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ABSTRACT

Vibrio vulnificus is a pathogen of public health concern that causes either primary septicemia after ingestion of raw
shellfish or secondary septicemia after wound exposure to seawater. In consequence, shellfish and seawater are
considered its main reservoirs. However, there is one aspect of its biology that is systematically overlooked: its
association with fish in its natural environment. This association led in 1975 to the emergence of a zoonotic clade
within phylogenetic lineage 2 following successive outbreaks of vibriosis in farmed eels. Although this clade is now
worldwide distributed, no new zoonotic clades were subsequently reported. In this work, we have performed
phylogenetic, genomic and functional studies to show that other zoonotic clades are in fact present in 4 of the 5
lineages of the species. Further, we associate these clades, most of them previously but incompletely described, with
the acquisition of a family of fish virulence plasmids containing genes essential for resistance to the immune system
of certain teleosts of interest in aquaculture. Consequently, our results provide several pieces of evidence about the
importance of this species as a zoonotic agent linked to fish farms, as well as on the relevance of these artificial

environments acting as drivers that accelerate the evolution of the species.
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Introduction

Vibrio vulnificus is a multi-host pathogen that inhabits
marine and estuarine ecosystems in tropical, subtropi-
cal and temperate zones [1]. Currently, its geographic
distribution is expanding to traditionally colder areas
due to global warming [2]. The pathogen causes a
series of diseases with multiple clinical manifestations,
known as vibriosis [3,4]. Although human vibriosis
has been more thoroughly studied than that of fish,
studies in eels suggest that the pathogen infects ani-
mals by adhering to the gill or intestinal mucus and
provoking a local inflammatory response that allows
it to invade the blood and cause death by haemorrha-
gic septicaemia [4]. Remarkably, both human and fish
vibriosis can lead to sepsis and death depending on
several risk factors which, in fish, are related to
water temperature and salinity [4] whereas in humans
to elevated blood iron levels [5]. In addition, some
cases of secondary septicemia transmitted from dis-
eased fish to humans have been reported, making
V. vulnificus the only vibrio recognized as a true

zoonotic agent [6,7]. However, because zoonotic
cases are so rare, this pathogen is mostly known as a
foodborne pathogen or as a marine flesh-eating
bacterium.

Classically, the species has been subdivided into
three biotypes, all including environmental and clini-
cal strains, that differ in some biochemical and serolo-
gical features [8-10]. However, this subspecific
classification system does not reflect the true variabil-
ity of the species, as many strains cannot be classified
into any of these biotypes. Recently, Roig et al. [11]
proposed a new subspecific classification system
based on the genetic variability (single nucleotide
polymorphisms, SNPs) of the core genome. According
to this new classification, V. vulnificus is divided into
five lineages (denoted L1 to L5) plus a pathovar (pv.
piscis) within L2 that groups virulent strains for fish.
The distinctive feature of pv. piscis strains is that
they possess a fish virulence plasmid (pFv) that con-
tains two genes that, when deleted independently,
they turn the bacterium practically avirulent for fish
while retaining its virulence for mice [12,13]. These
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genes encode a “survival in fish blood kit” formed by
two iron-regulated outer membrane proteins, Fpcrp
(fish phagocytosis and complement resistance protein,
formerly vep07) [13] and Ftbp (fish transferrin-bind-
ing protein, formerly vep20) [12]. In contrast, viru-
lence factors that damage host tissues are all
chromosomal and appear to be involved in both
human and fish vibriosis [3,4,14,15]. Interestingly,
pFv can be transmitted by parasitizing a conjugative
plasmid (pConj) widely distributed in the species [16].

Roig et al. [11] concluded that the pFv had probably
been acquired several times in fish farms by different
clones that were amplified after successive outbreaks
giving rise to the clades currently isolated from dis-
eased fish: L2-clade A, L2-clade E (or serovar E [Ser
E]), and L2-clade I. Remarkably, L2-clade E was the
first to be isolated [8] and it groups all zoonotic strains
described to date [11]. Consequently, the authors
hypothesized that fish farms may play an important
role in the evolution of the species by facilitating the
emergence of new potentially zoonotic groups, as
occurred with L2-clade E.

To test this hypothesis, we used recent isolates from
vibriosis outbreaks together with control strains
belonging to clades and lineages previously described
in a series of genotypic, phenotypic and functional
assays, as well as in phylogenetic and genomic studies.
Our results suggest that previously studied lineages
(L3, formerly biotype 3 [9] and L5, formerly Clade B
[17], both clonal), and clades (Ll-clade A [18])
together with a new clade (L1-clade T), described in
this work, belong to pv. piscis, as all were virulent to
fish and harboured a pFv-related plasmid containing
the gene markers ftbp and fpcrp. None of the above
groups had been linked to vibriosis in fish or to zoono-
sis cases [9,17,18], but all include human clinical iso-
lates, demonstrating their zoonotic nature.

Material and methods

Schemes of the general procedure as well as additional
information on the methodology are shown in Sup-
plementary Figures 1 and 2 as well as in Supplemen-
tary File 1.

Bacterial identification and serology. A number of
isolates from diseased tilapia showing clinical signs
compatible with vibriosis arrived in the laboratory
[19]. These tilapia came from several fish farms
located in the Eastern Mediterranean that experienced
recurrent outbreaks of vibriosis between 2016 and
2019 [19]. Pure cultures were obtained from internal
organs of moribund tilapia and were identified at the
species level (API-20E system [BioMerieux, Madrid,
Spain] plus PCR targeting wvvhA [20]), pathovar
(PCR targeting fpcrp [20]), and zoonotic clade (PCR
targeting seq61 [21]) levels. Identified strains were
then subtyped for evaluating their putative public
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health hazard (PCR targeting a polymorphism in
pilF [PHH-PCR]) [22].

The serological group of the new isolates was deter-
mined by slide agglutination and ELISA by using bac-
terial O-antigens and rabbit antisera against formalin-
killed cells [23]. Serum titres were calculated as the
reciprocal of the highest antibody dilution giving a
positive result.

In vivo and ex vivo virulence assays. Virulence for
tilapia and mice was performed to determine the zoo-
notic potential of the new isolates. In the case of tila-
pia, juvenile healthy Nile tilapia (mean weight 8-
10 g) were infected by intraperitoneal (i.p.) injection
and by immersion as previously described [24]. In
case of mice, females of 6- to 8-week old (BALB/c,
Charles River, France) were infected by i.p. injection
as previously described [10]. The virulence score of
each isolate was calculated as the lethal dose causing
50% of mortality (LDs,) following the procedure of
Reed and Muench [25]. All the assays were performed
in duplicate and control groups of animals were chal-
lenged with sterile PBS.

The ability of the new isolates to cause septicemia
was tested using tilapia plasma and iron-overloaded
human serum. Fresh tilapia plasma was obtained
and tested as previously described [26]. Human
serum (Sigma) was supplemented with FeCl; 10 pm
and was distributed in microtitre plates that were
inoculated with stationary-phase bacteria [13]. The
assays were performed in triplicate and samples were
taken at 0, 4 h (fish) and 6 h (human) post-incubation
at 28°C (fish plasma assay) or 37°C (human serum
assay). Viable counts were determined by drop plating
on TSA-1. Bactericidal and bacteriostatic activities in
serum/plasma were measured as the percentage survi-
val of the strains.

Genomic and phylogenomic analysis. Genomic
DNA was extracted using GenElute™ Bacterial Geno-
mic DNA kit (Sigma). DNA integrity was checked by
electrophoresis and quantified with Qubit and then,
DNA was sequenced. Vv5 was sequenced with Illu-
mina MiSeq and Oxford Nanopore MinION while
Vv3 and TI417 strains were sequenced only with Illu-
mina MiSeq. Data availability, genome description
and further details are described in [19]. Briefly,
library construction and sequencing of Vv5 with Illu-
mina MiSeq were performed by SCSIE (Servei Central
de Suport a la Investigacié Experimental) of the Uni-
versity of Valencia using Illumina® TruSeq® DNA
PCR-Free Sample Prep Kit following manufacturer’s
instructions, obtaining 250 bp paired-ends reads. In
addition, library construction and sequencing of Vv5
were performed at FISABIO Molecular Epidemiology
and Sequencing Service laboratories, with the Oxford
Nanopore PCR Barcoding Kit (SQK-PBK004) follow-
ing manufacturer’s instructions. On the other hand,
library construction and sequencing of Vv3 and
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Figure 1. V. vulnificus phylogeny. The phylogenetic tree was reconstructed using the maximum-likelihood method and the gen-
eralized time-reversible model (GTR + F+R5) of evolution. Bootstrap support values from 1000 replicates are indicated in the cor-

responding nodes as percentages. L, lineage.
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Figure 2. Plasmids in pv. piscis lineages and clades. The genes for conjugative transference, the survival in fish blood kit (ftpb and
fpcrp), and the MARTX toxin are represented in green, red, and orange respectively, while the additional genes common to all pv.
piscis plasmids are represented in brown. (A) Linear comparison among pCladeT and the original pv. piscis plasmids, pFv and
pConj, performed with Easyfig [38]. (B) Ring representation of the pv. piscis plasmids from the clades and lineages emerged in
the Eastern Mediterranean. From inside to outside, pL3 (used as reference; black ring), pClade A, pCladeT y pL5. The gene annota-

tion of the pL3 is represented in the multicoloured external ring.

TI417 were performed at FISABIO Molecular Epide-
miology and Sequencing Service laboratories, with
the Ilumina® NextSeq platform using Nextera® XT
Library Preparation Kit and manufacturer’s protocols
(Ilumina, San Diego, USA), which generates 150 bp
paired-ends reads. Quality of Illumina reads was
checked using FastQC (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) and MultiQC [27].
Then, reads were filtered using Prinseq [28] with a
mean quality threshold of 20 (-min_qual_mean 20)
and checked again with FastQC. Long reads were eval-
uated and filtered with NanoPack [29]. First, read
quality and length were assessed with NanoStat and
NanoPlot; then, reads were filtered with a minimum
length threshold of 500 nucleotides. For short reads,
a de novo assembly was performed using SPAdes gen-
ome assembler v3.13 [30] with “careful mode” for Vv3
and TI417. For hybrid assembly of short (Illumina)
and long reads (Nanopore), we used Unicycler [31]
v0.4.9b with default parameters and normal mode.

Assembly statistics of resulting assemblies were
retrieved using Quast v5.0.2 [32]. In order to obtain
the strict core of the species and plasmids, all the gen-
omes were annotated with Prokka [33] and we used
Proteinortho5 [34] to determine the subset of shared
orthologous genes. Individual genes were extracted
from each genome assembly with the grab_proteins.pl
script. For each software, default parameters were used
except where indicated otherwise.

MARTX sequences were retrieved from NCBI.
Domains were annotated as previously described
[35] and were used as a local database to perform a
BLAST analysis. The presence of CRISPR was ana-
lysed using the CRISPRcasFinder online tool [36]
(https://crisprcas.i2bc.paris-saclay.fr/). Spacer
sequences were analyzed using CRISPRTarget data-
bases [37]. Comparison of genomic regions was per-
formed using BLASTn analysis and the results were
plotted with Easyfig [38]. The genomic region sur-
rounding the CRISPR-CAS system was checked for
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the presence of markers of mobile genome elements
such as integrases, transposases, or phages, searching
in INTEGRALL, PHASTER or comparison of %GC
(39,40].

A phylogenomic analysis of the core from 80 gen-
omes [11], downloaded from the NCBI (https://
www.ncbi.nlm.nih.gov/), and the genomes sequenced
in this study was performed. Sequences of genes
included in the strict core were aligned with Mafft
[41] and concatenated using AMAS [42]. The phylo-
genetic tree was reconstructed using the maximum-
likelihood (ML) method with IQ-TREE [43] and Mod-
elFinder [44] option to assess the best model that fitted
our data. The model used based on the BIC criterion
was GTR + F+R5; additionally, we assessed branch
support with 1000 bootstrap replicates [45]. The
resulting tree was visualized using the online tool
iToL [46].

Phylogenetic trees for ftbp and fpcrp were recon-
structed using the ML method with the Tamura 3-par-
ameter model [47]. Support for the groupings derived
in these reconstructions was evaluated through boot-
strapping using 1000 replicates. In both cases, the
best evolutionary model for the nucleotide sequences
was selected by using MEGA X [48]. The sequences
of both genes were obtained from our genome data-
base [11] and from GenBank for V. harveyi
(HM?752246.1).

Results

Characterization of a new emerging group
within V. vulnificus pv. piscis

All tilapia isolates were identified as V. vulnificus by
PCR and gave the same phenotypic profile in the
API20E system. Therefore, we selected four of them
for further studies. Table 1 presents the results for
the four isolates and control strains in every per-
formed test.

PCR-subtyping and serology. The selected tilapia
strains were negative for pv. piscis-PCR [21], positive
for the PHH-PCR pilF [22] (Table 1) and serologically
identical and distinguishable from previously
described serovars (Supplementary Table 1). There-
fore, they represent a new serovar within the species
that did not belong to pv. piscis for which the name
Ser T (from tilapia) is proposed.

Virulence assays: ex vivo and in vivo assays. To find
out if Ser T was the etiological agent responsible for
the outbreaks in tilapia we performed a series of ex
vivo and in vivo assays with fish. The Ser T strains mul-
tiplied in fresh tilapia plasma in less than 2 h and were
virulent to tilapia by both i.p. injection and immersion
(Table 2), reproducing the clinical signs of natural dis-
ease (Supplementary Figure 3). These results clearly
demonstrated that Ser T was the responsible

etiological agent that caused the outbreaks of vibriosis
in tilapia and, therefore, that they should belong to pv.
piscis. Interestingly, Ser T strains were avirulent to eels
(LDsp>10° cfu/ml by immersion challenge, data not
shown) while the control strain from the zoonotic
clade (L2-Clade E), originally isolated from diseased
eel, was virulent to eel (LDsp>1x10° cfu/ml by
immersion challenge [24]) but not to tilapia (Table
2), suggesting host-specificity for both groups of iso-
lates. As expected, control strains of human origin
neither grew in tilapia plasma nor were virulent to tila-
pia (Table 2). Furthermore, to predict the zoonotic
potential of Ser T, we performed experiments of resist-
ance to iron-overloaded human serum and virulence
in mice (Table 2). All Ser T strains multiplied in
iron-overloaded human serum and were virulent to
mice giving values of survival percentage and lethal
dosis 50% (LDsg) similar to those of the zoonotic-
clade and human-derived strains used as controls
(Table 2). All these data strongly supported the
hypothesis about the zoonotic potential of the new ser-
ovar. Due to the contradictory results obtained in the
pv. piscis-PCR, we decided to sequence the genome of
three Ser T representative strains.

Genomic and phylogenomic analysis

First, we performed a phylogenomic analysis from the
genes shared by our genomes and the genomes used in
the analysis of Roig et al. [11]. The number of shared
genes (strict core) was 2619, with a total of 203,554
SNPs. a number higher to that found by Roig et al.
[11]. However, the corresponding phylogenetic tree
presented the species divided again into 5 lineages
with a topology very similar to that found by Roig
et al. for each chromosome [11] (Figure 1). Ser T
strains clustered (clade T), which was compatible
with an ANI value close to 100% (Supplementary
Table 2), within L1 (Figure 1), the lineage that grouped
most strains from cases of primary sepsis in humans
[11] while all pv. piscis clustered within L2. This result,
again, suggested that Ser T strains did not belong to
pv. piscis.

To further verify this, we searched for the pathovar
marker gene (fpcrp) in the three sequenced genomes.
We found an almost identical gene in the three gen-
omes that differed from that previously described
[21] by only 19 nucleotides out of a total of 1398, 3
of which just were located at the 3’ end of one of the
primer pairs used in the PCR to identify the pathovar
(Supplementary Figure 4). Consequently, we con-
cluded that clade T effectively belonged to pv. piscis
and designed a new PCR to identify pv. piscis strains.
The new primer pairs are Ftbp F: 5-AGTTTGCG-
GAAAAAGCACAG-3’/Ftbp R: 5-CATT-
GATCGTCGTCTGAACC-3" and amplify a fragment
392 pb.
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Table 1. Isolation data, lineage and identification of the new isolates in comparison with those of the control strains.
Isolation data

Identification®

Geographic location/year Pathovar/
Strain® Source® of isolation Phylogenetic Lineage®  Species PCR/Api20E clade E Public Health Hazard
New isolates
VW3, VW4, VW5  Diseased tilapia  Eastern Mediterranean /2016 ? +/+ (99.3%) -/- +
TI417 Diseased tilapia  Eastern Mediterranean /2019 ? +/+ (99.3%) -/- +
Control strains
YJo16 Human blood Asia/1993 L1 +/+ (99.3%) -/- +
CECT 529" Human blood USA/1980 L2 +/+ (99.3%) -/- +
CECT 4999 Diseased eel Europe/1999 L2/clade E +/§7 (54.4%) +/+ +
CECT 5198 Diseased eel Europe/2000 L2/clade A +/+ (99.3%) +/- -
95-8-161 Diseased eel Europe/1995 L2/clade | +/+ (99.3%) +/- +

CECT, Spanish Type Culture Collection; T, type strain.

BAll the new isolates were recovered as pure cultures from internal organs of moribund tilapia. VV3 was isolated from farm A, VV4 and VV5 from farm B and
TI417 from farm C.

“Phylogenetic lineage determined by Roig et al [11]. L1 includes biotype 1 strains, L2 biotypes 1 and 2 strains and L3 biotype 3 strains. L2-Clade E includes
all the zoonotic strains reported to date.

didentification of the isolates was performed at species, pathovar (piscis) and zoonotic clade (clade E) level by PCR targeting vvhA [20], fpcrp (formerly
vep07) [21] and seq 67 [21], respectively. Positive (+), negative (-), and doubtful (;?) identification. The value in parentheses indicates the probability
of a good identification according to the API20E profile (5146105, probability 99.3%; 5006005, probability 54.4%).

The public health hazard of the strain was determined by PCR targeting a polymorphism of pilF [22]. Discrimination is based on the amplification of a
variable region located within the gene pilF resulting in a 338 bp fragment.

Table 2. Results obtained in the in vivo and ex vivo virulence assays performed with the new isolates in comparison with those of

the control strains.

Resistance to ¢

Virulence for®

Tilapia

Mouse
Strain TP HS + Fe i.p. injection Immersion i.p. injection
Tilapia isolates
V3 + (9.1 10°%) + (7.0 X 10%%) +(3.3% 109 +(3.3%10°) +(1.5% 10
w4 + (8.3 % 10°%) + (1.1 % 10°%) + (8.4%10°%) +(84%10%) +(9.2x10%)
V5 + (8.5 % 10%%) + (3.1 X 10%%) +(2.5% 109 + (4.2x10°) +(2.0x 109
TI417 + (9.5 X 10%%) + (1.7 X 10°%) NT +(1.0x10% NT
Control strains
CECT 4999 + (8.5 % 10%%) + (1.9 % 10°%) -(>10) (> 10% + (1.0 x 10%)
YJO16 -(0%) + (4.9 x 10%%) - (>10) - (> 109 +(1.0x 109
CECT 529" -(0%) + (5% 10%%) (>10%) (> 10%) - (>10%)

“Resistance to tilapia plasma (TP) and iron-overloaded human serum (HS+ 10 pM of FeCl; [13]) after 4 h at 28°C (tilapia) or 6 h at 37°C (human) is coded as
follow: +, survival >100%; -, survival <100%. Data in parentheses correspond to the medium percent survival from three independent experiments.
PThe medium value of 50% lethal dose (LDso) from two different experiments is presented in parentheses as cfu/g (i.p. injection) or /ml (inmersion). Results

are coded as follows: fish and mouse injection; - (>107), + (< 107); fish immersion; - (>10%) + (< 10°) [10, 24].

NT, not tested.

Since fpcrp is a plasmid gene, we looked for the
presence of plasmids in our genomes. To facilitate
this task, we sequenced the genome of one of the Ser
T isolates using MinION, which allowed us to obtain
all the plasmid genes in a single contig (pCladeT).
The plasmid was compared to plasmids pFv and
pConj, previously described in pv. piscis [49] (Figure
2A). pFv is about 68 Kb in size and contains a com-
plete gene cluster for the RtxAl toxin, its post tran-
scriptional modification, and transport
(Supplementary file 2) (Figure 2A). This cluster is
duplicated in chromosome II of L2-clade E strains
[49]. pFv also has two genes for a toxin-antitoxin sys-
tem, the fish virulence markers ftbp and fpcrp (the
marker gene for pathovar). Finally, pFv encodes a
series transposases and hypothetical proteins or pro-
teins with very low similarity to known proteins (Sup-
plementary file 2) (Figure 2A). In contrast, pCladeT
has a size of 56 Kb and, apparently, is a hybrid between
pConj and pFv because it contains tra genes with high
similarity to pConj genes and genes with high

similarity to those found in pFv, such as genes for
the toxin-antitoxin system, genes for transposases,
genes for hypothetical proteins, and, most impor-
tantly, the two genes for the “survival in fish blood
kit” (Supplementary file 2) (Figure 2A). In conse-
quence, our results suggest that pCladeT is a fish viru-
lence plasmid. To confirm that this plasmid was
present in all strains from tilapia, we performed a
PCR for ftbp and fpcrp and found all the strains posi-
tive (Supplementary Figure 5).

pCladeT lacked the genes for the rtxA1l cluster. We
found the cluster in chromosome II. RtxAl is an
essential virulence factor for fish and humans in this
species [14,15]. This toxin belongs to the MARTX
(Multifunctional, Autoprocessive, Repeat in Toxin)
family and is the main toxin of the species
[14,50,51]. These are modular toxins of a very high
molecular weight, with an external module that con-
tains the amino acid repeats and an internal module
that contains between 3 and 5 functional domains
with different cytopathic functions. MARTX 1 _cjade T
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was different to the toxin of this family described in
the rest of pv. piscis strains (Figure 3A). The most
similar toxin was that of L3, as both toxins were prac-
tically identical but that of L1-clade T lacking Dmx
domain (Figure 3B).

Interestingly, a CRISPR-Cas system was identified
in the Ll-clade T genomes but not in the rest of
V. vulnificus genomes, regardless of the lineage and
clade. This system was practically identical to other
Vibrio CRISPR-Cas systems, such as those corre-
sponding to V. cholerae RFBO5 or V. anguillarum
PF7 (Supplementary Figure 6) but showed as a distinc-
tive feature its location in a 45 Kb island encoding a
potassium dependent ATPase, a type I restriction/
modification DNA system, and a series of unknown
proteins within a histidine biosynthesis operon (Sup-
plementary Figure 6). The CRISPR-Casy;_dade T SYS-
tem was identified as of type I-C by the presence of
a canonical cas operon (cas2cas4cas3caslcas5cas7-
cas8c), a leader sequence and a characteristic canonical
type I-C repeat [52]. The array contained 65 spacers,
33 of which matched some vibriophages (such as
VP882 or fs2) and plasmids from different Vibrio
species (V. parahaemolyticus pVPGX2, V. vulnificus
p4810 or V. harveyi pLA16-1 among others) [52,53].
No marker of mobile genetic elements in the genomic
region surrounding the CRISPR-Cas 1 _gade T System
was identified. Since the protospacer targets several
phages and plasmids, some of which were vibrio-
phages and Vibrio plasmids, we suggest that this sys-
tem protects the bacteria against attacks by phages
and the entry of exogenous DNA.

Retesting L3, L5 and L1-clade A

The L1-clade T genomes were more similar to L3-, L5-
and Ll-clade A genome than to the previously
described pv. piscis genomes (Supplementary Table
2). All these groups had in common that they (i)
were highly clonal, (ii) had arisen in tilapia farms in
the Eastern Mediterranean, and (iii) included human
clinical and environmental strains with no reported
relationship to cases of zoonosis or fish vibriosis
[9,17,18]. Consequently, we suspected that these
groups might also belong to pv. piscis. To confirm
this hypothesis, we characterized representative iso-
lates from these groups by performing the same ana-
lyses that we had carried out with the Ll-clade T
strains.

PCR-Subtyping and serology. The results obtained
are shown in Table 3. All the strains belonged to pv.
piscis, most of them were positive for PHH-PCR pilF
with the exception of the L5 isolate, and belonged to
other serovars with the exception of the L1l-clade A
isolates, which belonged to Ser T.

Virulence assays: ex vivo and in vivo assays. The
strains resisted and multiplied in tilapia plasma,
were virulent to tilapia by immersion and were able
to grow in human serum plus iron (Table 4), confi-
rming that they constituted new zoonotic groups
within the pv. piscis.

Genomic analysis. We tested the hypothesis that L3,
L1-clade A and L5 strains might harbour a virulence
plasmid by searching for it in their genomes. Figure 2
(B) shows the plasmids found in the selected strains.
All the strains harboured a plasmid very similar to
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Table 3. Genotypic and phenotypic characterization of selected strains from previously described lineages and/or clades
possessing a pFv-related plasmid.

Isolation data® PCR for®: Serology®
Lineage/ Selected API20E pv.
clade® strain Source Year profile® species  piscis  cladeE ftbp PHH SerE SerA Serl SerO SerT
L1-clade A yb158 Healthy 2005 5146105 + + - + + - - - - +
tilapia

V246 Human blood 2005 5146105 + + - + + - - - - +
L3 12 Human blood 1996 4146005 + + - + + - - - + -
L5 V252 Human blood 2004 5346005 + + - + - - - - - -

?Phylogenetic lineage determined by Roig et al [11]. L3 and L5 are clonal complexes.

PData of isolation for the selected strain

“Probability of identification of V. vulnificus: 4146005, 75.5%; 5146105, 99.3%.

4The target genes for PCR were: vwhA, species; focrp, pv. piscis (PCR designed in this work); seq61, zoonotic clade E [21]; ftbp, fish transferrin binding protein
[12]; a pilF polymorphism, public health hazard (PHH) [22]. Discrimination is based on the amplification of a variable region located within the gene pilF
resulting in a 338 bp fragment.

€+, AgO agglutination in less than 1 min and ELISA titter (the reciprocal of the highest dilution of the antiserum giving OD two times higher than that of the
negative control) higher than 60,000. -, no agglutination and ELISA titer lower than 15,000.

Table 4. In vivo and ex vivo virulence assays performed with selected strains from previously described lineages and/or clades
possessing a pFv-related plasmid.

Resistance to®

Lineage/ clade® Selected strain Virulence for®
TP HS + Fe Tilapia
L1-clade A yb158 + (5.2 % 10%%) + (4.0 x 10°%) +(25%107)
V246 + (1.5 10°%) + (1.6 X 10°%) NT
L3 12 + (7.1 X 10°%) + (7.3 % 10%%) +(1.3x107)
L5 V252 + (9.2 X 10%%) + (7.7 X 10%%) +(25%109

?Phylogenetic lineage determined by Roig et al [11]. L3 and L5 are clonal complexes.

bResistance to tilapia plasma (TP) and iron-overloaded human serum (HS+ 10 uM of FeCl; [13]) after 4 h at 28°C (tilapia) or 6 h at 37°C (human) is coded as
follow: +, survival >100%; -, survival <100%. Data in parentheses correspond to the medium percent survival from three independent experiments.

“Virulence was determined by immersion challenge. The medium value of 50% lethal dose (LDs) from two different experiments is presented in parenth-
eses as cfu/ml. Results are coded as follows: - (>10%) +(< 10%) [10, 24].

NT, non tested.

pCladeT. Moreover, pCladeA and pL5 were virtually  isolated from the blood of a woman infected after con-
identical to pCladeT, whereas pL3 differed mainly = suming raw fish [54]. Remarkably, the tree showed the
from the rest by the presence of a complete cluster  strains grouped by host and not by phylogenetic
of tra genes. More importantly, all the plasmids con-  group. Finally, both genes were also present in a
tained the virulence genes fpcrp and ftbp involved in V. harveyi strain, suggesting horizontal gene transfer
fish septicaemia, which suggests that they were fish ~ (HGT) between two different species that share the
virulence plasmids (Figure 2B and Supplementary  same habitat.

file 2). The presence of these genes was tested by
PCR in all the strains from our collection belonging
to L3, L5 and L1-clade A, and all of them were positive

(Table 3) (Supplementary Figure 5). This result  To date, V. vulnificus has only been considered as a
confirmed that similar plasmids were present in all  hyman pathogen linked to raw seafood ingestion or
these groups. severe wound infection after seawater exposure but
pCladeT, pCladeA, pL3 and pL5 lacked the rixAl  not as a true zoonotic agent linked to fish farms.
cluster. Therefore, we searched for it in their genomes  The reason was probably that all zoonotic strains
and found it in ChrlIl. As can be seen in Figure 3(B),  were a minor group and as such, they were seen as
the toxins were more similar to each other and to 4y anomaly in the species. However, in this paper
MARTXL; clade 7 than to MARTX5 clade E- we provide multiple pieces of evidence linking zoono-
sis to HGT in fish farms and demonstrating that L3
and L5, along with two clades present in L1 (clade A
and clade T), probably arose following outbreaks of
Since we had detected host specificity within pv. piscis, vibriosis in fish, as occurred with L2-clade E, -clade
we analyzed the phylogenetic relationships of fpcrp A and -clade I [8,10,23]. Although few strains from
and ftbp. The corresponding gene trees reconstructed  these lineages and clades have been analysed in the
from the orthologous genes found in the genomes  present work, they are clonal groups and the results
used in [11] are shown in Figure 1. As expected,  obtained can probably be generalized to the clade/line-
both genes were present in all the genomes belonging  age level.
to pv. piscis as well as in a new L1 strain (FORCO017) The pieces of evidence are the following:

Discussion

Host specificity within pv. piscis
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(1)

()

The emergence of a new potentially zoonotic pv.
piscis clade within L1. A new clade emerged as a
homogeneous and distinct serological group in
tilapia farms located in the Eastern Mediterra-
nean, where it caused several vibriosis outbreaks
between 2016 and 2019. Genomic and phyloge-
nomic analyses of Ll-clade T strains revealed
that they were highly homogeneous and formed
a clonal group that was identified as belonging
to pv. piscis. Unexpectedly, the new clade did
not belong to L2, the lineage encompassing all
the strains of pv. piscis known to date, but to L1,
the lineage containing most of the strains associ-
ated with primary sepsis after shellfish ingestion.
Similarly, to L2-clade E, Ll-clade T resulted to
be potentially zoonotic as it was virulent to
mice, tested positive in the PCR designed to pre-
dict public health hazard [22], and, most impor-
tantly, multiplied in iron-overloaded human
serum. This result was shared with all the
human clinical strains used in this study as
controls.
The strains of the new clade share more virulence
traits with phylogenetically distant strains but
from the same habitat (tilapia farms) and location
(Eastern Mediterranean) than with phylogeneti-
cally closer strains but from other sources and
locations (e.g. YJ016 or CMCP6). Among the
shared virulence traits by Eastern Mediterranean
lineages and clades, the following should be
highlighted.

(a) O-serogroup. Clade A and clade T shared O-
serogroup despite belonging to two different
sublineages within L1, which is compatible
with an LPS-biosynthetic gene transfer
between the two sublineages. Since the O-
antigen confers partial resistance to fish
serum in V. vulnificus [55], these events
could have been favoured by positive selec-
tion of resistant strains in the fish farming
environment.

(b) MARTX toxin. These toxins are the most
important virulence factors in V. vulnificus
regardless of lineage and susceptible host
[14,50,51]. At least 7 types of these toxins
and 8 functional domains have been
described in this species [50]. The pv. piscis
strains studied to date produce a type
known as RtxAl; (MARTX;, qade £ in this
study), which has been implicated in toxic
shock death in mice and eels [14,51]. A dis-
tinguishing feature of this toxin is the pres-
ence of an actin cross-linking domain
(ACD). The in-silico analysis performed in
this study revealed that the L1-clade T toxin
is much more similar to the L3, L5 and L1-
clade A toxins than to MARTXi, dude E

(Figure 3). Like MARTX 3, it lacks the ACD
domain and contains the RID, ABH, DUF1
and ExoY domains, although it lacks the
DmX domain, a domain that disrupts the
Golgi apparatus [56]. Laboratory experiments
have shown that the variability of these toxins
arises by recombination between two non-
identical rtxAI genes carried by the same
cell after mating between inter-domain hom-
ologous zones [57]. Therefore, this recombi-
nation process associated with HGT events
is likely to have occurred multiple times in
tilapia farms, with the most successful forms
being selected.

(c) The outer membrane proteins Fpcrp and Ftbp.
Both proteins protect the bacterium against
innate immunity in eel blood [12,50]. The
genes fpcrp and ftbp were present in all Eastern
Mediterranean lineages and clades, and its
phylogenetic analysis revealed small differ-
ences that could be related to host adaptation
as the strains grouped by host fish species
(Figure 4). Approximately 13% of salmonid
transferrin sequences have been shown to
undergo positive selection for iron compe-
tition with bacterial pathogens [58]. Similarly,
pathogens can change amino acids in their
transferrin receptors through mutations that
facilitate the adaptation of these bacteria to
changes in the host or even to new hosts [58].

(d) Zoonotic capability. All the Eastern Mediter-
ranean lineages and clades were zoonotic or
potentially zoonotic as they included human
clinical strains [9,17,18] and, at the same
time, were virulent to tilapia.

(3) The four clades/lineages associated with Eastern
Mediterranean tilapia farms presented a new
pFv-related plasmid that could have emerged
from recombination between pFv and pConj.
The new plasmids were practically identical, and
the main difference was that pL3 was the only
one containing a complete set of tra genes for con-
jugal transference. Recombination between pFv
and pConj had been previously demonstrated at
the laboratory scale by Lee et al. [49] but it had
not been shown to occur in nature. It therefore
seems likely that pCladeA, pCladeT, pL3, pL5
and pFv belong to the same family of fish viru-
lence plasmids, a family that could have spread
to four of the five lineages described in the species.

Finally, the Eastern-Mediterranean isolates were
virulent for tilapia but not for eel, which suggests a
specific host adaptation that is supported by the differ-
ences in ftbp and fpcrp sequences (Figure 4). Remark-
ably, the genomic analysis in the context of the genus
also revealed that plasmid-encoded genes ftbp and
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Figure 4. Evolutionary history of the genes for the “survival in fish blood kit”. Molecular phylogenetic analysis of ftbp (A) and fpcrp
(B) was performed using the maximum likelihood method based on the Tamura 3-parameter model [47]. The tree is drawn to
scale, with branch lengths measured as the number of substitutions per site. The main host (tilapia or eel) is shown in each tree.

fpcrp have already been transmitted to another patho-
genic fish species, V. harveyi. The relevance of this
acquisition for fish virulence in this species is being
studied now.

In summary, our work provides multiple pieces of
evidence supporting the hypothesis that V. vulnificus
is an underestimated zoonotic agent linked to fish
farms. The species is probably an opportunistic patho-
gen in its natural environment, but in fish farms some
strains behave as primary fish pathogens after acquir-
ing a plasmid that encodes the ability to proliferate in

the fish blood. Natural selection has probably favoured
the amplification of some transformant clones after
successive vibriosis outbreaks, giving rise to the clades
that are isolated nowadays. One of these clades (L2-
clade E) has been reported as a zoonotic agent [10],
while others are probably linked to cases of unre-
ported zoonoses or even zoonotic outbreaks (L3). It
is of concern that none of these groups, especially
L3, has been associated with outbreaks of vibriosis in
tilapia. The consequence is that this species is probably
being underestimated as a zoonotic pathogen. Further
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phenotypic, genomic and phylogenomic analyses of
new isolates of this species will be necessary to
confirm that fish farms are acting as drivers accelerat-
ing the evolution of V. vulnificus.
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