
ORIGINAL RESEARCH
published: 20 April 2017

doi: 10.3389/fgene.2017.00043

Frontiers in Genetics | www.frontiersin.org 1 April 2017 | Volume 8 | Article 43

Edited by:

Rosalba Giugno,

University of Verona, Italy

Reviewed by:

Christophe Magnan,

Paris Diderot University, France

Piero Marchetti,

University of Pisa, Italy

*Correspondence:

Søren Brunak

soren.brunak@cpr.ku.dk

†
These authors have contributed

equally to this work.

Specialty section:

This article was submitted to

Bioinformatics and Computational

Biology,

a section of the journal

Frontiers in Genetics

Received: 01 February 2017

Accepted: 27 March 2017

Published: 20 April 2017

Citation:

Pedersen HK, Gudmundsdottir V and

Brunak S (2017) Pancreatic Islet

Protein Complexes and Their

Dysregulation in Type 2 Diabetes.

Front. Genet. 8:43.

doi: 10.3389/fgene.2017.00043

Pancreatic Islet Protein Complexes
and Their Dysregulation in Type 2
Diabetes
Helle Krogh Pedersen 1†, Valborg Gudmundsdottir 1† and Søren Brunak 1, 2*

1Department of Bio and Health Informatics, Technical University of Denmark, Kgs Lyngby, Denmark, 2Disease Systems

Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of

Copenhagen, Copenhagen, Denmark

Type 2 diabetes (T2D) is a complex disease that involves multiple genes. Numerous

risk loci have already been associated with T2D, although many susceptibility genes

remain to be identified given heritability estimates. Systems biology approaches hold

potential for discovering novel T2D genes by considering their biological context,

such as tissue-specific protein interaction partners. Pancreatic islets are a key T2D

tissue and many of the known genetic risk variants lead to impaired islet function,

hence a better understanding of the islet-specific dysregulation in the disease-state is

essential to unveil the full potential of person-specific profiles. Here we identify 3,692

overlapping pancreatic islet protein complexes (containing 10,805 genes) by integrating

islet gene and protein expression data with protein interactions. We found 24 of these

complexes to be significantly enriched for genes associated with diabetic phenotypes

through heterogeneous evidence sources, including genetic variation, methylation, and

gene expression in islets. The analysis specifically revealed ten T2D candidate genes

with probable roles in islets (ANPEP, HADH, FAM105A, PDLIM4, PDLIM5, MAP2K4,

PPP2R5E, SNX13, GNAS, and FRS2), of which the last six are novel in the context of

T2D and the data that went into the analysis. Fifteen of the twenty-four complexes were

further enriched for combined genetic associations with glycemic traits, exemplifying

how perturbation of protein complexes by multiple small effects can give rise to diabetic

phenotypes. The complex nature of T2D ultimately prompts an understanding of the

individual patients at the network biology level. We present the foundation for such

work by exposing a subset of the global interactome that is dysregulated in T2D and

consequently provides a good starting point when evaluating an individual’s alterations

at the genome, transcriptome, or proteome level in relation to T2D in clinical settings.

Keywords: diabetes, data integration, protein complexes, tissue specificity, pancreatic islets, patient network

biology

INTRODUCTION

Diabetes is a multi-tissue metabolic disease caused by defects in insulin action, insulin secretion,
or both, resulting in hyperglycemia. The heritability of type 2 diabetes (T2D) has been estimated
to range from 25 to 80% (Prasad and Groop, 2015). Despite that more than 120 T2D risk loci have
been identified so far (Prasad and Groop, 2015) their combined effect explains only a fraction of the
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heritability. The unexplained heritability of complex traits is
expected to mainly reside in a large number of common and
rare variants across the human genome (Yang et al., 2015).
Identifying the remaining variants involved in T2D through
traditional single-variant association analyses will require greatly
increased sample sizes compared to current studies for improving
statistical power (Morris et al., 2012). Integrative systems biology
approaches hold the promise to facilitate this process by
considering gene products in the context of cellular networks
rather than in isolation, thus improving power through the use
of existing biological knowledge.

Genome-wide analyses, such as genome-wide association
studies (GWAS) and studies of differential expression or
methylation, often rank thousands of genes for phenotype
associations. Integrating such data is a powerful way to identify
genes important in the disease pathogenesis that are not
identifiable in any single dataset but become evident when
considering the different evidence sources collectively (Kodama
et al., 2012; Pers et al., 2013). Combining such integrative
evidence with protein complexes provides additional insight into
the biological context and has the potential to reveal novel
therapeutic targets (Lage et al., 2012).

The subset of protein complexes active in a given tissue is
restricted by the tissue-specific proteome, which is important
to consider because disease-associated genes have a tendency to
exhibit tissue-specific gene expression in affected tissues (Lage
et al., 2008). Previous studies have shown that disease-gene
prioritization is improved when using tissue-specific networks
compared to tissue-naive protein interaction networks (Magger
et al., 2012; Ganegoda et al., 2014). Consequently, considering
disease associated genes in the appropriate context is a promising
avenue for making further inroads into disease understanding
(Gross and Ideker, 2015). Such tissue-specific analyses are now
enabled by the increasing amount of large-scale tissue and
cell type specific data sets (Lonsdale et al., 2013; Kim et al.,
2014; Uhlén et al., 2015), making it possible to disentangle or
deconvolute tissue and cell type-specific processes.

A key diabetes tissue is the islet of Langerhans, which plays an
important role in diabetes pathology. Islets are scattered around
in the pancreas where they only constitute 1–2% of the total organ
mass. They consist of a number of different highly specialized
endocrine cell-types with the insulin-producing beta-cells and
glucagon-producing alpha-cells being of the highest relevance to
diabetes (Danielsson et al., 2014). Utilizing tissue-specific data,
one major aim of this study was to create a pancreatic and
beta-cell specific resource of protein complexes to serve as an
integration scaffold in this and future studies. Previous work
on tissue-specific protein interaction networks did either not
include human pancreatic islets (Guan et al., 2012; Barshir et al.,
2013; Basha et al., 2015) or were restricted to tissue-specific
gene expression data (Bossi and Lehner, 2009; Magger et al.,
2012; Greene et al., 2015). By focusing on the pancreatic islet,
we supplement these resources by integrating high-confidence
physical protein interaction network data with islet-specific gene
expression data from both microarray and RNAseq studies, as
well as protein expression from immunohistochemistry-based
protein profiling.

Another major aim of the study was to identify a set of islet
protein complexes that are likely dysregulated or dysfunctioning
in T2D. To investigate this, we searched for complexes that
were enriched for genes implicated in diabetic phenotypes
through heterogeneous sources of evidence, ranging from genetic
variation to methylation and gene expression in islets. The
resulting complexes thus represent functional units whose
perturbation can give rise to a diabetic phenotype and at the
same time provide insight into the genetic heterogeneity that
contributes to the pathogenesis of T2D in pancreatic islets.

RESULTS

Defining a Catalog of 3,692 Islet Protein
Complexes
We generated an islet-specific protein interaction network
using gene and protein expression data combined with high-
confidence protein interactions (see Section Methods and
Figure 1A). This network was further decomposed into 3,692
overlapping protein complexes (10,805 genes) using the two
complementary methods, ClusterOne (Nepusz et al., 2012)
and spoke-hub, focusing on high internal connectivity and
hub-topology, respectively (see Section Methods for details).
We specifically chose network decomposition algorithms that
allow for overlapping complexes as many proteins participate
in multiple processes, making it difficult to decide on a
single partition that closely reflects biological reality. These
complexes, ranging in size from 6 to 50 proteins, captured
different regions in network topology space, some being
sparsely connected whereas others showed complete internal
connectivity with all nodes having a physical interaction with
all other nodes (Supplementary Table 1). This set of complexes
represents a catalog of islet protein complexes and their
constituents.

Coordinated Expression of Islet Protein
Complexes
Tissue-specific coordination of gene expression among members
of a protein complex may indicate an important function of
the complex in the respective tissue (Han et al., 2004; Taylor
et al., 2009; Börnigen et al., 2013). To investigate the status
of the islet complexes, we calculated the degree of coordinated
expression of each of the 3,692 complexes across a range
of 34 tissues as the normalized average Pearson correlation
coefficient of interacting proteins, using data from the GTEx
consortium (Ardlie et al., 2015) and the study by Nica et al.
(2013) (see Section Methods for details and Figure 1B). To
evaluate the importance of coordinated expression for islet
relevant complexes, we defined a set of 76 benchmarking islet
complexes, each constituted by 10% of genes known to be
of major importance for islet function and identity (Pasquali
et al., 2014; Figure 1C). These benchmarking complexes had
significantly higher coordinated expression in either islets, beta-
cells, or non-beta islet cells compared to the background
distribution of all other complexes (MWU, P = 9.6 × 10−4,
Supplementary Figure 1). These results suggest that coordinated
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FIGURE 1 | Overview of the methodology employed. We first generated an integration scaffold of islet protein complexes in healthy tissue (A) and defined a

subset of complexes with coordinated expression in islets (B) that were further benchmarked (C,D). We then identified the subset of islet complexes with potential

dysregulation in the T2D state by functional convergence of 13 islet diabetic phenotype gene sets (E), followed by functional annotation and validation (F–H). For

comparison, direct convergence of the islet diabetic phenotype gene sets was evaluated (E).

islet gene expression of protein complex members can indicate
an important role in islet biology. We therefore defined a subset
of 1,007 islet-coordinated complexes where at least one of the
islet tissue components (whole islets, beta, or non-beta cells) was
among the three highest ranked across the 34 tissues tested (see
Section Methods). Moreover, the 1,007 complexes were enriched
(MWU, P = 2.8 × 10−4) for genes residing in islet regulatory
regions defined as having islet-selective open chromatin in the

transcription start site or gene-body (Supplementary Table 2;
Figure 1D).

While these 1,007 complexes are of special interest in the
context of islet function, previous work related to the cell
cycle (de Lichtenberg et al., 2005) has illustrated that protein
complexes can be functional even though not fully coordinated
due to sophisticated, temporal regulation. We therefore included
all 3,692 complexes in the further analyses on T2D dysregulation.
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Limited Direct Overlap of Islet Diabetes
Gene Sets
Having a catalog of 3,692 islet relevant protein complexes we
next turned to investigate which of those were most likely to
be implicated in T2D (Figure 1E). The underlying hypothesis
is that complexes exhibiting pronounced convergence of genes
originating from different evidence sources related to diabetes are
likely to play a role in the disease.

We thus compiled 13 sets of genes associated with T2D,
monogenic forms of diabetes and related metabolic phenotypes

(Table 1), hereafter termed islet diabetic phenotype gene sets.
Despite all gene sets being related to diabetes, they generally
showed surprisingly little direct overlap, although many pairwise
overlaps were still larger than expected by chance (Figure 2).
The largest overlaps, ranging from 11 to 55% relative to the size
of the shortest list, were observed between gene sets based on
genetic variation (Monogenic, OMIM, T2D GWAS/rare variant,
Glycemic GWAS/rare variant, and Glycemic gene-based), which
is to some extent expected as many genes causing monogenic
forms of diabetes also harbor variants associated with T2D and

TABLE 1 | Description of the thirteen islet diabetic phenotype gene sets and the four islet biology related gene sets.

Name Description References # Genes

(# genes in network)

ISLET DIABETIC PHENOTYPE GENE SETS

GWAS LOCI AND RARE VARIANT GENES

T2D GWAS/rare

variant

Genes in the vicinity of T2D GWAS SNPs, using a boundary of

110 kb upstream and 40 kb downstream of each gene, as well as

genes harboring rare variants associated with T2D.

Morris et al., 2012; Albrechtsen et al., 2013; Flannick

et al., 2014; Mahajan et al., 2014; Steinthorsdottir

et al., 2014; Wessel et al., 2015

235 (162)

Glycemic GWAS/

rare variant

Genes in the vicinity of GWAS SNPs (FG, BMI-adjusted FG, 2 h Glu,

BMI-adjusted 2 h Glu, insulinogenic index, disposition index,

proinsulin), using a boundary of 110 kb upstream and 40 kb

downstream of each gene, as well as genes harboring rare variants

associated with FG, proinsulin, or insulinogenic index.

Strawbridge et al., 2011; Scott et al., 2012; Huyghe

et al., 2013

135 (107)

GWAS GENES (GENE-BASED TEST)

Glycemic

gene-based

Genes associated with FG, 2 h Glu, or proinsulin using a gene-based

analysis.

Scott et al., 2012; Huyghe et al., 2013 146 (130)

OMIM T2D GENES

OMIM Genes associated with “Diabetes mellitus, noninsulin-dependent;

NIDDM” in the OMIM database (accession #125853)

26 (24)

MONOGENIC DIABETES GENES

Monogenic MODY and other monogenic diabetes genes. McCarthy, 2010; Scott et al., 2012 28 (28)

ISLET eQTL GENES For 47 T2D SNPs (CIS AND TRANS)

T2D eQTL Five cis and 176 trans eQTLs in islets, based on 47 SNPs associated

with T2D.

Taneera et al., 2012 163 (129)

GENES DIFFERENTIALLY METHYLATED IN ISLETS (T2D vs. CTRL)

T2D methylation (A) Genes in differentially methylated regions that are also differentially

expressed.

Dayeh et al., 2014 113 (88)

T2D methylation (B) Genes in differentially methylated regions. Volkmar et al., 2012 221 (169)

GENES CO-EXPRESSED WITH 2+ T2D GENES

Co-expression Genes that are co-expressed in islets with 2 or more of 48 T2D genes. Taneera et al., 2012 231 (197)

GENES DIFFERENTIALLY EXPRESSED IN ISLETS (T2D OR HYPERGLYCEMIC vs. CTRL)

Hyperglycemia

expression

Differentially expressed genes in islets, in hyperglycemic vs.

normoglycemic individuals.

Taneera et al., 2012 121 (109)

T2D expression (A) Differentially expressed genes in islets, in T2D patients vs. controls. Taneera et al., 2012 106 (90)

T2D expression (B) Differentially expressed genes in islets, in T2D patients vs. controls. Dominguez et al., 2011 174 (150)

T2D expression (C) Differentially expressed genes in beta-cells, in T2D patients vs.

controls.

Marselli et al., 2010 281 (237)

ISLET BIOLOGY GENE SETS

Islet specific Top 30 islet specific genes. Morán et al., 2012 33 (28)

Open chromatin Genes with islet-selective (compared to five non-islet cell lines) open

chromatin in the transcription start sites or gene-body.

Gaulton et al., 2010 319 (226)

Open chromatin

clusters

Genes overlapping clusters of islet-selective open chromatin sites. Gaulton et al., 2010 1,512 (1,340)

Islet biology Sixty-seven genes curated as important for islet cell identity and

function, Supplementary Table 2.

Pasquali et al., 2014 67 (57)

2 h Glu, 2 hour glucose; BMI, body mass index; FG, fasting glucose; T2D, type 2 diabetes.
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FIGURE 2 | Direct overlap of the thirteen islet diabetic phenotype gene sets. (A) Overlap in terms of gene counts. (B) Overlap in terms of percent overlap

relative to the size of the shortest gene sets. (C) BH-adjusted P-values for testing significance of overlap (hypergeometric test using all 22,766 genes as background),

stars are as follows: ***P ≤ 0.001, **P ≤ 0.01, *P ≤ 0.05.
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glycemic traits (Bonnefond and Froguel, 2015). Twenty genes
were found to be part of four or more of the 13 gene sets
(Supplementary Table 3), many of which are well-known T2D
susceptibility genes while others are less well-established in the
context of diabetes, some of those examples are highlighted in
Box 1.

Complexes Showing Functional Overlap of
Islet Diabetes Gene Sets
We next investigated if the 13 islet diabetic phenotype gene
sets functionally converged on any of the 3,692 islet protein
complexes, by calculating the combined enrichment for the 13
gene sets for each complex (Figure 1E). We found that the 1,007
complexes with coordinated expression in islets were enriched for
small P-values (MWU, P = 1.66 × 10−5) and we furthermore
observed significant convergence of the islet diabetic phenotype
gene sets in 24 complexes (9 coordinated, 15 un-coordinated)
after adjusting for multiple hypothesis testing (BH adjusted P
< 0.05; Supplementary Table 4, Data Sheet 1). All of these 24
complexes contained one or more gene supported by genetic
evidence (GWAS, rare variants or monogenic forms of diabetes),
suggesting that the majority are likely to play a causal role in the
development of T2D (Supplementary Table 4).

The 24 complexes were additionally enriched for genes in all
four islet biology gene sets (Supplementary Table 2; Figure 1F),
suggesting an important role in pancreatic islets. The complexes
largely showed limited gene-overlap (Supplementary Figure 2),
which indicates that they span different parts of the islet
interactome.

We next investigated the biological functions of the 24
diabetic phenotype associated complexes (Figure 1G), and found
that the complexes segregate into functional distinctive groups
based on their pathway enrichment patterns (Figure 3). A
number of these groups were characterized by molecular
processes well-known to be dysregulated in diabetic islets—
such as potassium channels, glucokinase, incretin signaling,
and Wnt signaling—while others were enriched for processes

less established in the islet pathogenesis of T2D, such as
insulin-, interleukin-, and ephrin-signaling, cell and adherens
junctions and neurotransmitter release. Interestingly, seven of
the 24 complexes contained one or more target of FDA-
approved drugs, many of which are not anti-diabetic agents (Data
Sheet 1).

Leveraging the Complexes to Propose
Novel T2D Genes
The 294 genes constituting the 24 complexes are all interesting
in the context of diabetes (Supplementary Table 5). Obviously,
many of them already have an established role in T2D. By
contrast, the subset of 217 genes that were not part of any of
the 13 islet diabetic phenotype gene sets comprise an interesting
set for further prioritization. In particular, we identified six genes
(MAP2K4, PDLIM5, PPP2R5E, SNX13, GNAS, and FRS2) of high
interest as novel T2D associated genes, as they all have additional
support for being of relevance for islet biology or function from
the islet biology gene sets and furthermore SNPs in the vicinity of
these genes are associated with T2D or glycemic traits with P < 1
× 10−4 (Table 2).

Interestingly, after our analysis was completed, a targeted
study of variants in the PDLIM5 gene reported an association
with T2D (rs11097432, P = 1.07 × 10−3; Owusu et al., 2017).
Additional support for the prioritized genes emerges from the
recent wave of single-cell transcriptomics studies of human islets
that were published after our analysis was finished (Segerstolpe
et al., 2016;Wang et al., 2016; Xin et al., 2016; Lawlor et al., 2017).
Remarkably, GNAS is among the 11 genes showing consistent
differentially expression in diabetic cell types (compared to non-
diabetic) with same direction of effect in beta-cells (higher in
T2D) in the first three studies and, furthermore, one (of 41
genes) found by both Lawlor et al. and Segerstolpe et al. with
same direction of effect in alpha-cells (lower in T2D; Lawlor
et al., 2017). In addition, Xin et al. (2016), reports GNAS to
be abundant in all four major islet endocrine cell types (alpha,
beta, delta, PP) in both non-diabetic and T2D donors (but not

BOX 1 | T2D CANDIDATE GENES PRIORITISED BY DIRECT CONVERGENCE.

The following genes were supported by four or more of the thirteen islet diabetic phenotype evidence sources, many across different levels of molecular regulation,

but have not been strongly established in the context of T2D.

The alanyl (membrane) aminopeptidase (ANPEP) gene resides in a locus on chromosome 15 containing variants associated with T2D in South Asian individuals

(Kooner et al., 2011) and its expression levels are furthermore associated with the T2D associated SNP rs560887 (G6PC2 locus on chromosome 2), thus, representing

a trans-eQTL (Taneera et al., 2012). In addition, the ANPEP gene promoter is located in a region that is hypomethylated in T2D islets (Volkmar et al., 2012), and

finally the gene itself is differentially expressed in T2D beta-cells (Marselli et al., 2010). Collectively, these heterogeneous data types indicate together a plausible role

of ANPEP in the pathogenesis of T2D in pancreatic islets. Supporting our observation, this gene has been proposed as the causal gene in this GWAS locus through

a study of allelic expression profiling (Locke et al., 2015). A variant in this gene is associated with the levels of a peptide derived from the C3 complement protein that

plays a role in the innate immune system (Shin et al., 2014).

Hydroxyacyl-CoA dehydrogenase (HADH) was differentially expressed in islets in three independent data sets comparing T2D patients and controls, as well as

being co-expressed in islets with two or more T2D candidate genes. Mutations in HADH are known to cause familial hyperinsulinism (Glaser, 2013), which motivated

a targeted study of common variants in the gene that however did not find any association with T2D (van Hove et al., 2006). Yet, our observations suggest that the

expression of the gene is affected in pancreatic islets in T2D and that it may play a role in the disease.

The islet expression of Family with sequence similarity 105, member A (FAM105A) and PDZ and LIM domain 4 (PDLIM4) was associated with both T2D

(Marselli et al., 2010; Taneera et al., 2012) and hyperglycemia (Taneera et al., 2012). FAM105A was furthermore coexpressed with the T2D genes SLC30A8, G6PC2

and KCNJ11 (Taneera et al., 2012) while PDLIM4 resides in a region of the genome that was differentially methylated in islets when comparing T2D patients and

controls (Dayeh et al., 2014). A variant upstream of PDLIM4 (rs7727038) shows a nominal association (P= 5.2× 10−5) with fasting glucose in the MAGIC consortium

(Dupuis et al., 2010). Both of these genes encode for proteins with relatively unknown functions.
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FIGURE 3 | The 24 complexes with potential T2D dysregulation are enriched for diverse and relevant functions. Subset of Consensus PathDB-pathways,

for which at least one protein complex is enriched with BH-adjusted P < 0.001. The pathways and complexes are clustered with Ward’s hierarchical clustering using

an asymmetric binary similarity measure.

Frontiers in Genetics | www.frontiersin.org 7 April 2017 | Volume 8 | Article 43

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Pedersen et al. Functional Convergence in Diabetes

TABLE 2 | Plausible novel T2D genes prioritized from the complexes with potential T2D dysregulation.

Gene symbol Gene name # Islet diabetic # Islet biology Minimum P-value Corresponding

phenotype gene sets gene sets for associated SNPs GWAS trait

MAP2K4 Mitogen-activated

protein kinase kinase 4

0 1 7.83 × 10−6 (rs929441) AUCIns/AUCGluc

PDLIM5 PDZ and LIM domain 5 0 1 9.87 × 10−5 (rs17021900) Fasting glucose

PPP2R5E Protein phosphatase 2,

regulatory subunit B,

epsilon isoform

0 1 7.05 × 10−5 (rs10151995) Fasting glucose

SNX13 Sorting nexin 13 0 1 4.02 × 10−6 (rs2723517) HbA1c

GNAS GNAS complex locus 0 1 4.73 × 10−5 (rs6026565) Fasting glucose, Manning

FRS2 Fibroblast growth factor

receptor substrate 2

0 1 9.76 × 10−6 (rs12425398) Fasting glucose, Manning

Genes are prioritized if they, besides being part of a protein complex showing potential T2D dysregulation, are part of at least one of the four islet biology gene sets and harbor at least

one SNP with P < 1× 10−4 in one or more of the 19 GWAS described in Supplementary Table 6. Only the best SNP P-value and corresponding GWAS trait are shown. To focus on

novel T2D genes, genes in any of the 13 islet diabetic phenotype gene sets are excluded.

significantly differentially expressed). SNX13 also exhibits cell
type specific differential expression in T2D, being lower in delta
cells of diabetic donors (fold change = −13.02, FDR = 4.93 ×

10−2; Xin et al., 2016). Whole islet gene expression (profiled
with microarrays and RNA-seq) is further nominally associated
with lower HbA1c levels for both GNAS (P = 2.14 × 10−3,
FDR = 4.30 × 10−2) and SNX13 (P = 1.61 × 10−2, FDR =

1.02 × 10−1; Fadista et al., 2014). In mice, disruption of the G
protein α-subunit (one of theGNAS gene products)maternal (but
not paternal) allele leads to severe obesity, hypertriglyceridemia,
impaired glucose tolerance and insulin resistance (Xie et al.,
2008). Together, these observations add support for the genes
being important for shaping the diabetic phenotype in one or
more islet cell types.

Both MAP2K4 and GNAS are known to be involved in
pancreatic cancer [Cancer Gene Census (Forbes et al., 2017) and
Intogen (Gonzalez-Perez et al., 2013) databases]. The MAP2K4
gene encodes the mitogen-activated kinase kinase (MKK)4,
which constitutes a part of the apoptotic-effect mediating
MEKK1-MKK4-JNK pathway (Xia et al., 1995) and is inhibited
in pancreatic beta-cells by the glucagon-like peptide-1 analog
exending-4, resulting in protection from palmitate-induced
apoptosis (Natalicchio et al., 2013). MAP2K4 is furthermore
a proposed tumor suppressor gene and is significantly under-
expressed inmetastatic compared to benign pancreatic endocrine
tumors (or islet cell tumors; Couvelard et al., 2006). These
results point to an important role of MAP2K4 in the survival of
pancreatic islet cells, which is a process central to the etiology
of both diabetes and pancreatic carcinomas. Further studies
of the potential dual role of MAP2K4 and GNAS might help
elucidating the molecular basis for the complex bidirectional
relationship observed between diabetes and pancreatic cancer (Li,
2012).

Verification of Potential T2D Dysregulation
of Complexes Using GWAS Data
As the 24 complexes were enriched for genes associated with
diabetes and glycemic traits (input genes), it is likely that their

disruption gives rise to these phenotypes. Thus, the remaining
(non-input) genes in the complexes have a high likelihood of
also contributing to the same traits. We tested this hypothesis
by investigating the enrichment of GWAS signals for T2D and
glycemic traits from the DIAGRAM andMAGIC consortiums in
each of the 24 complexes (Figure 1H). Using the Meta-Analysis
Gene-set Enrichment of variaNT Associations (MAGENTA)
tool to test the enrichment, we identified 30 significant (P <

0.05) complex-trait combinations, spanning 15 complexes and
13 traits, of which 25 remained significant after excluding any
genes that were used as input in the corresponding gene sets
used for discovery of the complexes (Supplementary Figure 3).
The last definition was applied to avoid any circularity, as
the different GWAS might be the source of the association
leading to the gene being in the islet diabetic phenotype
gene sets that were used to define the 24 complexes with
potential T2D dysregulation. These results indicate that the
non-input genes in the complexes indeed harbor variants that
are associated with the same phenotypes, although not so
strongly that they could be discovered by the GWAS analysis
alone.

We further investigated if the GWAS enrichment within
the complexes was driven by many genes in loci with modest
associations converging in the same functional context or mainly
by one or a few genes with low P-values (minimum P-value
for the SNPs mapping to the respective genes). We therefore
repeated the analysis after excluding all genes with genome-wide
significant P-values (P < 5 × 10−8) in the respective GWAS
and found that the enrichment for 27 out of 30 complex-trait
combinations remained significant (Figure 4, Group 1). This
suggests that the majority of the complexes represent examples
where many small effects collectively perturb their function,
leading to a molecular phenotype that gives rise to disturbed
glucose homeostasis. All of the three complex-trait combinations
that became non-significant (Figure 4, Group 2) contained one
or more gene with a genome-wide significant signal (P < 5 ×

10−8), indicating that these genes were the main driver of the
enrichment.
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FIGURE 4 | Breakdown of significantly enriched complex-trait combinations. (A) The enrichment of GWAS signals for each of the 30 significant complex-trait

combinations when including all genes, excluding input genes, and excluding genes with genome-wide significant association in the given GWAS (see Section

Methods for details). The genes in each complex-trait combination are colored based on P-value (i.e., minimum P-value for the SNPs mapping to the respective gene)

partitioned into factor-10 groups; (B) actual count and (C) percentage distribution of gene P-values within a complex in the GWAS for the given glycemic trait. (D)

Example of complexes.

The Nature of the Evidence Sources behind
the Enrichment
The 24 diabetic phenotype associated complexes could further be
characterized by the diversity of supporting data driving their
enrichment, such as the proportion of genes in the complex
supported by multiple gene sets and the total number of gene sets
supporting each complex. More specifically, we observed three
notable trends (Figure 5) where the enrichment of a complex
was mainly driven by (a) genes supported by multiple sources
each, (b) genes supported by one or few sources each and

few in total, and (c) genes supported by one or few sources
each but many in total. A representative example from each
of these three groups of complexes is shown in Figure 5. In
group (A), the complex Complex-2 consisted of many genes
that are associated with multiple diabetic phenotypes each and
are well-established in the context of diabetes, including the
transcription factor NEUROD1, which is required for normal
beta-cell development, and SLC2A2, which encodes GLUT2—
the main glucose sensor in rodent beta-cells (but not human;
McCulloch et al., 2011). Furthermore, the complex contained a
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FIGURE 5 | Highlevel grouping of complexes by nature of evidence driving their enrichment. Schematic visualization (top) and representative examples

(bottom) for the three overall groups. The fourth theoretical category with few sources but a high percentage of genes supported by multiple sources is excluded here,

as we did not observe any good examples. Group A, Complex-2; group B, Complex-14; and group C, Complex-16.

number of genes directly involved in insulin transcription and
secretion, such as the insulin regulating transcription factors
PDX1 and MAFA, PCSK1 and PCSK2, which are known to
localize with insulin in islets, IAPP, which is co-secreted with
insulin and SCG5, which is a marker of insulin secreting tumors.
Interestingly, the LARP6 gene in the complex was included in the
islet diabetic phenotype gene sets because of its proximity to the
fasting proinsulin associated SNP rs1549318 (Strawbridge et al.,
2011). Its presence in the complex suggests that LARP6 may play
an important role in beta-cell function and insulin secretion. In
line with the function of the genes in the complex, the overall
complex was enriched for genetic associations with HOMA-B
based on MAGIC data.

Complex-14 is an example from group (B), where the
enrichment was driven by genes mainly supported by the same
gene set (5/7 genes), namely the “Hyperglycemia expression”
data. The additional supporting gene sets were mainly from gene
expression or methylation sources, while it only contained one
gene (MC4R) supported by genetic evidence that was only weakly
connected to the remainder of the complex. Furthermore, no
enrichment was found for low SNP P-values in MAGIC and
DIAGRAM data. This might as such be an example of a complex
that is rather involved in a response to the diabetic state in the
islets than playing a causal role. This is fitting with it beingmainly
composed of interleukins and toll-like receptors and enriched
for inflammatory response and apoptosis pathways that have
a clear relevance to the beta-cell mass deterioration in T2D
pathogenesis.

Finally, Complex-16 is an example of a complex where
the enrichment was supported by multiple sources, but few
consensus support genes. Such complexes are interesting because

they could not have been revealed using any data type alone, but
constitute a functionally related group of genes that are identified
by multiple types of diabetes-associated evidence. Complex-16
was strongly enriched for brain-derived neurotrophin (BDFN)
signaling. BDFN has indeed been shown to affect the histological
organization of beta and non-beta cells in the pancreatic islets
(Yamanaka et al., 2006). This complex was furthermore enriched
for GWAS signals for fasting glucose levels, fasting insulin levels
and T2D.

DISCUSSION

To harvest the power of data integration, we have brought
together results from genetic studies of islet-relevant
phenotypes and human islet studies spanning different levels of
molecular regulation. We identify 24 protein complexes with
strong supporting evidence for being implicated in diabetes
pathogenesis in pancreatic islets and show how they are enriched
for multiple modest effects of genetic variants associated with
glycemic traits. Furthermore, we specifically prioritize ten
candidate genes for T2D, of which six are novel, based on the
investigation of either direct or functional convergence of the
evidence sources. Additionally, we compose a set of 3,692 islet
protein complexes that can serve as an integration scaffold for
future studies.

By comparing the direct overlap between the heterogeneous
islet diabetes-related gene sets we identified genes such asANPEP
and HADH that are currently not well-established as diabetes
susceptibility genes but had consensus support across evidence
sources. These observations highlight that such a straightforward
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data integration approach is able to pinpoint potentially new
disease genes. Apart from these few, but interesting, examples of
genes that were part of multiple gene sets, the generally limited
direct overlap between the gene sets emphasizes the necessity
of integrative systems biology approaches focusing on functional
entities rather than single genes for further understanding of the
dysregulation and dysfunctioning occurring in diabetic islets.

Previous work on congenital heart disease (Lage et al.,
2012) has shown similar results, where a limited overlap was
observed between genes identified in different types of genetic
studies whereas they converged significantly in protein networks
related to heart development. Here we extended this approach
to T2D, where we found the prioritized complexes to mainly
be involved in signaling cascades, immune functions, apoptosis
and cell-cell communication in addition to the expected insulin
secretion pathway. We thus show that these particular molecular
mechanisms are consistently supported by complementary types
of molecular data from human islets to form a major component
of the T2D etiology. These results reduce the many previously
observed pathways related to T2D pathogenesis in human and
animal islets from single omics studies to a set of highly credible
pathways.

A previous systems genetics study of the T2D state in human
islets (Taneera et al., 2012) identified a set of 20 genes that
collectively explained a significant portion of HbA1c variation.
Here we add to those results by combining multiple independent
data sets to identify nine additional T2D candidate genes that
likely play a role in pancreatic islets. Furthermore, we prioritized
specific protein complexes and their associated pathways that
provide biological insight into T2D pathogenesis.

The majority of the 24 protein complexes found in this study
were enriched formodest GWAS signals, suggesting thatmultiple
small effects collectively perturb the complexes and give rise to
variation in glycemic phenotypes. We thus provide insight into
the mechanisms by which common genetic variation translates
into a disease phenotype, which supports that the multifactorial
genetic architecture of complex traits is constituted by a large
number of variants disrupting cellular networks (Schadt, 2009).

An advantage to investigating functional convergence on
protein complexes is that not all genes in the complex
need to have prior diabetes-related evidence for the complex
to be significant. Consequently, this approach concurrently
prioritizes genes without prior diabetes-related evidence, but
whose products interact with other diabetes relevant proteins
in the islet, such as the six T2D candidate genes highlighted
in Table 2. Furthermore, complexes containing both genes from
GWAS loci and genes supported by other evidence sources,
provide support for the GWAS gene mediating the signal in that
locus, such as LARP6 in the complex Complex-2 that resides in a
proinsulin associated GWAS locus. Lastly, the complexes provide
a functional context for the disease genes. Many genes naturally
participate in several functions, reflected by the overlap of many
of the complexes. For such multifunctional genes, the approach
outlined here prioritizes the subset of disease relevant complexes
and thus the disease relevant functions.

A major goal for T2D and other common diseases is
to identify causal pathways and network modules underlying

disease pathogenesis to enable precise risk prediction and
development of new therapeutic strategies (McCarthy, 2015).
Furthermore, such pathways and network modules need to be
identified in a tissue-specific context (Gross and Ideker, 2015).
Here we provide causal network modules for T2D in the form
of tissue-specific protein complexes that provide more biological
insight into the disease pathogenesis than disease genes in
isolation and furthermore form a basis for integrating person-
specific genetic, transcriptomic, or proteomic profiles in a clinical
setting. Dissecting these complexes can moreover reveal new
drug-targets, such as genes interacting with targets of currently
used anti-diabetic medications, genes supported by multiple
evidence sources or their more druggable interaction partners.
Furthermore, complexes that contain targets of FDA-approved
drugs may highlight opportunities for drug repurposing in the
search for new diabetes treatments.

METHODS

Construction of a Pancreatic Islet-Specific
Protein Interaction Network
Previous tissue-specific protein interaction networks mainly
fall into three categories: node-removal, where interactions
between proteins absent in the given tissue are excluded (Bossi
and Lehner, 2009; Barshir et al., 2013; Basha et al., 2015),
edge-reweight, where interactions between absent proteins are
down-weighted (Magger et al., 2012), and data-driven Bayesian
methodologies (Guan et al., 2012; Basha et al., 2015; Greene
et al., 2015). Here we created both an edge-reweighted as well
as a node-removal islet-specific protein interaction network, to
accommodate downstream network analysis approaches that did
or did not consider edge-weights, respectively.

The islet-specific protein interaction networks were
constructed by pruning high confidence protein interaction from
an updated version (2014) of the InWeb database (Lage et al.,
2007; 14,536 proteins with 337,951 high-confidence interactions)
using the data sets described in Supplementary Table 7. More
specifically, for the node-removal protein interaction network,
genes not passing the specified cutoffs in all of the data sets were
considered less likely to be expressed in pancreatic islets and thus
removed from the pruned islet network. For the edge-reweighted
protein interaction network, lowly expressed genes were not
removed but instead the confidence score of their interactions
were down-weighted using the approach proposed by Magger
et al. (2012):

w′

ij = wij
∗ rwn

where wij is the original edge weight between protein i and j, n
is the number of lowly expressed genes in the tissue constituting
the interaction (i.e., {0,1,2}), and rw is the probability that a gene
is expressed in the tissue even though it does not pass the cut-offs
listed below, which was chosen to be 0.1.

If genes were not covered by any of the data sets—or in the
case of the Human Protein Atlas (HPA) data, annotated with
uncertainty—a benefit-of-the-doubt approach was applied where
such genes were considered present.
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Included Data-Sources
Tissue-specific protein expression profiles based on
immunohistochemistry using tissue microarrays were obtained
from the HPA version 13, 11/6-2014, downloaded on 10/3-2015
from www.proteinatlas.org, with Ensembl version 75.37 (Uhlén
et al., 2015). Proteins were categorized as present, absent, or
uncertain based on the reliability and level of their expression
value. Specifically, proteins with supportive expression values
were categorized as absent if they were not detected and
otherwise as present if they had low, medium or high expression
values whereas proteins with uncertain expression values were
categorized as uncertain.

Microarray gene expression data from the GNF Tissue Atlas
(GNF) (GEO: GSE1133) was downloaded from BioGPS (http://
biogps.org/downloads/; Su et al., 2004).

Defining Topology-Based Complexes
within the Network
Many different methods with different objective functions
have been proposed for defining clusters of genes in protein
interaction networks. Here we applied two complementary
approaches; one aiming at identifying tightly connected
genes, and one centered on spoke-hub complexes as often
applied in previous work (Lage et al., 2007; Börnigen et al.,
2013).

Strongly connected components in the edge-weighted islet-
specific network were identified by ClusterONE, a non-
partitioning graph decomposition algorithm (Nepusz et al.,
2012), using a minimum density of 0.2, which is calculated as
the average edge weight within the complex if missing edges are
assumed to have a weight of zero, and a maximum overlap of 0.3
between two complexes before they were merged using the multi-
merge option, and otherwise default parameters. ClusterONE
uses the matching score as default for calculating the overlap
between two complexes, which is defined as the intersection
size squared, divided by the product of the sizes of the two
complexes.

A three-step approach was applied to define spoke-hub-
complexes. First, for each gene in the network a complex was
defined by all its first order interaction partners. Next a topology
filter was applied to prune complexes for interaction partners
that tend to interact with many proteins in an unspecific way,
due to either experimental artifacts or for biological reasons.
In brief, genes were removed from the complex if <5% of
its interaction partners were within the given complex. Lastly,
overlapping clusters were merged using the same approach as
for ClusterONE. Since this approach ignores edge-weights it was
applied to the node-removal version of the islet-specific protein
interaction network.

Finally, overlapping complexes resulting from the two
approaches were merged using the same approach as before.
Complexes with fewer than 6 or more than 50 nodes were
discarded in the downstream analysis, resulting in 3,692
islet complexes. Diameter and average degree, clustering
coefficient and betweenness-centrality were calculated for each
complex using the igraph R-package (Csardi and Nepusz,
2006).

Coordinated Expression of Protein
Complexes
The TissueRanker approach (Börnigen et al., 2013) utilizes the
assumption that a mutation in a hub-spoke complex is likely to
have an affect in tissues where the proteins within the complex
show high degree of coordinated expression and thus, that
the degree of coordinated expression may aid in prioritizing
tissues in which the complex is active and where deregulation
of the complex could be detrimental. Here we extended the
methodology to complexes with more complex topology. In brief
the PCC.meantc for complex c in tissue t is defined as the average
pairwise Pearson correlation coefficient (PCC) of gene expression
(RPKM values) between any two interacting genes within the
complex for the given tissue:

PCCt
xy =

∑Ns
i=1

(

xti − xt
) (

yti − yt
)

√

∑Ns
i=1

(

xti − xt
)2

√

∑Ns
i=1

(

yti − yt
)2

PCC.meantc =

∑Ng

x=1
∑

y∈Ix
PCCt

xy

2 · Ne

where Ns is the number of samples for tissue t, Ng is the number
of genes in protein complex c, Ne is the number of edges in
protein complex c, and Ix is the interaction partners of gene x
excluding any self-loops.

To alleviate any potential bias arising from different numbers
of tissues samples (Börnigen et al., 2013) we further standardized
the PCC.meantc values within a tissue by first converting the
average correlation coefficients to an approximately normal
distribution using Fisher transformation:

ztc =
1

2
ln

1+ PCC.meantc
1− PCC.meantc

CEtc =
ztc − µ

t

σ t

The resulting z-scores are here referred to as coordinated
expression (CE) and used to compare tissue relevance across
tissues for a given complex.

RPKM values from RNAseq data for 31 tissues from the
Genotype-Tissue Expression (GTEx) project were obtained
through the database of Genotypes and Phenotypes (dbGaP)
(study accession phs000424.v4.p1, version from 17/1-2014;
Mailman et al., 2007). However, since the GTEx data does not
include pancreatic islets, RNAseq data for whole islets, beta cells,
and non-beta cells (from pancreatic islets; Nica et al., 2013) were
combined with the GTEx data.

We defined 1,007 islet complexes with coordinated expression
as the subset of the 3,692 islet complexes where at least one of the
islet tissue components (whole islet, beta, and non-beta cells) was
among the three tissues with highest coordinated expression level
among the 34 included tissues.

Compiling Islet Biology and Islet Diabetic
Phenotype Related Gene Sets
We compiled a set of 13 complementary sets of genes associated
with T2D, monogenic forms of diabetes and related metabolic
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phenotypes (Table 1). These 13 gene sets are collectively referred
to as islet diabetic phenotype gene sets and were chosen because
of their relevance to the islet tissue.

We obtained GWAS SNPs and genes supported by gene-
based tests for T2D (Morris et al., 2012; Mahajan et al., 2014),
fasting glucose (Dupuis et al., 2010; Scott et al., 2012), 2 hour
glucose (2 h glu) during an oral-glucose tolerance test (Dupuis
et al., 2010; Scott et al., 2012), and proinsulin (Strawbridge
et al., 2011). SNPs in GWAS loci were mapped to a gene
if they fell within 110 kb upstream or 40 kb downstream
of its transcription start and stop sites respectively, as these
boundaries have been shown to capture the majority of cis-
eQTLs associations (Veyrieras et al., 2008; Ardlie et al., 2015).
We additionally included all genes that were reported in
eQTL associations for the GWAS SNPs from the respective
publications (Dupuis et al., 2010; Voight et al., 2010; Strawbridge
et al., 2011; Morris et al., 2012; Scott et al., 2012; Mahajan
et al., 2014). We also included genes harboring rare variants
associated with either fasting glucose and T2D (Albrechtsen
et al., 2013; Flannick et al., 2014; Steinthorsdottir et al.,
2014; Wessel et al., 2015) or insulin processing and secretion
(Huyghe et al., 2013). Genes associated with monogenic forms
of diabetes were obtained from a literature review (McCarthy,
2010) and a curated list from a previous study (Morris et al.,
2012).

Genes differentially expressed in islets were obtained
from a study by Taneera et al. (2012). In addition, two other
microarray datasets of beta-cell and islet gene expression,
respectively, were obtained from the Gene Expression Omnibus
database (accession IDs: GSE20966 and GSE25724) and
differential gene expression between T2D patients and non-
diabetic controls evaluated using the “limma” R package as
implemented in the NCBI GEO2R tool. Genes with P <

0.001 were included in the gene sets, except for the dataset
by Dominguez et al. (2011) where a stricter cutoff of P <

0.0001 was applied due to inflated significance values. We
further included additional gene sets defined by the islet
gene expression study from Taneera et al. (2012), namely
genes that showed cis- or trans-eQTL associations with T2D
associated SNPs and genes that were co-expressed with >2
T2D candidate genes. Finally, we included genes that were
differentially methylated in islets in T2D patients compared
to non-diabetic controls (Volkmar et al., 2012) or were both
differentially methylated and differentially expressed (Dayeh
et al., 2014).

We furthermore constructed four gene sets related to islet
function, referred to as islet biology gene sets (Table 1). These
sets included genes with islet-specific expression (Morán et al.,
2012), genes in islet-selective open chromatin regions or genes
overlapping clusters of islet-selective open chromatin sites
(Gaulton et al., 2010) and genes manually curated as islet
important (Pasquali et al., 2014).

Finally, we obtained at list of proteins that are targets of FDA
approved drugs from the druggable human proteome (Uhlén
et al., 2015).

The direct overlap of the gene sets was tested using
a hypergeometric test with all 22,766 human genes as
background.

Functional Convergence Testing
To test the protein complexes for potential dysregulation in T2D,
the degree of functional convergence of diabetes related genes
was assessed. For each complex, the enrichment of each of the
13 islet diabetic phenotype gene sets was first calculated using a
hypergeometric test and the corresponding P-values were next
combined using Fisher’s combined probability test (Pcombined).

The likelihood of observing a similar degree of functional
convergence by chance was estimated for each complex by
randomly sampling 100,000 sets of the same number of genes
from the whole network. An empirical P-value (Pemp) was then
calculated by counting how many of these 100,000 random sets
had a Pcombined ≤ the real case divided by the number of random
sets (n = 100,000). Pemp was adjusted for multiple hypotheses
testing across complexes using a Benjamini–Hochberg correction
and complexes with Pemp.adj < 0.05 were considered significant
and thus showing potential T2D dysregulation. Genes in the gene
sets without any interaction partners were excluded from the test.

Functional Annotation of Protein
Complexes
We downloaded 3,906 biological pathways from
ConsensusPathDB release 30 (Kamburov et al., 2013).
Over-representation analysis of pathways was tested using
a hypergeometric test. In short, all gene sets with at least two
candidate genes were tested. The background was restricted to
the subset of all genes within the protein interaction network
that participate in at least one pathway and similarly, only input
genes that were part of the background were included for testing.

Testing for Enrichment of
Diabetes-Related GWAS Signal
We further investigated whether the complexes with potential
T2D dysregulation were enriched for association with T2D or
glycemic traits in 19 different GWA-studies (Supplementary
Table 6) using the MAGENTA method (Segrè et al., 2010).

The analysis was repeated using three definitions of
complexes: (1) including all genes in the complexes, (2) excluding
genes from the complex that had genome-wide significant P-
values (P < 5 × 10−8) in the respective GWAS, i.e., different
genes are excluded from the complexes when testing enrichment
in the different GWAS studies, and (3) excluding genes that
were used for input in the corresponding gene set. For example,
all fasting glucose associated genes were excluded from the
complexes when testing for enrichment using “Fasting glucose”
and “Fasting glucose, Manning” but not when testing for
enrichment of e.g., “Fasting insulin”.

In the MAGENTA analysis we used the 95th percentile of all
gene P-values as the Pcutoff and SNPs in GWAS loci were mapped
to a gene if they fell within 110 kb upstream or 40 kb downstream
of its transcription start and stop sites, respectively.

Statistical Analysis and Visualization
Statistical analyses were performed in the statistical computing
language R (R Core Team, 2014) and network visualizations were
made in R using the igraph package (Csardi and Nepusz, 2006).
Tissue depictions in figures were adapted from Stumvoll et al.
(2010).
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