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During their passage through the circulatory system, tumor cells undergo extensive interactions with various host cells including
endothelial cells and platelets. Mechanisms mediating tumor cell adhesion, migration, and metastasis to vessel wall under flow
condition are largely unknown. The aim of this study was to investigate the potential roles of GPIIb/IIIa and avf33 integrins
underlying the HeLa-endothelium interaction in static and dynamic flow conditions. HeLa cell migration and invasion were
studied by using Millicell cell culture insert system. The numbers of transmigrated or invaded HeLa cells significantly increased by
thrombin-activated platelets and reduced by eptifibatide, a platelet inhibitor. Meanwhile, RGDWE peptides, a specific inhibitor of
avf33 integrin, also inhibited HeLa cell transmigration. Interestingly, the presence of endothelial cells had significant effect on HeLa
cell migration regardless of static or cocultured flow condition. The adhesion capability of HeLa cells to endothelial monolayer
was also significantly affected by GPIIb/IITa and avf33 integrins. The arrested HeLa cells increased nearly 5-fold in the presence of
thrombin-activated platelets at shear stress condition (1.84 dyn/cm? exposure for 1 hour) than the control (static). Our findings
showed that GPIIb/IIIa and avf33 integrins are important mediators in the pathology of cervical cancer and provide a molecular
basis for the future therapy, and the efficient antitumor benefit should target multiple receptors on tumor cells and platelets.

Copyright © 2009 Yiyao Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Metastasis is one of the leading causes of cancer patients’
death. Tumor cells disseminate to distant organs via the
lymph or the blood stream during metastasis. The metastasis
includes several critical pathogenic steps which are angio-
genesis, invasion into the capillary venules, circulation in the
blood stream, adherence to a new local extravasation and col-
onization [1]. The arrest of metastasizing tumor cells within
the blood stream is prerequisite for their extravasation. In
the blood stream, tumor cells are exposed to flow-dependent
shear forces, plasma proteins, blood cells, and platelets,
all of which may affect tumor cell survival, arrest, and
extravasation. Mechanisms which mediate tumor cell arrest
involve adhesive interactions of tumor cells with endothelial
cells. Recently, intense researches have unveiled an elaborate

integrin network controlling the adhesion and migration of
tumor cells [2, 3]. The integrin families overexpressed on
the tumor cells have now been recognized as key regulators
of various neoplastic processes by virtue of their ability
to facilitating cancer cell adhesion and migration [4]. The
integrins are heterodimeric adhesion receptors formed by the
noncovalent association of « and 8 subunits. avf33 integrin
mediates cell adhesion and migration on a variety of extra-
cellular matrix proteins, including fibronectin, fibrinogen,
laminin, collagen, osteopontin, and others [5]. However,
avf33 integrin prefers to highly express on developing tissues
rather than the normal or mature one [6]. As a class of appar-
ent malignantly developing tissue, the aberrant expression
of avf3 integrin has been demonstrated on various kinds
of cancer including metastasis human melanoma, breast,
prostate, and glioblastoma tumor cells. All these evidences
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lead to the confirmation that overexpression of avf33 integrin
may be cited as a reliable index to determine the malignancy
of a specific tumor [7-9]. It has been demonstrated that
prostate cancer cell adhesion and migration to vitronectin
and osteopontin were avf33-dependent. The similar pattern
was also found in the model of ovarian cancer [10].

In the normal physiological condition, platelets do not
attach to intact endothelium unless the platelet-endothelium
interaction has been disturbed due to the vascular damage.
The mechanism of coagulation directed by the aggregation
of activated platelets is now known to involve two specific
glycoproteins, that is, GPIb and GPIIb/Illa (also called
ambf3), which is composed of two subunits which are
GPIIb and GPIIIa [11, 12]. Some disorders of GPIIb/IIIa
such as Glanzmann thrombasthenia show the importance of
GPIIb/I1Ia in mediating the natural physiological hemostasis
and thrombosis. There exists a clear medical link between
thrombosis and tumor metastasis. Clinical statistics showed
that half of cancer patients have accompanying platelet
activation and thrombosis [13—-15]. Investigators have long
speculated that tumor cells can induce the aggregation of
platelets which will coat the former and then reduce the
possible immunological attack during the hematogenous
metastasis. However, how GPIIb/IIla mediates this process
under dynamic fluid stress has not been confirmed.

To investigate what are the roles of GPIIb/IIla and avf3
integrins for cancer cell adhesion, migration, and metastasis,
our present study was designed to explore the behaviors
of HeLa cell-endothelial cell interaction under the static
and dynamic flow conditions. Their contributions towards
the metastasis of cervical cancer were also evaluated and
to elucidate whether there exists synergistic relationship
between GPIIb/IIla and avf3 during mediating the interac-
tion process of HeLa cell-endothelial cell.

2. Materials and Methods

2.1. Reagents. Cell culture medium RPMI1640 and newborn
calf serum (NCS) were purchased from Gibco (Grand Island,
NY, USA). Trypsin, HAT (hypoxanthine, aminopterin,
and thymidine) supplement, thrombin, gelatin, peni-
cillin, and streptomycin were obtained from Sigma-
Aldrich (St. Louis, MO, USA). 2-[4-(2-Hydroxyethyl)-1-
piperazine]ethanesulfonic acid (HEPES) was supplied by
Amresco (Cleveland, USA). Human eptifibatide and arg-
gly-asp-trp-glu peptides (RGDWE peptides) were purchased
from Cali-bio (CA, USA) and SBS Genetech (Beijing, China),
respectively. All other chemicals used were of analytic grade
without further purification.

2.2. Cell Culture. The HUVEC line EA.Hy926 was obtained
from the Institute of Biomedical Engineering of Western
China Medical College (Sichuan, China). This cell line, a
hybridoma of HUVEC and the human epithelial cell line
A549, has been shown to retain a number of properties
of endothelial cell, including the production of human
factor VIII-related antigen. The cells were cultured in RPMI
1640 containing 20 mM HEPES, 10% NCS, 2% NaHCOj3,
100 U/mL penicillin and 100 mg/mL streptomycin, and 2%
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HAT supplement at the temperature of 37°C in humidified
5% CQO, atmosphere.

HeLa cells, generous gift from Dr. Anying Zhang in
our department, were also cultured in RPMI1640 medium
supplemented with 10% NCS and 100 units/mL penicillin
and 100 pg/mL streptomycin at 37°C in a humidified atmo-
sphere containing 5% CO5. Prior to adhesion assay, cells were
detached from 25cm? culture flasks (Corning, NY, USA)
with 0.25% trypsin in phosphate buffered saline (PBS) (pH
7.4).

2.3. Platelet Isolation. Platelet isolation was adopted from
the method established by Chiang and coworkers with some
modifications [16]. Briefly, human blood was drawn by
venipuncture from healthy volunteers into heparin sodium
(1U/mL) anticoagulant. Platelet-rich plasma (PRP) was
prepared by centrifugation of whole blood at 120 X g for 10
minutes. Platelet-poor plasma (PPP) was obtained by further
centrifugation of the blood at 500 x g for 10 minutes. The
final platelet count of the PRP was adjusted to the desired
levels (2 x 108/mL) with PPP. Specimens were stored at 37°C
in capped polypropylene tubes and used for the following
experiments.

2.4. Cell Treatment with Thrombin, Eptifibatide, and RGDWE
Peptides. To potentiate platelet activation, platelets were
treated for 30 minutes with thrombin (0.55U/mL) at
room temperature before incubation with HelLa cells. For
inhibition studies, platelets and HeLa cells were also treated
for 30 minutes with eptifibatide (0.65 ug/mL) and RGDWE
peptides (425ug/mL) to block the GPIIb/IIla and avf3
integrins, respectively. Control experiments were performed
in which platelets, and HeLa cells were treated exactly as
stated above but in the absence of thrombin, eptifibatide, or
RGDWE peptides.

2.5. Cell Migration Assay in Static Condition. Millicell cell
culture insert (Millipore, Billerica, MA, USA) containing
PET membrane with pore size of 8 yum was used for HUVECs
migration experimental system as described previously
(Figure 1(a)) [17]. Briefly, 1.5mL of RPMI1640 culture
medium was firstly added into each well of 12-well plates,
then the Millicell cell culture inserts were put in the plate
wells, and 500 uL cell suspension of HeLa (5 x 10* cells) was
added into the each insert. The cells were allowed to migrate
for 8 hours at 37°C and 5% CO, in the presence of thrombin-
activated platelets, eptifibatide, or RGDWE peptides. The
culture media were removed and the nonmigrated HeLa
cells inside the PET membranes were scraped by a cotton
stick. The HeLa cells that migrated through the pores and
adhered onto the outer side of PET membrane were fixed
and dipped in a mixed solution (5mL) of acetic acid and
methyl alcohol (1 : 3 in volume ratio) for 30 minutes after
the inserts were washed twice with PBS. The PET membranes
were taken out using a scalpel and dyed for 10-15 minutes
with Giemsa solution (0.9%) in a glass slide. The redundant
Giemsa were washed by Milli-Q water, and then the migrated
HeLa cells (dyed into dark blue) were observed and recorded
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FIGURE 1: Schematic illustrations of Millicell cell culture insert system with 8 gm-pore size for migration and invasion assay in static condition

(a), coculture flow system for migration assay (b), and parallel flow

under an inverted microscope (TE-2000U, Nikon, Japan).
The migrated cell number was quantified by cell counting
from more than six microscopic fields for each sample
(magnification 20x), and three PET membranes were used
for each experimental group.

2.6. Cell Invasion Assay. HeLa cell invasion was also exam-
ined by modified Millicell cell culture insert. The inner
side of PET membrane (Figure 1(a)) was modified to be
precoated with 100 yL gelatin (1 mg/mL) overnight. Before
cell invasion experiment, HeLa cells were firstly labelled
with 10 uM DiO fluorescent dyes (Beyotime, Beijing, China)
for 20 minutes, and washed three times by centrifugation
at 1700rpm, 6 minutes for each time, to remove the
abundant DiO fluorescent molecules. The labelled HeLa cell
suspension of 500 uL (5 x 10* cells) in RPMI 1640 with 10%
NCS was seeded onto the inner side of PET membrane of the
Millicell cell culture insert. One and half milliliters of RPMI

chamber system for adhesion assay (c).

1640 with 10% NCS culture medium were added into the
wells of the 12-well plates. Invasion was detected after 24-
hour incubation at 37°C and 5% CQ,. The culture media in
the cell culture inserts were removed and washed three times
with PBS. Cells in the inner side of PET membrane were
gently wiped away by cotton stick. HeLa cells that invaded
to the outer side of the PET membrane were quantified
by cell counting under an inverted fluorescent microscope
TE-2000U from more than five random microscopic fields
(magnification 10x).

2.7. Blood Flow Simulation. Cell coculture parallel flow
system [18], designed and presented by Professor Jeng-
Jiann Chiu Lab in the National Health Research Institutes
of Taiwan, was used for transmembrane migration assay
combining cell coculture and dynamic flow conditions
(Figure 1(b)). Two sets of glass slides and silicone gaskets
were fastened by vacuum suction through ports with



a polycarbonate insert holder, which was machined precisely
to allow the incorporation of the coculture module into
a channel cut in the lower gasket. The chamber allows
direct observation of the cells during flow experiment via
the observation window opened in the upper gasket. The
chamber was connected to a perfusion loop system. The fluid
medium entered at a port through slit into the channel, and
exited through another slit. The HUVECs side of the co-
culture was subjected to shear flow, while the opposite side
with HeLa cells was maintained in a static condition.

A rectangular parallel plate perfusion chamber [19], also
designed and presented by Professor Jeng-Jiann Chiu Lab
in the National Health Research Institutes of Taiwan, was
used to examine adhesion of HeLa cells to cultured HUVECs
monolayer under shear flow condition (Figure 1(c)). This
system comprises a transparent polymethylmethacrylate
plate, two silastic rubber gaskets, and a standard glass
coverslip. The coverslip with near 90% confluent monolayer
of HUVECs was mounted over the groove with the cells
facing the inside, and an approximate 500 ym high gap was
formed over the HUVECs.

The wall shear stress (1,,) is related to the volumetric flow
rate (Q) by 7, = 6‘uQ/w(h)2, where y is the fluid viscosity, w
is the width of the flow field, and 4 is the height. The shear
stress can be regulated through flow rate of Q. The chamber
was placed on the stage of an inverted microscope.

2.8. Cell Migration Assay under Hela Cells/yHUVECs Coculture
and Shear Flow. HUVECs were seeded onto the outer side
of the PET membrane at a density of 2 x 10° cells/mL.
We kept the insert in an incubator at 37°C for 6 hours
to allow HUVECs to adhere to the outer side of the PET
membrane and then turned up the insert to seed DiO
labelled HeLa cells (500 uL cell suspension containing 5 X
10* cells) onto the inner side of PET membrane. The
cocultured insert was set into co-culture flow system to
expose shear stress (8 dyn/cm?) for 8 hours. The procedures
for HeLa cell labeling and the counting of migrated HeLa cell
numbers were mentioned above (see Cell Invasion Assay).
The migrated HeLa cells were quantified by cell counting
from more than six random microscopic fields for each
sample (magnification 10x).

2.9. Cell Adhesion Assay under Shear Flow. The adhesion
assay under flow was adopted from the method established
by Chiu and coworkers [19]. HUVECs were preseeded on a
coverslip at a cell concentration of 2 X 10°/mL and incubated
for 48 hours. To facilitate their visualization against the
background of monolayer endothelial cells, HeLa cells were
labelled by the method as mentioned above (see Cell Invasion
Assay). DiO-labelled HeLa cell suspension (1mL) at the
concentration of 1 x 10° cells/mL was also seeded to the
same coverslip (with HUVECs monolayer) and incubated
for 6 hours. The co-cultured coverslip was fixed in the flow
chamber for continuous shear stress exposure (1.84 dyn/cm?,
1 hour). The adhesion capability was evaluated by calculating
the ratio of the number of static adhesive cells (0 dyn/cm?,
control) to that of shear flow condition (1.84 dyn/cm?, I
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Figure 2: HUVECs induced HeLa cell migration. HUVECs (1 X
10° cells/mL) were seeded onto the bottom of 12-well plate before
the inserts were set into the plate wells. The cells were allowed
to migrate for 8 hours at 37°C and 5% CO,. The numbers of
migrated HeLa cells were quantified by cell counting from more
than six micrographic fields using magnification of 20x. *P < .05
no HUVECs versus HUVECs.

hour) under fluorescent microscope. The adhered Hela cell
number on the HUVECs monolayer was quantified by cell
counting from more than ten random microscopic fields for
each sample (magnification 10x).

2.10. Presentation of Data and Statistical Analysis. Data
are presented as mean + standard deviation (SD). The
statistical significance of differences was tested using two-
tailed Student’s t-test, and P < .05 was considered to be
significant.

3. Results

3.1. Role of GPIIb/IIla, avf3 Integrins, and Endothelial
Cells on HeLa Cell Migration. Migrated HeLa cell number
significantly increases in the presence of HUVECs than the
control (no HUVECs culture on the bottom of wells) as
shown in Figure 2. We next examined how GPIIb/IIla and
avf33 integrins affect HeLa cell migration in static condition.
Activation of platelets by thrombin leads to remarkably
increasing migration ability of HeLa cell. However, migrated
cell number decreases after inhibition of GPIIb/IIIa and avf33
integrins by eptifibatide and RGDWE peptides, respectively
(Figure 3).

3.2. GPIIb/IIa and avf33 Integrins Mediate HeLa Cell Trans-
migration under Coculture Flow Condition. Furthermore,
we questioned whether the above-mentioned HeLa cell
migrating phenomenon exists in dynamic flow condition,
and whether shear flow also contributes to cell migration.
Therefore, HUVECs were seeded onto the outer side of
PET membrane and exposed to shear stress (8dyn/cm?,
8 hours) as shown in Figure 1(b). The migrated HeLa
cell number enhances under shear flow in the presence
of HUVECs monolayer (Figure 4(a)), and migration also
greatly augments when the platelets were activated by
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FIGURE 3: Migration of HeLa cells in the presence of platelets (Pl),
thrombin (Th), eptifibatide (Ep), or RGDWE peptides (RGDWE).
Cells were allowed to migrate for 8 hours at 37°C and 5% CO,.
Each data point is the mean of more than six micrographic fields
using magnification of 20x. PI+Th: in the presence of thrombin-
activated platelets; Pl+Ep: thrombin-activated platelets treated with
eptifibatide (Ep); RGDWE: HeLa cells were treated with RGDWE
peptides to block avf33 integrin. Control is considered as the sample
of equal volume of cell culture medium added. *P < .05 (P1+Th),
RGDWE versus control; #P < .01 (P1+Ep) versus (PI+Th).

thrombin (Figure 4(b)). It is very similar to the static culture
condition.

3.3. GPIIb/1lla and avf33 Integrins Induce Invasion of HeLa
Cells In Vitro. The invaded HelLa cell number obviously
increased comparing with the control (the sample of equal
volume of cell culture medium added), and invasion ability
of HeLa cells also enhanced in the presence of thrombin-
activated platelets (Figure 5). To further confirm the poten-
tial roles of platelet during HeLa cell invasion, eptifibatide, a
specific inhibitor of platelet GPIIb/IIIa integrin, was added
after platelet activation. It was found that the invaded
number of HeLa cell decreased and recovered near to the
level in the presence of platelet alone (Figure5). In the
prior experiments (Figures 2 and 4(a)), it was demonstrated
that endothelial cells could significantly enhance and induce
HeLa cell migration regardless of HUVECs seeded onto the
well bottom of plate or the outer side of PET membrane.
Here, the transmembrane invasion ability of HeLa cells was
also evaluated in the presence of HUVECs seeded onto
the outer side of PET membrane. It was shown that the
invaded cell numbers of HeLa were relative higher than that
of without HUVECs, and the cell invasion tendency in the
presence of HUVECs was also very similar by comparing
with Figures 5 and 6. Moreover, specific blocking of avf33
integrin by RGDWE peptides led to a decrease of the invaded
cell number (Figure 6).

3.4. GPIIV/Illa and avf3 Integrins Participate HeLa Cell
Adhesion on Monolayer Endothelial Cells under Shear Flow.
To examine the possibility that GPIIb/IIla and avf33 inte-
grins could also regulate HeLa cell adhesion on monolayer
endothelial cells under shear flow, parallel flow chamber
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FiGure 4: HeLa cell migration under shear flow in HeLa
cells/HUVECs coculture parallel flow system. HeLa cells labelled by
DiO were cultured onto the inner side of insert PET membrane,
and the outer side seeded with HUVECs was exposed to 8 dyn/cm?
shear flow for 8 hours. The numbers of migrated HeLa cells were
quantified by cell counting from more than six micrographic fields
using magnification of 20x. (a) Flow and monolayer endothelium
induced HeLa cells migration. *P < .05 (EC+flow) versus (No
EC+flow). (b) Migration of HeLa cells in the presence of thrombin-
activated platelets (P1+Th) or activated platelets with eptifibatide
(P1+Ep) under the above-mentioned flow condition. *P < .05 versus
control: #P < .01 (Pl+Ep) versus (P1+Th). Control is considered as
the sample of equal volume of cell culture medium added.

system was used to simulate the blood flow for the study of
HelLa cell adhesion behavior. The number of adhered HeLa
cells increased when platelets were present in the perfusion
medium, and it enhanced remarkably (nearly 5-fold of
the static case) after the platelets activation by thrombin
under a low shear stress condition of 1.84 dyn/cm? for 1
hour. By blocking the GPIIb/IIIa integrin on platelets and
avf33 integrin on HeLa cells using eptifibatide and RGDWE
peptides, respectively, the adhered HeLa cells on monolayer
HUVEC:s significantly decreased (Figure 7), which indicated
that GPIIb/IIla and avf33 integrins participated in the
adhesion interaction of cancer cells and endothelial cells.



Control

50

30 -

Invaded Hela cells/field

m Il Il Il

Control PI PI + Th

PI +Ep
(b)

FIGURE 5: Transmembrane invasion of HelLa cells through PET
membrane precoated with gelatin. (a) representative images of
HeLa cells invasion (labelled into green) and (b) the statistical
data of invaded HeLa cell numbers in various conditions. The
numbers of invaded HeLa cells were quantified by cell counting
from more than five micrographic fields using magnification of
10x. Pl: in the presence of platelets; PI+Th: in the presence of
thrombin-activated platelets; PI+Ep: thrombin-activated platelets
treated with eptifibatide; RGDWE: HelLa cells were treated with
RGDWE peptides to block avfi3 integrin. *P < .05 (P1+Th) versus
Pl or (PI+Ep); *P < .05 Pl versus control. Control is considered as
the sample of equal volume of cell culture medium added.

4. Discussion

Although the formation of metastasis requires the successful
completion of several sequential interrelated steps by the
cancer cells, interaction of cancer cells and host cells in
blood vessel plays an important role in the final metastasis
formation. So a thorough understanding of the mechanisms
how the platelet-cancer cell interaction regulates cancer
metastasis could help researchers develop new therapeutic
interventions [20-22]. In this study, our focus centers on
the aggregation or not of cancer cells with platelets through
GPIIb/I1Ia and avf33 integrins whether it contributes to HeLa
cell migration, invasion, and adhesion both in static and
dynamic flow conditions.

In our present work, we used the Millicell cell culture
insert system to investigate HeLa cell transmigration and
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FIGURE 6: Transmembrane invasion of HeLa cells through PET
membrane precoated with gelatin and a monolayer of HUVECs
cultured in the outer side of PET membrane. The numbers
of invaded HeLa cells (labelled into green) were quantified by
cell counting from more than five micrographic fields using
magnification of 10x. EC: HUVECs cultured on the outer side of
PET membrane. EC+Pl: in the presence of HUVECs monolayer
and platelet; EC+PIl+Th: in the presence of HUVECs monolayer
and thrombin-activated platelets; EC+Pl+Ep: in the presence of
HUVECs monolayer and thrombin-activated platelets treated with
eptifibatide; EC+RGDWE: in the presence of HUVECs monolayer
and HeLa cells with RGDWE peptides blocked avf33 integrin.
*P < .05 (EC+PI+Th) versus (EC+Pl) or (EC+PI+Ep); *P < .05
(EC+RGDWE) versus EC.

invasion in vitro. In static condition, HeLa cell transmem-
brane migration and invasion increased significantly in the
presence of thrombin-activated platelets and recovered to
normal after the platelet GPIIb/IIla integrin was blocked
by eptifibatide both in static and co-culture flow system
conditions (Figures 3, 4, and 5). These data provided strong
evidences that platelet GPIIb/IIIa integrin participated and
mediated HeLa cells migration. The number of HelLa cells
that invade through gelatin matrix in the presence of platelets
is approximately 10-fold higher than control condition
while in the presence of thrombin-activated platelets is only
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Ficure 7: Effect of platelets, thrombin, eptifibatide, and RGDWE
peptides on adhesion of HeLa cells to HUVECs monolayer under
static (0 dyn/cm?) and low shear stress conditions (1.84 dyn/cm?,
1 hour). (b) and (c) are the representative images of HeLa cells
adhesion (labelled into green) and the statistical data of adhered
HeLa cell numbers in various conditions, respectively. The numbers
of adhered HeLa cells were quantified by cell counting from more
than ten micrographic fields using magnification of 10x. *P < .05
flow versus static; **P < .01 (Flow+PI+Ep) versus (Flow+Pl+Th);
#P < .05 (Flow+RGDWE); #P < .01 (Flow+Pl) versus Flow.

near 12-fold of control (Figure5). These results suggest
that HeLa cells may induce platelet activation through
GPIIb/1a activation and therefore induce HeLa cell-platelet
interaction or that other integrins might be involved [23,
24]. This interaction of cancer cells-platelets could promote
not only platelet aggregation but also the expression of
matrix metalloproteinases that are involved in the matrix
degradation and invasion process. It was reported that avf33
integrin overexpressed on the HeLa cell surfaces, and which
could bind to GPIIb/IIIa integrin [25]. Further study showed
that the number of migrated HeLa cells decreased after the
avf33 integrin was specifically blocked by RGDWE peptides
(Figures 3 and 6). It suggested that GPIIb/Illa and avf3
integrins will cooperate to mediate HeLa cell migration, or

that there was a synergic effect when GPIIb/IIla and avf33
integrins were activated. Because cancer cell does not only
interact with platelets , leucocytes and endothelial cells were
also involved. Published data have provided evidence that
leucocytes facilitated melanoma cell adhesion [26]. Here,
we found that HeLa cell migration was remarkably affected
whether the endothelial cells were cultured on plate wells
or the outer side PET membrane (Figures 2, 4, and 6).
Endothelial cells enhanced HeLa cell migration both in
static and shear flow conditions, suggesting that endothelial
cells could secrete some cytokines or chemoattractants
to induce Hela cell transmigration, for instance, basic
fibroblast growth factor and vascular endothelial growth
factor.

We also used a laminar flow chamber to further assay
HeLa cell adhesion under shear stress conditions to mimic
the in vivo situation. Under physiological conditions, tumor
cells which are under the hematogenous metastasis are
exposed to a wide range of mechanical shear stresses from
blood flow. This dynamic fluid system definitely impinges
on the motion of individual tumor cells, especially their
behaviors of adhesion to the endothelium. The relevant
reports which focus on the behavior of the cell adhesion
under dynamic condition are rare [27].

Interestingly, results shown in Figure 7 indicated that the
capability of HeLa cell adhesion to endothelium is signifi-
cantly affected by GPIIb/IIIa and avf33 integrins. Previous
studies have shown that the activated platelets can also
bind to the cancer cells via GPIIb/IITa and avf33 interaction
through the bridges of fibronectin, fibrinogen, or von
Willebrand factor. So it could be speculated that more HelLa
cells would be arrested on the endothelial cells via the P-
selectin and its ligand PSGL-1 is present on endothelium [28,
29]. The aggregation of platelets will strengthen cancer cell
adhesion and migration. Our data support the hypothesis,
and a new model that activated platelets will adhere to cancer
cells via GPIIb/IITa and avf3 interaction to form a loosed
platelet coating on cancer surface, which will lead to cancer
cells to reduce or avoid shear stress exposure and also assist
more cancer cell adhesion [30, 31]. On the other hand, the
activated platelets aggregated to form tiny local thrombus,
and resulting in local blood viscosity enhanced to provide
more chance for cancer cell adhesion [32-35]. Moreover,
cancer cell-induced platelet activation possibly amplifies
cancer cell adhesion to endothelium to some extent [36].
Our investigation further demonstrated that cell migration,
invasion, and adhesion were also highly regulated by avf3
integrin on the HeLa cells. These results might add a new
aspect why the majority of actively metastatic tumors were
found to highly express avf33 integrin.

Taken together, the present work demonstrates a novel
role for GPIIb/IIla and avf33 integrins in supporting the
HeLa cell migration, invasion, and adhesion. The presence of
platelets and their activated state resulted in enhancement of
HeLa cell transmigration and cell recruitment to HUVECs
monolayer under shear flow. These findings promote our
understanding of the roles of GPIIb/IIIa and avf3 integrins
in cancer metastasis, which could be a new strategy to cancer
treatment.
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