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Abstract: Autotaxin (ATX) is considered as an interesting drug target for the therapy of several
diseases. The goal of the research was to detect new ATX inhibitors which have novel scaffolds by using
virtual screening. First, based on two diverse receptor-ligand complexes, 14 pharmacophore models
were developed, and the 14 models were verified through a big test database. Those pharmacophore
models were utilized to accomplish virtual screening. Next, for the purpose of predicting the
probable binding poses of compounds and then carrying out further virtual screening, docking-based
virtual screening was performed. Moreover, an excellent 3D QSAR model was established, and 3D
QSAR-based virtual screening was applied for predicting the activity values of compounds which
got through the above two-round screenings. A correlation coefficient r2, which equals 0.988, was
supplied by the 3D QSAR model for the training set, and the correlation coefficient r2 equaling 0.808
for the test set means that the developed 3D QSAR model is an excellent model. After the filtering
was done by the combinatory virtual screening, which is based on the pharmacophore modelling,
docking study, and 3D QSAR modelling, we chose nine potent inhibitors with novel scaffolds finally.
Furthermore, two potent compounds have been particularly discussed.

Keywords: autotaxin inhibitor; 3D QSAR model; pharmacophore model; virtual screening;
docking calculation

1. Introduction

Autotaxin (ATX) is a circulating enzyme playing a primary role in the conversion of
lysophosphatidyl choline (LPC) into the bioactive phospholipid derivative lysophosphatidic acid
(LPA) [1,2].

Since the ATX-LPA signaling axis has been involved in a number of pathologies, including
cancer [3–7], pain [8–10], and cholestatic pruritus [11,12], as well as fibrotic [13–15], inflammatory [16–18]
and cardiovascular diseases [19], it attracts high interest in the drug discovery industry.

Recently, lots of patents and literature reported numerous ATX inhibitors with probable application
for the treatment of diverse pathologies [10,14,20–22]. For example, Nicolas Desroy identified a
first-in-class ATX inhibitor, GLPG1690, which has been undergoing clinical evaluation for the treatment
of idiopathic pulmonary fibrosis [14]. An aminopyrimidine series with an ATX IC50 of 500 nM were
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developed by Spencer B. Jones, for the treatment of osteoarthritis pain [10]. The imidazo[1,2-a]pyridine
series of ATX inhibitors were identified by the Nicolas Desroy and Bertrand Heckmann group [22].
According to the different binding modes of a variety of endogenous ATX ligands and synthetic ATX
inhibitors to the active site of the ATX protein, the Nicolas Desroy and Bertrand Heckmann group
classified the diverse structural inhibitors into four types, illustrated in Figure 1 [22]. Type I inhibitors
mimic the binding mode of LPC substrate and occupy the catalytic site, as shown in Figure 1A. Type II
inhibitors occupy the hydrophobic pocket by largely exploiting its intrinsic plasticity, as shown in
Figure 1B. Type III inhibitors bind to the hydrophobic channel leaving the hydrophobic pocket and
catalytic site unoccupied, as shown in Figure 1C. The binding modes of compounds studied in this
research differ from that of other inhibitors and can therefore be categorized as type IV inhibitors, as
shown in Figure 1D. Figure 2 manifests the represented compounds of four types of ATX inhibitors [22].

Figure 1. Schematic representation of the autotaxin (ATX) binding pocket and the different inhibitor
binding modes reported to date. (This figure is cited from the reference 22) Type I, II, III, and IV
inhibitors are represented in green, purple, cyan, and orange, respectively, on the schema with matching
colors for carbon atoms on the exemplified structures. The gray dotted lines represent secondary
ligands modeled next to the inhibitor as shown with gray carbons on the illustrations. Zinc ions are
depicted in magenta. (A) Binding mode of type I inhibitors LPA (lysophosphatidic acid) 22:6 (a),
HA-155 (b), and “compound 2”(c). (B) Binding mode of type II inhibitors PAT-494 (d), PAT-078 (e), and
CRT0273750 (f). (C) Binding mode of type III inhibitors PAT-343 (g) and tauroursodeoxycholic acid (h).
(D) Binding mode of type IV inhibitors GLPG1690 (i) and compound 9 (j).



Molecules 2020, 25, 1107 3 of 16

Figure 2. Chemical structures of representative ATX inhibitors. PDB codes of co-crystallized structures
with ATX are indicated in brackets.

In this study, pharmacophore-based virtual screening (PB-VS) was first employed for retrieving
new ATX inhibitors. We established pharmacophore models based on crystal structures of ATX-inhibitor
complexes and then used a big test database to validate the developed pharmacophore models. Then,
for discovering novel ATX inhibitors from the compounds passing through the PB-VS, docking-based
virtual screening (DB-VS) was accomplished, and the score function and docking parameters were
optimized before carrying out DB-VS. Finally, a good 3D QSAR model of 31 ATX inhibitors with
excellent predictive ability was built and utilized to estimate the activity of compounds which have
passed the above two-round screenings. QSAR-based virtual screening was performed to discover
potential novel inhibitors with good inhibitory activities. After the above combinatory virtual screening
method filtering, nine probable ATX inhibitors were chosen. We may buy them to accomplish the
following activity experiments.

2. Materials and Methods

2.1. Development of Pharmacophore Models and PB-VS

The “Receptor-Ligand Pharmacophore Generation” protocol in Discovery Studio 3.1 (Accelrys
Inc., San Diego, CA, USA) was applied to set up pharmacophore models. Some relevant parameters
in this protocol were set as follows: assigning 6 to the “Maximum Feature”, assigning 4 to the
“Minimum Feature”, and assigning 10 to the “Maximum Pharmacophore” [23]. In this study, two
diverse crystal structures of the ligand-receptor complexes (PDB ID: 5MHP, 5M7M) were used for
building the pharmacophore models of ATX inhibitors, because the two complexes manifest novel
binding modes between inhibitors and the receptor [22]. Finally, we built 14 pharmacophore models.
Through a big compound database, which includes 6396 decoy compounds (inactives) from the
DrugBank database [24] and 34 ATX inhibitors (actives), the created pharmacophore models were
discreetly verified.
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We applied the well-built pharmacophore models as 3D queries to retrieve potential ATX inhibitors
from the original chemical database “Diversity Libraries” (129,087 compounds, Life Chemicals Inc.,
Burlington, VT, Canada) by utilizing the “Search 3D Database” protocol in Discovery Studio 3.1.

2.2. Molecular Docking Calculation

We utilized GOLD 5.1 for performing the whole of the docking calculations in this investigation,
which aimed at predicting affinities of compounds and interaction modes for the compounds getting
through the PB-VS. The crystal structure (PDB ID: 5MHP) of ATX bound with the inhibitor 7NB was
obtained for docking calculation. We put all hydrogen atoms into the ATX protein, and then used
Discovery Studio 3.1 to distribute the CHARMM force field. The binding site was explored as a sphere
which contains the amino acid residues staying within 12 Å from the ligand 7NB, and the binding site
was big enough to overlay the ligand binding areas at the active site. Through docking these inhibitors,
which are complexed with the ATX protein returning to their receptors’ active site, the score functions
and docking parameters were pre-optimized.

2.3. Development of 3D QSAR Model and QSARB-VS

A total of 34 ATX inhibitors were collected [22] and docked into the ATX’s active site to explore
the possible binding conformations, and then the inhibitors with probable binding poses were
superimposed with the “Molecular Overlay” tool. However, three compounds with obviously wrong
binding conformations were deleted from the 34 inhibitors, therefore, a total of 31 aligned inhibitors
were used for establishing a 3D QSAR model. Seventy percent (22 compounds) of them, as shown in
Table S1, were used as a training set to build the 3D QSAR model, and then the remnant 30% (including
9 compounds), as shown in Table S2, were used as an outer test set for verifying the predictive ability
of the 3D QSAR model.

The “Generate Training and Test Data” protocol in Discovery Studio 3.1 was utilized to generate
the training set compounds and test set compounds by using the “random” method.

At first, we made the compound’s inhibitory activity in reports [IC50 (nmol/L)] to become the
negative log scale [pIC50 (mol/L)], which was employed as the responding variable for the following
3D QSAR analysis.

The CHARMM force field was added. The van der Waals potential, combined with the electrostatic
potential, were treated as individual terms in Discovery Studio 3.1. A + le point change was applied as
the electrostatic potential probe when the dielectric constant related to distance was for mimicking
the effect of solvent. Concerning the van der Waals potential, a carbon atom was used, whose radius
equaled 1.73 Å, as the probe [25]. We utilized energy grids as signifiers to build a partial least-squares
model and used the “Create 3D QSAR Model” protocol in Discovery Studio 3.1 to establish 3D
QSAR models.

We carried out the QSARB-VS by utilizing the “Calculate Molecular Properties” protocol.
The selected final hits were the compounds whose estimated pIC50 value were higher than 5.6.

3. Results and Discussion

3.1. Establishment of Pharmacophore Models

By utilizing the “Receptor-Ligand Pharmacophore Generation” protocol, the pharmacophore
models from the crystal ATX-ligands were derived. The pharmacophore generation module in
Discovery Studio 3.1 interprets and abstracts chemical properties, which include charge properties,
hydrogen acceptor, hydrophobic feature, hydrogen donor, and aromatic feature from the receptor–ligand
interactions. Several excluded volume spheres and chemical properties were produced and perceived
as pharmacophore models; these models can be applied for discovering small molecular compounds
with the capacity of inhibiting ATX activity. For ATX-7HR (PDB ID: 5M7M), the software recognized
four pharmacophore models, which were termed as 5M7M 01–04, and for ATX-7NB (PDB ID: 5MHP),
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10 pharmacophore models, which were referred to as 5MHP 01–10, were recognized by the software.
Figure 3A manifests the excluded volume spheres and the whole pharmacophore properties derived
from the mutual interactions between ligand 7HR and the ATX receptor. Figure 3B manifests the
whole pharmacophore properties and excluded volume spheres derived from the mutual effects
between ligand 7NB and the ATX receptor. Table 1 manifests the pharmacophore summary of the
pharmacophore models 5M7M 01–04 and 5MHP 01–10. The selectivity scores are employed for ranking
the pharmacophore models. The detailed information about calculation of the selectivity score can
refer to reference [23]. The selectivity score is estimated based on a genetic function approximation
(GFA) model. The GFA model for the selectivity of a pharmacophore is built from a training set of 3285
pharmacophore models. This set is used for searching the CapDiverse database in Discovery Studio.
The logarithmic values of the number of database search hits are used as the targets (a value of −1.0 is
used if no hit is retrieved from the search). The number of total features in pharmacophore models and
the feature–feature distance bin values are used as the descriptors for training the GFA model.

Figure 3. (A) All chemical features identified based on the 5M7M complex. (B) All chemical features
identified based on the 5MHP complex. Feature colors: blue, hydrophobic feature; green, hydrogen
acceptor feature; orange, aromatic ring feature.

Table 1. The summary of pharmacophore models 5M7M 01–04.

Pharmacophore Abstract

Pharmacophore Models Frequency of Properties Feature Set Selectivity Score

5M7M 01 5 A1H1H2H3R2 1.3840
5M7M 02 4 A1H1H2R2 1.0423
5M7M 03 4 A1H3R1R2 0.95229
5M7M 04 4 A1H1H2H3 0.47716
5MHP 01 6 A1H1H2H3H4H5 3.6354
5MHP 02 6 A1H1H2H3H4H6 3.6354
5MHP 03 6 A1H1H2H4H6R2 2.8903
5MHP 04 6 A1H1H3H4H6R2 2.8903
5MHP 05 5 A1H1H3H4H5 2.4170
5MHP 06 5 A1H1H2H3H4 2.4170
5MHP 07 5 A1H1H2H4H5 2.4170
5MHP 08 5 A1H1H3H4H6 2.4170
5MHP 09 5 A1H1H2H4H6 2.4170
5MHP 10 5 A1H1H4H6R2 2.3270
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3.2. Validation of Pharmacophore Models

By utilizing a big test database (including 6396 compounds which were from the DrugBank
database [24] and 34 ATX inhibitors [22]), we carefully validated the total of 14 pharmacophore
models for their ability of determining external compounds as ATX inhibitors or ATX non-inhibitors.
The parameters which were employed to evaluate the prophetic capability of pharmacophore models
are as follows: specificity, (SP (1)), the predictive accuracy of the ATX non-inhibitors); sensitivity
(SE (2)), the predictive accuracy of the ATX inhibitors); the total predictive accuracy (Q (3)).

SP =
TN

TN + FP
(1)

SE =
TP

TP + FN
(2)

Q =
TP + TN

TP + TN + FP + FN
(3)

FP, which means false positives, is the number of ATX non-inhibitors which are incorrectly
predicted as ATX inhibitors; TN, which means true negatives, is the number of properly identified ATX
non-inhibitors; TP, which means true positives, is the number of properly confirmed ATX inhibitors;
FN, which means false negatives, is the number of ATX inhibitors that are incorrectly categorized as
ATX non-inhibitors.

The ROC score is described as the area under the ROC curve (AUC), which is widely used to
measure the discriminatory power of a pharmacophore model. For example, the maximum value
for ROC, which equals 1, manifests that the model has an ideal predictive capability, which means a
0% wrong positive rate and a 100% real positive rate. However, if the ROC score is lower than 0.5,
it manifests that the model has no discriminative capacity, which means a 50% wrong positive rate and
a 50% real positive rate [26].

Table 2 displays the prediction results of the test set for the total 14 pharmacophore models. As can
be seen from Table 2, for the four pharmacophore models which were established based on 5M7M
complex, the ROC scores range from 0.770 to 0.845. (ROC curves of models 5M7M 01–04 are displayed
in Figure S1). The values of sensitivity (SE), as shown in Table 2, are all 1; however, the values of
specificity (SP), as shown in Table 2, range from 0.624 to 0.741. Only one pharmacophore model, 5M7M
01, has the value of SP of 0.741 and the concordance (Q), as shown in Table 2, of 0.742; the numerical
values of Q and SP of the rest of the pharmacophore models are all lower than 0.700. Therefore, we only
selected the pharmacophore model 5M7M 01 for the virtual screening. For the ten pharmacophore
models established based on the 5MHP complex, except for 5MHP 01, 02, 04, and 05, the ROC scores are
all higher than 0.900 (ROC curves of models 5MHP 01–10 are displayed in Figure S2), which manifests
the ability of the models to distinguish ATX inhibitors from non-inhibitors is excellent. The values
of SE of pharmacophore models 5MHP 01, 02, and 05 are all lower than 0.800; these results were not
entirely satisfactory, so these three models were not applied for the virtual screening. The rest of the
pharmacophore models possess good SE, SP, and ROC values; therefore these pharmacophore models
would be employed for virtual screening. The ten pharmacophore models have the concordance (Q),
as shown in Table 2, ranging from 0.881 to 0.971.
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Table 2. The verification results of pharmacophore models 5MHP 01–10 and 5M7M 01–04.

Verification with Known Inactives/actives

Pharmacophore TA a TI b TP c TN d FP e FN f SE g SP h Q i ROC

5M7M 01 34 6396 34 4737 1659 0 1 0.741 0.742 0.845
5M7M 02 34 6396 34 4108 2288 0 1 0.642 0.6442 0.770
5M7M 03 34 6396 34 4002 2394 0 1 0.626 0.628 0.793
5M7M 04 34 6396 34 3991 2405 0 1 0.624 0.626 0.773
5MHP 01 34 6396 19 6172 224 15 0.559 0.965 0.963 0.766
5MHP 02 34 6396 26 6219 177 8 0.765 0.972 0.971 0.866
5MHP 03 34 6396 33 6093 303 1 0.971 0.953 0.953 0.967
5MHP 04 34 6396 28 6155 241 6 0.824 0.962 0.962 0.894
5MHP 05 34 6396 25 5773 623 9 0.735 0.903 0.902 0.829
5MHP 06 34 6396 34 5634 762 0 1 0.881 0.881 0.969
5MHP 07 34 6396 34 5590 806 0 1 0.874 0.875 0.943
5MHP 08 34 6396 32 5845 551 2 0.941 0.914 0.914 0.927
5MHP 09 34 6396 34 5788 608 0 1 0.905 0.905 0.959
5MHP 10 34 6396 34 5650 746 0 1 0.883 0.884 0.951

a True actives; b true inactives; c true positives; d true negatives; e false positives; f false negatives; g sensitivity; h

specificity; i concordance.

3.3. Determination of Parameters and Scoring Functions

As mentioned above, prior to carrying out the virtual screening, the QSARB-VS and PB-VS
needed to establish virtual screening models. Compared to QSARB-VS and PB-VS, if the receptor
crystal structure is known, DB-VS seems straightforward. Because the score functions and docking
parameters have been deemed to have significant effects on the ultimate results of DB-VS, including
affinities between compounds and receptor and binding conformations of compounds, it is necessary to
optimize the score functions and docking parameters before carrying out the real DB-VS. In the research,
we utilized GOLD 5.1 for the DB-VS, which has been deemed as one of the greatest programs of docking
software. The reference structure of the receptor for the docking calculation was the crystal structure
(PDB ID: 5MHP) of the ATX-7NB complexes. Two active compounds co-crystallizing with ATX were
docked to return to the ATX’s active site for determining the optimal docking parameters and score
functions. The docking parameters and score functions were adjusted before the docked conformations
approach their initial crystallized conformations as much as possible. The ultimately optimized
docking parameters were maintained as their set default, besides that, the genetic algorithm parameter
was assigned to “GOLD Default”; the early termination was assigned to “False”; and generate diverse
solutions was assigned to “True”. To rank the compounds, the Chemscore fitness function was chosen.
By using these parameters and score function, we acquired very little root-mean-square deviation
(RMSD) values between the docked conformations of the two active compounds and their crystal
conformations. Figure 4 shows the docking poses of the 7HR and 7NB, for comparison, and the crystal
structures of the two compounds that have been complexed with ATX are also shown. An overview is
that the docked structures (both the poses and positions of heavy atoms) are very close to their original
crystallized structures. The computed RMSD values are displayed in Table 3. Clearly, the compound
7HR has the RMSD value of 1.8001 Å, and the other compound 7NB owns the RMSD value of 0.6007 Å.
The two compounds possess RMSD values less than 2.0 Å, showing that GOLD software is a reliable
way for docking computations and capable of searching the right conformations.
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Figure 4. Binding modes of 7HR (yellow) (A) and 7NB (yellow) (B) in the active site of ATX. Ligands
complexed with their receptors are also shown for comparison, 7HR and 7NB indicated in green
stick form.

Table 3. The crystal ATX inhibitors’ RMSD values between their docked postures and crystal postures.

Ligand ID a PDB Entry RMSD (Å)

7HR 5M7M 1.8001
7NB 5MHP 0.6007

a The ligand IDs are from the PDB database.

3.4. Development of the 3D QSAR Model

For the purpose of obtaining a structure–activity relationship profile on the compound
N-N,4-dimethylthiazol-2-amine derivates as ATX inhibitors and of retrieving potential ATX inhibitors
through the VS way, we built 3D QSAR models. The greatest 3D QSAR model was utilized to
evaluate the pIC50 values of new compounds. In the above work, 31 ATX inhibitors bearing the
same scaffold, as shown in Figure 5A, with experimental IC50 values were gathered as the 3D QSAR
dataset. The “Generate Training and Test Data” protocol in Discovery Studio 3.1 was applied to
generate the training and test sets by using the “random” method. Take into consideration, a good
alignment of compounds used for QSAR modeling is important for molecular field analysis, and the
whole 34 compounds were docked into the ATX’s active site to probe each compound’s probable
binding conformation, and three compounds were deleted after checking their binding conformations
since these compounds possessed obviously wrong binding conformations. Then, the remaining
31 compounds which have binding conformations were superimposed by utilizing the “Molecular
Overlay” tool, and the 3D QSAR model was developed by making use of the 31 aligned inhibitors.
Figure 5B presents the alignment result of the 31 ATX inhibitors. The correlation coefficient r2 between
estimated and experimental activity of the training set was identified as 0.988, while the correlation
coefficient r2 of the test set was identified as 0.808, manifesting that the established 3D QSAR model
was an excellent model for exploring the QSAR of the 31 inhibitors. Figure 6 shows the good agreement
between predicted pIC50 values and experimental pIC50 values for both the test set and training set.
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Figure 5. (A) The scaffold of 31 autotaxin inhibitors. (B) The alignment result of 31 Mcl-1 inhibitors
based on the poses acquired by the docking study calculation.

Figure 6. Plots of predicted autotaxin inhibitory activities versus experimental of training set and
test set.

Besides, Figure 7 displayed the compounds which correspond with the iso-surface of the 3D QSAR
model coefficients on the electrostatic potential grids and van der Waals grids. In the electrostatic map,
red contours surround the areas where high electron density is expected to enhance activity, and blue
contours describe areas where low electron density is expected to enhance activity. Similarly, the steric
map indicates areas where steric bulk is predicted to increase (green) or decrease (yellow) activity.
On the basis of the mappings, there are no locations of electrostatic potential grids and van der Waals
grids for both ring A and ring B, manifesting that those locations are not crucial for increasing the
activities of compounds, but proper core minor structures are required. However, the meta-position
of ring B needs small substitutional and negative charged groups, and there are no distributions of
van der Waals grids, but a negative charged group distribution for ring C. The substitutional groups,
which are in the R1 site, demand high negatively charged groups on the aromatic ring, and the small
substitutional groups on the rings. The substitutional groups in the R2 site demand small substitutional
groups and high negatively charged groups. Consequently, data which was summed up proves that
compound23, which has a proper substituted group and is the greatest potent ATX inhibitor, has
outstanding activity, with an experimental IC50 value equal to 86 nM.
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Figure 7. (A) 3D QSAR model coefficients on electrostatic potential grids. Blue represents positive
coefficients; red represents negative coefficients. (B) 3D QSAR model coefficients on van der Waals
grids. Green represents positive coefficients; yellow represents negative coefficients.

3.5. Searching for New ATX Inhibitors

In order to find patent ATX inhibitors, we conducted a combined virtual screening method,
including a 3D QSAR model, molecular docking calculations, and pharmacophore models [27].
Figure 8 manifests the virtual screening workflow. Using the PB-VS filter, the original chemical
database was first filtered, for PB-VS was quicker than DB-VS. Nevertheless, the pharmacophore
models which were utilized in the research only thought of the chemical properties between the
receptor and the ligand, and these models did not have the capacity to estimate the inhibitory
activities of the potent compounds. Consequently, the hit compounds retrieved by PB-VS were docked
to the active site of ATX receptor for sorting these compounds and discovering rational binding
conformations of those compounds to do some preparation for the activity prediction by the 3D
QSAR model. It should be emphasized that the 14 pharmacophore models applied in the research
are non-quantitative structure–activity relationship pharmacophore models, and those models do
not involve the activity-relationship of the ATX inhibitors and cannot evaluate activity of patent
compounds. Thus, the 3D QSAR model, which can predict the inhibitory activity of new compounds,
was finally applied to filter the selected compounds passing through the two rounds of selection,
which includes DB-VS and PB-VS. In detail, when the cutoff fitting value is assigned as 2.0, 2846
compounds could get over the PB-VS, and the 2846 compounds could be sorted by utilizing the docking
computation. On the basis of the docking scores and whether there are some significant mutual effects
existing between the selected compounds and the ATX protein’s active position (including PHE211,
LEU214, PHE274, PHE275, ALA305274, and TYR307), 50 compounds were selected. Then, the 3D
QSAR model was used to filter 50 compounds which have probable binding conformations, and nine
compounds were selected whose estimated pIC50 values were higher than 5.6. Figure 9 manifests the
chemical structures of the nine chosen compounds. Table 4 stands for the nine hit compounds’ relevant
parameters, which includes pharmacophore fit values, docking scores, and pIC50 values.
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Figure 8. The workflow chart of the study. A combinatory virtual screening (VS) protocol based on the
pharmacophore model, molecular docking study, and the 3D QSAR model was utilized to discover
novel inhibitors targeting autotaxin.

Figure 9. The 3D chemical structures of the final nine selected compounds.
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Table 4. The nine hit compounds’ parameters, which include docking score, pharmacophore fit values,
and pIC50 values.

Compound Fit Value Docking Score Predicted Activity (pIC50)

cpd1 2.95497 37.0191 5.6312
cpd2 2.33815 43.5524 5.63735
cpd3 2.08654 34.011 5.687
cpd4 2.00695 48.8647 5.62577
cpd5 3.63318 42.5693 5.71689
cpd6 3.55526 34.2583 5.75721
cpd7 3.14614 33.264 5.74321
cpd8 3.12769 40.4997 5.68862
cpd9 2.53449 35.5562 5.76814

From Figure 10A, we can conclude that the features of the pharmacophore model 5M7M 01 are
mapped well with one hit compound cpd4. In detail, the phenyl groups and piperazine group of cpd4
map with the three hydrophobic features. The oxygen atom of the benzo[d][1,3]dioxole group maps
with the hydrogen acceptor feature. The phenyl group maps with the ring aromatic feature. Figure 10B
shows the probable binding conformation of cpd4 in the ATX’s active site; the 1-phenylpiperazine group
forms hydrophobic interactions with the residues ILE168, LEU214, PHE274, PHE275, and ALA305;
the oxygen atom of benzo[d][1,3]dioxole group forms hydrogen bond interactions with the SER170;
the quinoline group makes π-π interactions with TRP255.

Figure 10. (A) Mapping of 5M7M 01 with compound cpd4. (B) The possible binding pose of cpd1 in
the autotaxin active site. Compound 7HR complexed with autotaxin is also shown for comparison (in
gray stick form).

The mapping result of the compound cpd7 with the pharmacophore model 5MHP 03 is shown in
Figure 11A. The hydrophobic features map with the phenyl group and thiazole group; the oxygen atom
of methoxyethane group maps with the hydrogen acceptor feature, and unfortunately, in Figure 11B,
the corresponding hydrogen bonds disappear. The pyridine group maps with the aromatic ring feature.
Figure 11B shows the probable binding conformation of the compound cpd7 in the active site of ATX.
The 4-(4-ethoxyphenyl)thiazole group of cpd7 forms hydrophobic interactions with the amino acid
residues ILE168, LEU214, PHE274, PHE 275, and ALA305. The pyridine group and thiazole group
make π-π interactions with TRP255.
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Figure 11. (A) Mapping of 5MHP 03 with compound cpd7. (B) The possible binding pose of cpd7 in
the autotaxin active site. Compound 7NB complexed with autotaxin is also shown for comparison (in
gray stick form).

Figures 12 and 13 show the mapping results of cpd4 and cpd7 with the 3D QSAR model,
respectively. The mapping results of cpd4 and cpd7 with electrostatic potential grids are shown in
Figures 12A and 13A; Figures 12B and 13B show the mapping results of cpd4 and cpd7 with van der
Waals grids. From the figures, we can conclude that the cpd4 and cpd7 map well with the 3D QSAR
model; if the 1-phenylpiperazine group of cpd4 and ethoxybenzene group of cpd7 are substituted by
heterocyclic or aromatic rings with negative charge and a small substituent group, the activities of
cpd4 and cpd7 may be increased.

Figure 12. The mappings of cpd7 with isosurface-EP (–, red; +, blue) (A), isosurface-VMD (–, yellow; +,
green) (B) grids. cpd7 is presented in green stick form. Compound 7NB complexed with autotaxin is
also shown for comparison (in gray stick form).
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Figure 13. The mappings of cpd4 with isosurface-EP (–, red; +, blue) (A), isosurface-VMD (–, yellow; +,
green) (B) grids. cpd4 is presented in purple stick form. Compound 7HR complexed with autotaxin is
also shown for comparison (in gray stick form).

4. Conclusions

In the research, we first established 14 pharmacophore models of N-N,4-dimethylthiazol-2-amine
derivates as ATX inhibitors by utilizing the “Receptor–Ligand Pharmacophore Generation” protocol.
The 14 pharmacophore models were derived from the 5MHP and 5M7M ligand–receptor complexes.
By utilizing a big database which includes 6396 decoys and 34 ATX inhibitors, the pharmacophore
models were then validated. Next, we used a docking study to execute virtual screening. We obtained
the appropriate score function and docking parameters before performing the actual virtual screening
through estimating the values of RMSD between the ligands’ crystal postures and the docked
conformations of them. By utilizing the 31 aligned ATX inhibitors, we built a remarkable 3D QSAR
model, and the corresponding coefficient r2 between estimated and experimental activities (the
estimated activities were predicted by the 3D QSAR model) of the test set and training set compounds
were 0.808 and 0.988, separately. Next, a combined virtual screening method was utilized to filter
patent ATX inhibitors, which included pharmacophore models, molecular docking calculation, and 3D
QSAR model approaches. At first, we used the pharmacophore models to screen the initial database.
Secondly, we docked the hit compounds into the active site of ATX to predict their probable binding
postures. Lastly, to find feasible patent ATX inhibitors, we employed the 3D QSAR model to predict
the activities of the compounds through the two-round filterings. We discreetly selected nine feasible
ATX inhibitors and may buy them to proceed to the following tests.
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