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RADIATION protection studies are concerned with individuals receiving chronic
whole body doses of about 1 rad per year whereas data on the incidence of leukaemia
or cancer have been obtained from individuals receiving a limited number of
whole body doses of about 100 rads or more (see, for example, Court Brown and
Doll, 1957, for a typical investigation). In determining acceptable radiation
doses it is therefore necessary to extrapolate the data by two orders of magnitude
and, at present, there is no established theory to guide this extrapolation. For
example I.R.C.P. (1966) use a linear relationship between dose and effect, well
aware that this assumption may be incorrect and lead to an over-estimation of
risks but satisfied that it is unlikely to lead to an under-estimation of them.

As well as the wide, long term interest in helping the understanding of the
mechanism of the induction of cancer, an established theory of dose-effect
relationships could have considerable economic significance in relaxed health
physics regulations. The theory developed in this paper provides an illustration
of how large non-linearities in the dose-effect relationship could occur. Although
it is clearly a tentative theory, it is offered in the hope that it will stimulate thought
and discussion amongst those far more experienced in this field than the authors.

GENERAL MODEL

The present state of knowledge of radiation carcinogenesis has recently been
summarised by Mayneord (1967). Although the details are imperfectly under-
stood, the general picture is emerging of a process of two (or more) stages. The
first stage (which may itself consist of several stages) involves the transformation
of healthy cells into “ active ” or pre-cancer cells (possibly by the modification of
their DNA by a carcinogen) and the second stage involves the creation of a
pathological cancer from these activated cells. '

Various models have been suggested for the first stage. In this note, however,
we are concerned with the second stage. Suppose a proportion p of the cells of a
tissue have passed through the first stage and are now ‘‘ activated ”, i.e. they are
in the stage that can give rise directly to a pathological cancer. Suppose further
that the stages of all the cells in the tissue being studied are determined independ-
ently of each other, 7.e. that the probability of any particular » cells all heing
activated is p™.

In this note we consider the consequences of the postulate that a cancer will
arise if a small number of activated cells happen to lie close enough together to
interact in some way. If the smallest number of activated cells that can interact
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to start a cancer is n, then for low levels of p the probability of getting a cancer in
a small piece of tissue of volume dv will be proportional to p* dv.
Simple forms of dependence of p on the dose of the activating carcinogen are

p proportional to dose
or, perhaps,

p proportional to dose X (age)* (Weibull : see Pike, 1966)

The exact dependence of p on dose will depend on the mechanism of the first
stage of carcinogenesis (activation) ; if the carcinogen acts at r different sub-stages
of the activation process then dose might appear as (dose)”. Most models for the
first stage will produce a linear or higher-order dependence of p on dose; the
authors know of none where any less dependence of p on dose than a linear
dependence is suggested for moderate levels of carcinogenic dose.

Consider now the second stage. If n activated cells can give rise to a cancer
then so can » 4+ 1 or » + 2. .. activated cells, giving rise to the more general
expression for the probability of development of cancer,

(anp"‘ + a,n+1p”+1 + . ) dv

Since all the coefficients of p are positive, if p is linearly dependent on dose, or
dependent as some power of dose greater than one, and as long as the incidence
of cancer is no more than a few per cent, the probability of developing cancer
following exposure to activating dose d will be given by

probability = b,d™ + b, ., d*t! +. ..

where none of the b, are negative.

From this non-negativity it can be shown that interpolation between observed
incidence rates (of the order of 1 per cent) and the zero by an nth power relation-
ship will be conservative and therefore satisfactory for radiation health physics ;
if the higher terms of the expression make any significant contribution at all to the
probability of cancer at the levels of dose for which data is available then nth
power extrapolation will over- rather than under-estimate the cancer risk at
low doses.

CONSIDERATION OF TWO TYPES OF EXPERIMENTAL DATA

A. With many cancers the interval between carcinogenic dose and diagnosis
of cancer is extremely variable. It follows that if our suggested mechanism is in
fact the last stage in some of these cancers then the method of activation cannot in
these cancers be the simple one of a carcinogen instantly transforming a healthy
cell into a completely activated cell ; some other random process(es) must intervene.

B. Three types of relationship between dose and cancer incidence have so far
been suggested :

(i) Linear (observations on human lung cancer in cigarette smokers—Pike
and Doll, 1965 ; and human leukaemia following irradiation—Court Brown
and Doll, 1957).

(ii) Sigmoid (human cancer following radiation exposure—Finkel 1968).

(iii) Slope increasing with dose (treatment of mice with benzopyrene—Poel,
1959 ; Peto and Roe, 1969, not yet published).
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If the first two are correct then these cancers are unlikely to have our suggested
mechanism as a last stage, unless either the shapes of the observed curves are
mainly the effect of different people having different susceptibilities to cancer
induction or our assumption about the independence of the stages of activation of
adjacent cells is wrong.

A further limitation of the elementary theory presented here is that the
possibility of either normal or activated cells being killed by the carcinogen is
ignored. The theory can be extended to cover this effect and it can be shown
that it leads to dose rate effects and some fall off from the p™ behaviour at high
doses.

Despite these limitations the model may still be sufficiently general to be
worth investigating, and in the remainder of this paper we develop the mathemati-
cal theory needed to calculate the higher terms in the polynomial

probability of cancer in volume dv = (a,p? + a,,,p"! +...)dv

We apply the general theory, as an example, to a particular physical mechanism
that could give cancer causation by the interaction of activated cells.

BASIS OF THEORY

We now analyse the effect of our postulate on the mathematical form of the
dose-response curve. We assume that the activated cells are scattered uniformly
and independently throughout the tissue concerned, and calculate the probability
that by chance a number of them will lie close enough together to interact and form
a cancer.

We define the spread of a cluster of » points as the sum of squared distances
of the points from the centre of the cluster

8y =|ry —T|2 4 |ry —T|24+ ... +|r, —T|2 (1)
s, has the dimensions of area, and 4/s,/n is approximately the radius of the
cluster. If n = 1 then the spread, s,, is zero.

If we only know s, for a cluster of n activated cells we cannot say for certain
whether that cluster is tightly enough packed to generate a cancer because we do
not know the detailed configuration of the » cells inside the cluster. However,
we will make the approximation that there exists a series of ‘‘ critical spreads ”
Xy, T3, T, . . . such that a cancer will only start in a tissue if we can find, for some 7,
n activated cells so close together that s, <x,. If the smallest number of cells
that can interact to form a cancer is n,, all the x’s below z,,, will be zero ; n, must
be at least 2 for interaction to exist, and if screening of some sort is envisaged a
value of n, of 4 or 5 would appear more reasonable.

The problem now reduces to the calculation of the probability that, somewhere
in the volume V, there is a cluster of n cells that satisfies the criterion s, <z,
for some reasonably small » > n,. This problem is analysed in the Appendix
where it is shown that the probability can be expressed quite generally as (1 — e—P),
where

P=vyy (X L (w3121 (2)
TVEINT) T $0)T8m —1) 113 on
Here vy, is a positive number which depends only on {z,, ©,,,y, - . . , %,} and N/V

is the number of initiated cells per unit volume which, making the assumption that
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the probability of damage to an individual cell is proportional to the radiation
dose, is proportional to dose. Since P is small the probability of a cancer is
proportional to the volume of the organ considered and is also proportional to at
least the nyth power of the dose.

DIFFUSION MODEL

So far we have shown that any model which relies on the assumption that a
cancer will form if activated cells are independent and happen to lie close together
will lead to a non-linear dose-risk relationship. In this section the following
specific model is analysed to illustrate the method. It is assumed that some
substance or organism is produced at certain locations in the body and diffuses
through the body acting so as to inhibit cancerous cell growth. A  feed-back
mechanism *’ exists to keep the average concentration throughout the body
constant. In acting so as to prevent cancerous growth it is postulated that this
growth inhibiting substance is absorbed and its concentration is decreased. If
the concentration falls below a certain critical value, then growth will occur. The
theory is fairly general and it is not necessary to specify the nature of the inhibiting
substance.

Since the model postulates a ‘‘ feed-back mechanism ’ keeping the average
inhibitor concentration constant, any fall below the critical level will be due
either to localised radiation effects so that the * feed-back sensor spacing ” is
too great to respond or else to local fluctuations in the distribution of damaged
cells. Although the former possibility poses real problems, it is the consequence
of fluctuations in damage distribution that is analysed in this paper.

Consider the balance between the generation and absorption of inhibitor fluid
in a region of linear dimensions of order (s, /n)/2 where n activated cells are critic-
ally close together. The absorption of inhibitor by the activated cells will be
proportional to n. The generation of inhibitor to keep the average level constant
will be proportional to (s,/rn)%/2 N/V, the product of the volume of the region and
the average density of activated cells. If diffusion of the inhibitor is governed by
Fick’s Law, the inflow of inhibitor will be proportional to the concentration gradient
times the surface area. Therefore, if we have the maximum concentration
difference consistent with the maintenance of inhibition, we will have a (maximum)
inflow proportional to (s,/»)'/2. Hence the condition for a cancer is that some n
activated cells shall satisfy

s \3EN 1 (s, \1/2
n> (?) % +X(z)

and the x, therefore satisfy

32 N 1 1/2
"=(%) _V+X(%) ®)

In this relation A is essentially a diffusion length. That is, if sources of inhibitor
were removed over a region of volume A3, then significant fluctuations in inhibitor
concentration would occur.

It is of interest to examine the relative magnitudes of the two terms on the
right-hand side of equation 3. If the first term is of the same order of magnitude

as n we have
x, of order n>/2 (N/V)~2:3
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and, on substituting in (2) we find each term in the series is of order NV and the
probability of getting a cancer is nearly unity. Hence the second term on the
right-hand side of the equation must dominate. This leads immediately to

x, ~ A3 (4)
and

ASN 1

< (5)

This condition means that, if very high probabilities of a cancer are not to be
obtained, the diffusion length A must be small compared with the mean spacing
between activated cells.

The probability of a cancer in volume V can now be obtained by substituting
(4) in (2). We obtain

V 7T3(’n—1)l2n(9n/2—3) ASN\
P =7 1 1) TEm — 1) +1}'( V) 6)
Values of y, have been computed for various values of n, and are all between
0-6 and 1-0 for n > n, (y,, is exactly unity). They do not, therefore, greatly
affect the magnitude of the terms of P.
In practice we are concerned with small probabilities of cancer and hence
A3N/V must be small by (5). Therefore only the first term in the series is sig-
nificant and we finally deduce

P = k(n,) A—Z (@) (7)

where
ﬂg"o_ 1 )no%(no—3)

P(ng +1).T(n, — 1) + 1}
Values of k(n,) for various values of n, are as follows

N, 2 3 4 5
k(ng) 1-32 x 102 90 x 104 1-46 x 108 47 x 101

k(ng) =

Therefore if the number of activated cells per unit volume N/V is proportional
to dose, the probability of a cancer is proportional to the n,th power of dose;
higher terms will not contribute to the probability of any dose levels of medical
interest.

SUMMARY

The consequences are analysed of a two stage theory of carcinogenesis in
which inhibition breaks down if it so happens that the pattern of activated cells
contains a small closely grouped cluster of such cells. It is shown that this may
lead to a non-linear dose-risk relationship.

A more specific but still fairly general model is then discussed in which it is
assumed that growth is resisted by a diffusing inhibiting substance, and a power
dose-risk relationship is demonstrated. If such non-linearities were confirmed
there would be important implications to the judgement of permissible radiation
doses.



552 J. K. WRIGHT AND R. PETO

The authors are indebted to Professor W. V. Mayneord for his advice and
interest in this work. J. K. Wright’s contribution is published by permission of
the Central Electricity Generating Board.

REFERENCES

Court BrowN, W. M. axDp Dorr, R.—(1957) Spec. Rep. Ser. d. Res. Coun., No. 295.
FiNkEL, A. J.—(1968) Argonne National Laboratory Report No. 7461.
I.C.R.P.—(1966) Publication 9. London (Pergamon Press) p. 2.

May~NEORD, W. V.—(1967)Br. J. Radiol., 41, 241.

Pk, M. C.—(1966) Biometrics, 22, 142.

Pike, M. C. axDp DorL, R.—(1965) Lancet, i, 665.

PoEeL, W. E.—(1959) J. natn. Cancer Inst., 22, 19.

APPENDIX
PROBABILITY CALCULATIONS

We consider a region of the body of volume V containing N activated cells.
The spread of a cluster of n cells is defined by

” —
S, =.~§1|ri — T2

where r; is the position of the ¢th particle in the cluster
and

T =n"1.
i

r;
1

I'M =

Suppose, for a given cluster of » cells, there is a group of k cells within the cluster
for which s;, is known. Then we prove by induction that the probability that s, is
less than s, 4 x is
. . (ﬂx)3(n—k)/2(n/k)3/2 B
PI'Ob {(sn sk) < x} - ‘Vn—kl"{g(n . k) _|_ 1} ”—f(n’ k’ x)’ Sa'Y‘ (8)

If we add an additional cell to a cluster of » then it can be shown that

n
— 2
Spt1 = Sy +,n +1 lrn+1 _"rnl

Hence the probability that (s,,; — s,) <& is the same as the probability that

[Ty — 1|2 < (n +1 §)

n

and since the (n - 1)th cell was chosen at random within the volume V, this

probability is
4 1 3/2
7 ("¢ ®)

Prob{(sps — s) <z} = f Prob{(s, — ) < (x —y)},
y=0 X Prob {(y + d?/) > (8n+1 - 8n) > y}
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Assuming for the induction the truth of (8), we substitute (8) and (9) into this
integral and using

1
. oc-l—l B +1)
f“ I i Py )

it reduces to f(n + 1, k, ). We now have only to note that (8) holds for » = %
to complete the proof of (8) by induction.
Since s; = 0 identically the probability of a cluster of n cells being such that
» < &, and hence giving rise to a cancerisf(n, 1,z,). The overall probability that
somewhere in the volume V of tissue there is an n-tuplet in the tissue satisfying
8, <z,is f(n, 1, z,).(the number of n-tuplets in the tissue). If there are a large
number, N, of activated cells in the tissue the probability per element of volume
dv is
N! d N n dv

It must be noted, however, that even if certain cells were removed from a
carcinogenic cluster there would remain the possibility of the % cells left meeting
the criterion s, <, so the overall probability of a cancer cannot be obtained
simply by adding the various ¢,,.

We must consider instead a related probability y,¢, which is defined as the
probability that a cancer will develop with n cells selected at random, but would
not develop if any one of these cells were removed. 7, will be a factor in the range
[0, 1]. Let us call such a cancer an n-cancer.

Now ¢n = 7n¢n +k_§:7n—k ‘/’"-k prob [», k, x] (10)

where ““ prob [n, k, X] ’ denotes the probability that the increment in the spread of
a k-cancer, if we include in its cluster the nearest n—k activated cells, will not cause
the spread to exceed z,,.

The probabilities are difficult to evaluate exactly, but may be closely approxi-
mated to if we assume that the size of a cancer involving r essential activated cells
is exactly ,. Now

N!
prob [n, k, X] ~ f(n,n — k, x,, —x) . (N —=F)E!

~ f(n,n —k, z, — ;) N*/k!
Cancelling N*/V" from every term in (10), the v, now depend only on the z,.

Substituting n = ng, ny + 1, . . . in turn, we get a series of simultaneous equations
from which the y, can be evaluated. The overall probability of cancer is now

N\» n3/2 .

n=n, n=n,

which gives the result quoted in the text after integrating out dv.




