, MAP, SpO2, temperature, pH, CVP, tidal volume, PEEP,
mean airway pressure, PSV level, MV duration, SBT success
time, urine output, crystalloid amount, and antibiotic types. As
expected, the slight decrease in the AUROCof the compactmodel
based on selected features (shown in Figure 4A), demonstrated
that other variables could be excluded without a marked negative
effect on the model performance.

Previous studies indicated that age and BMI are two
important factors associated with an increased risk of EF
(6, 30–32). Elderly or overweight patients have a higher
prevalence of comorbidities, a decline in cardiac and lung
functions, and a higher risk of respiratory failure, leading to
a worse outcome following extubation. Increasing evidence
supports that stroke patients suffer a higher risk of EF,
and airway management remains a clinical challenge in
this population (33, 34).
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In addition, abnormal vital signs, such as heart rate,
respiratory rate, MAP, SpO2, and temperature were related to
a higher EF risk (35, 36). These basic factors are commonly
used in ICUs, representing the vital status of a patient, and were
included in many prediction models. Arterial pH was another
key feature in our study, which monitors the body’s acid-base
balance. A lower-than-normal pH indicates hypoventilation or
severe pulmonary disease, and was a remarkable predictive factor
for EF according to its SHAP values.

Our study also showed that CVP contributed to EF prediction.
As shown in Figure 4C, gray points of CVP representing missing
values, had positive SHAP values as shown, which suggested
that patients without CVP measures had a higher failure rate.
Prior research has explored the benefit of CVP measurement
in septic patients (37). In our study, it was shown that CVP
monitoring might also be associated with improved outcomes
following extubation. More studies are needed to confirm this.

As expected, SBT success time and parameters of MV such
as tidal volume, PEEP and mean airway pressure, helped to
accurately predict EF in our study. By assessing SHAP values, we
found that MV duration and PSV level were the most important
features for prediction, which is consistent with previous studies
(7, 38–41). Additionally, fluid balance (only urine output,
crystalloid amount in our study) and antibiotic types were
included in the final model. Evidence suggests that fluid balance
was associated with failed extubation and was consistent with
our findings (32, 42). The number of antibiotics administered
to a patient reflected his or her infectious status. As shown in
Figure 4C, a greater number of antibiotics administered was
related to a higher EF risk.

Although SAPS-II, APACHE-II, and other risk scores showed
great importance for prediction in previous studies (16, 17) as
well as in our study, we excluded these features for two main
reasons. Firstly, the extracted features covered most components
of these scores, leading to negligible benefits of including these
scores. Previous research has shown that excluding these scores
did not impede the development of an accurate model (43).
Secondly, including these scores such as APACHE-II and SOFA,
would make our model inconvenient to use in clinical settings.

Based on these key features, a CatBoost model was derived
with optimized hyperparameters and outperformed other
predictive factors and 10 models in the MIMIC-IV dataset.
CatBoost, a member of the gradient boosting algorithm family,
has not been widely adopted in critical care research, despite
the fact that CatBoost significantly outperformed other machine-
learning models in various tasks in some previous studies (44).
Its main advantage is that it can successfully handle categorical
features and missing values automatically, and takes advantage
of dealing with them during training instead of preprocessing
time (45). Therefore, categorical features no longer need to be
encoded, and missing values do not need to be imputed. Another
advantage of the algorithm is that it uses a new schema to
calculate leaf values when selecting the tree structure. The schema
helps to reduce overfitting, the major problem that constrains the
generalization ability of machine-learning models (45).

Apart from internal validation, we enrolled more than 500
patients in the CSICU of Zhongshan Hospital, Fudan University

to prospectively validate our model. As shown in Figure 6, our
model had a greater AUROC than others, indicating a remarkable
generalization ability and clinical value. To help clinicians use the
model, a web-based tool was developed, which provides a user-
friendly interface. After entering the variables, the risk of EF, as
well as the top 10 important features were shown. These results
will help clinical decision-makers to understand the patient’s
status and prepare an appropriate treatment strategy.

More importantly, our model is a promising tool for
improving the prognosis of patients who undergo extubation
and can have a positive impact both medically and financially.
As shown in previous studies, either EF or reintubation
is independently associated with higher mortality (3, 46).
Reintubation is also accompanied by the occurrence of
complications such as acute respiratory distress syndrome,
sepsis, ventilator-associated pneumonia, prolonged ICU
stay, and increased medical cost (4, 5). By adopting this
model, if a patient is predicted to have a high risk of
EF, weaning from MV can be delayed, and more intensive
monitoring will be granted, which may avoid injuries caused
by EF and reduce mortality. In addition, extra medical
costs due to further medical investigations and treatments
could be prevented as low-risk patients would be less
likely to develop severe complications. The clinical value of
this model will be further assessed and reported in future
prospective studies.

Several limitations of this study should be considered. Firstly,
there is still disagreement on the definition of EF. The definition
adopted in the present study included the need for NIV,
reintubation and death within 48 h following extubation. High-
flow oxygen therapy, with the potential to prevent reintubation,
was excluded. Further studies should be carried to include the
use of a high-flow nasal cannula as EF. A different time interval
(e.g., 72 h following extubation) could also be studied. Secondly,
the majority of routine ventilation methods following surgery
were included in our study, which have a minimal risk of
EF. This could have led to biased results. Our future study
is to fine-tune our model or develop new models for patients
who undergo difficult or prolonged weaning. These patients
have a significantly higher risk of EF in ICUs. Thirdly, novel
parameters or techniques proposed in recent studies were not
included in the present study, such as central venous-to-arterial
PCO2 difference (36), the cuff leak test (47), thenar oxygen
saturation (48), and diaphragm dysfunction (49). We argue that
these parameters or techniques need multiple measurements
or complex calculations, leading to difficult application in
clinical settings. The variables selected in our study are rapidly
available and directly measured, improving model practicality.
Fourthly, the sensitivity and specificity of our model were 72
and 78%, respectively, indicating that the false negative rate
could be relatively high. A number of patients with EF may
be missed, which is important as they have a non-negligible
mortality. Lastly, patients enrolled in the prospective validation
set were all from one CSICU; thus, this dataset can only
validate the efficacy of our model in a limited patient population.
More large-scale prospective studies are needed to validate
our model.
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CONCLUSIONS

In conclusion, the present study screened out 19 key features
associated with EF and developed a CatBoost model which can
better predict EF than other predictive methods in ICUs.
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